A NEW APPROXIMATION SCHEME FOR FIXED POINTS OF ASYMPTOTICALLY ϕ-HEMICONTRACTIVE MAPPINGS

Seung Hyun Kim and Byung Soo Lee

Abstract

In this paper, we introduce an asymptotically ϕ-hemicontractive mapping with a ϕ-normalized duality mapping and obtain some strongly convergent result of a kind of multi-step iteration schemes for asymptotically ϕ-hemicontractive mappings.

1. Introduction and preliminaries

Approximation schemes including Mann and Ishikawa iterative schemes for fixed points were studied by many authors $[1,2,4,5,6,8,9,10]$. Noor [5] introduced a three-step iterative scheme and studied the approximate solution of variational inclusion in Hilbert spaces. Glowinski and Le Tallec [2] used three-step iterative schemes to find the approximate solutions of the elastoviscoplasticity problem, liquid crystal theory, and eigenvalue computation. Moreover, they showed that the three-step iterative scheme gives better numerical results than two-step and one-step approximate iterations. Rhoades and Soltuz [8] introduced a multi-step iterative scheme and showed that the convergences of Mann and Ishikawa iterative schemes are equivalent to the convergence of a multi-step iterative scheme for continuous and strongly pseudocontractive mappings.

The asymptotically nonexpansive mapping was introduced by Goebel and Kirk [3]. Cho et al. [1] established weak and strong convergences result of the three-step iterative scheme with errors for asymptotically nonexpansive mappings. Nearly twenty years ago, Schu [9] introduced asymptotically pseudocontractive mappings and established some strong convergence theorems of the one-step iteration for completely continuous, uniformly L-Lipschitzian and asymptotically pseudocontractive mappings in Hilbert spaces. Isac and Li

[^0][4] studied two-step iteration schemes for completely continuous nonexpansive mappings in Hilbert spaces. Recently, Ofoedu [6] studied one-step iteration schemes for L-Lipschitzian mappings and asymptotically pseudocontractive mappings in Banach spaces.

Motivated and inspired by these facts, we introduce an asymptotically ϕ hemicontractive mapping with a ϕ-normalized duality mapping and obtain some strongly convergent result of a kind of multi-step iteration schemes for asymptotically ϕ-hemicontractive mappings in Banach spaces.

Let E be a real Banach space and $\phi: \mathbb{R}^{+}=[0, \infty) \rightarrow \mathbb{R}^{+}$be a continuous strictly increasing function such that $\phi(0)=0$ and $\lim _{t \rightarrow \infty} \phi(t)=\infty$. To the function ϕ, we associate a ϕ-normalized duality mapping $J_{\phi}: E \rightarrow 2^{E^{*}}$ defined by

$$
J_{\phi}(x)=\left\{f^{*} \in E^{*}:\left\langle x, f^{*}\right\rangle=\|x\| \phi(\|x\|) \text { and }\left\|f^{*}\right\|=\phi(\|x\|)\right\}
$$

where E^{*} denotes the dual space of E and $\langle\cdot, \cdot\rangle$ denotes the duality pairing. We shall denote a single-valued duality mapping by j_{ϕ}.

If $\phi(t)=t$, then J_{ϕ} is the usual normalized duality mapping J.
We have the following relation between J_{ϕ} and J, which can be easily shown.
Remark 1.1. For such J_{ϕ} and J,

$$
J_{\phi}(x)=\frac{\phi(\|x\|)}{\|x\|} J(x) \quad \text { for } \quad x \neq 0 .
$$

Let $T: D(T) \subset E \rightarrow E$ be a mapping with domain $D(T)$ and $F(T)$ be the nonempty set of fixed points of T.

Definition 1.1. T is said to be ϕ-nonexpansive if for all $x, y \in D(T)$, the following inequality holds:

$$
\|T x-T y\| \leq \phi(\|x-y\|) .
$$

Definition 1.2. T is said to be ϕ-uniformly L-Lipschitzian if there exists $L>0$ such that for all $x, y \in D(T)$

$$
\left\|T^{n} x-T^{n} y\right\| \leq L \cdot \phi(\|x-y\|)
$$

Definition 1.3. T is said to be asymptotically ϕ-nonexpansive, if there exists a sequence $\left\{k_{n}\right\}_{n \geq 0} \subset[1, \infty)$ with $\lim _{n \rightarrow \infty} k_{n}=1$ such that

$$
\left\|T^{n} x-T^{n} y\right\| \leq k_{n} \phi(\|x-y\|) \text { for all } x, y \in D(T), n \geq 1
$$

Definition 1.4. T is said to be asymptotically ϕ-pseudocontractive, if there exist a sequence $\left\{k_{n}\right\}_{n \geq 0} \subset[1, \infty)$ with $\lim _{n \rightarrow \infty} k_{n}=1$ and $j_{\phi}(x-y) \in$ $J_{\phi}(x-y)$ such that

$$
\left\langle T^{n} x-T^{n} y, j_{\phi}(x-y)\right\rangle \leq k_{n}(\phi(\|x-y\|))^{2} \text { for all } x, y \in D(T), \quad n \geq 1
$$

Example 1.1. Let $E=\mathbb{R}$ have the usual norm and $K=[0,2 \pi]$. Define $T: K \rightarrow \mathbb{R}$ by

$$
T x=\frac{2 x \cos x}{3}
$$

for each $x \in K$. Define a function $\phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$by $\phi(x)=\ln (x+1)$ for each $x \in \mathbb{R}^{+}$and take $j_{\phi}(x-y)=\ln (|x-y|+1)$. By induction, for $x, y \in K$ with $x>y$,

$$
\begin{aligned}
\left\langle T^{n} x-T^{n} y, j_{\phi}(x-y)\right\rangle & \leq\left(\frac{2}{3}\right)^{n}|x-y| \phi(|x-y|) \\
& \leq\left\{\left(\frac{2}{3}\right)^{n}+1\right\}|x-y| \ln (|x-y|+1) \\
& \leq k_{n}|x-y|^{2}
\end{aligned}
$$

where $k_{n}=\left(\frac{2}{3}\right)^{n}+1$. Hence, T is asymptotically ϕ-pseudocontractive.
Definition 1.5. T is said to be asymptotically ϕ-hemicontractive, if there exist a sequence $\left\{k_{n}\right\}_{n \geq 0} \subset[1, \infty)$ with $\lim _{n \rightarrow \infty} k_{n}=1$ and $j_{\phi}(x-y) \in J_{\phi}(x-y)$ such that for some $n_{0} \in \mathbb{N}$
$\left\langle T^{n} x-y, j_{\phi}(x-y)\right\rangle \leq k_{n}(\phi(\|x-y\|))^{2}$ for all $x \in D(T), y \in F(T) n \geq n_{0}$.
Remark 1.2. We have the following relations;
(i) Every ϕ-nonexpansive mapping is asymptotically ϕ-nonexpansive.
(ii) Every asymptotically ϕ-nonexpansive mapping is ϕ-uniformly L-Lipschitzian.
(iii) Every asymptotically ϕ-nonexpansive mapping is asymptotically ϕ-pseudocontractive.

Proof. (iii) If T is asymptotically ϕ-nonexpansive, then there exists a sequence $\left\{k_{n}\right\}_{n \geq 0} \subset[1, \infty)$ with $\lim _{n \rightarrow \infty} k_{n}=1$ such that

$$
\left\|T^{n} x-T^{n} y\right\| \leq k_{n} \cdot \phi(\|x-y\|) \text { for all } x, y \in D(T), \quad n \geq 1
$$

Hence,

$$
\begin{aligned}
\left\langle T^{n} x-T^{n} y, j_{\phi}(x-y)\right\rangle & \leq\left\|T^{n} x-T^{n} y\right\|\left\|j_{\phi}(x-y)\right\| \\
& =\left\|T^{n} x-T^{n} y\right\| \phi(\|x-y\|) \\
& \leq k_{n} \cdot(\phi(\|x-y\|))^{2},
\end{aligned}
$$

which shows that T is asymptotically ϕ-pseudocontractive.
Remark 1.3. There exists an asymptotically ϕ-pseudocontractive mapping, which is not asymptotically ϕ-nonexpansive. In fact, Rhoades [7] showed that the class of asymptotically pseudocontractive mappings properly contains the class of asymptotically nonexpansive mappings.

The following inequality for a ϕ-normalized duality mapping is needed for our main results.

Lemma 1.1. Let $J_{\phi}: E \rightarrow 2^{E^{*}}$ be a ϕ-normalized duality mapping. Then for any $x, y \in E$, we have

$$
\|x+y\|^{2} \leq\|x\|^{2}+2 \frac{\|x+y\|}{\phi(\|x+y\|)}\left\langle y, j_{\phi}(x+y)\right\rangle \text { for } j_{\phi}(x+y) \in J_{\phi}(x+y) .
$$

Remark 1.4. If ϕ is an identity, then we have the following inequality shown by [11];

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, j(x+y)\rangle \text { for } \quad j(x+y) \in J(x+y)
$$

Lemma 1.2 ([10]). Let $\left\{a_{n}\right\}_{n \geq 0}$ and $\left\{b_{n}\right\}_{n \geq 0}$ be nonnegative sequences satisfying

$$
a_{n+1} \leq\left(1-\theta_{n}\right) a_{n}+b_{n}
$$

with $\theta_{n} \in[0,1], \sum_{n=0}^{\infty} \theta_{n}=\infty$, and $b_{n}=o\left(\theta_{n}\right)$. Then,

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

2. Main result

Now, we consider the following main result.
Theorem 2.1. Let K be a nonempty closed convex subset of a real Banach space $E, T: K \rightarrow K$ a uniformly continuous asymptotically ϕ-hemicontractive mapping having a bounded range with a sequence $\left\{k_{n}\right\}_{n \geq 0} \subset[1, \infty), \lim _{n \rightarrow \infty} k_{n}$ $=1, S_{j}: K \rightarrow K(j=1, \ldots, p-1 ; p \geq 2)$ mappings having bounded range. Let $\left\{\alpha_{n}\right\}_{n \geq 0},\left\{\beta_{n}^{j}\right\}_{n \geq 0} \in[0,1),(j=0,1,2, \ldots, p-1 ; p \geq 2)$ be such that $\sum_{n \geq 0} \alpha_{n}=\infty, \lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\lim _{n \rightarrow \infty} \beta_{n}^{1}=0$. For an arbitrary point $x_{0} \in K$, let $\left\{x_{n}\right\}_{n \geq 0}$ be an iterative sequence defined by

$$
\begin{align*}
x_{n+1}= & \left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T^{n} y_{n}^{1} \\
y_{n}^{i}= & \left(1-\beta_{n}^{i}\right) x_{n}+\beta_{n}^{i} S_{i}^{n} y_{n}^{i+1} \\
y_{n}^{p-1}= & \left(1-\beta_{n}^{p-1}\right) x_{n}+\beta_{n}^{p-1} S_{p-1}^{n} x_{n} \tag{2.1}\\
& (n \geq 0, \quad i=1,2, \ldots, p-2 ; \quad p \geq 2)
\end{align*}
$$

Then, $\left\{x_{n}\right\}_{n \geq 0}$ converges strongly to a common fixed point of T and S_{j}.
Proof. Since T and S_{j} has a bounded range, for $x^{*} \in F(T) \bigcap\left(\bigcap_{i=1}^{p-1} F\left(S_{j}\right)\right)$,

$$
M_{1}:=\left\|x_{0}-x^{*}\right\|+\sup _{n \geq 0}\left\|T^{n} y_{n}^{1}-x^{*}\right\|+\sup _{n \geq 0}\left\|S_{1}^{n} y_{n}^{2}-x^{*}\right\|
$$

is finite.
Now, we show that $\left\{x_{n}-x^{*}\right\}_{n \geq 0}$ is also bounded. Obviously, $\left\|x_{0}-x^{*}\right\| \leq M_{1}$. Assume that $\left\|x_{n}-x^{*}\right\| \leq M_{1}$. Consider

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\| & =\left\|\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T^{n} y_{n}^{1}-x^{*}\right\| \\
& =\left\|\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T^{n} y_{n}^{1}-x^{*}+\alpha_{n} x^{*}-\alpha_{n} x^{*}\right\| \\
& =\left\|\left(1-\alpha_{n}\right) x_{n}-\left(1-\alpha_{n}\right) x^{*}+\alpha_{n}\left(T^{n} y_{n}^{1}-x^{*}\right)\right\| \\
& =\left\|\left(1-\alpha_{n}\right)\left(x_{n}-x^{*}\right)+\alpha_{n}\left(T^{n} y_{n}^{1}-x^{*}\right)\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n}\left\|T^{n} y_{n}^{1}-x^{*}\right\| \\
& \leq\left(1-\alpha_{n}\right) M_{1}+\alpha_{n} M_{1}=M_{1}
\end{aligned}
$$

Thus, $\left\{x_{n}-x^{*}\right\}_{n \geq 0}$ is bounded. Let $M_{2}=\sup _{n \geq 0}\left\|x_{n}-x^{*}\right\|$. Denote $M=M_{1}+M_{2}$, then M is finite. Since $\left\{x_{n}-x^{*}\right\}_{n \geq 0}$ is bounded and ϕ is a continuous strictly increasing function, $M^{*}:=\sup _{n \geq 0} \phi\left(\left\|x_{n+1}-x^{*}\right\|\right)$ is also finite. Now, from Lemma 1.1 for all $n \geq 0$, we obtain

$$
\begin{align*}
& \left\|x_{n+1}-x^{*}\right\|^{2} \tag{2.2}\\
= & \left\|\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T^{n} y_{n}^{1}-x^{*}\right\|^{2} \\
= & \left\|\left(1-\alpha_{n}\right)\left(x_{n}-x^{*}\right)+\alpha_{n}\left(T^{n} y_{n}^{1}-x^{*}\right)\right\|^{2} \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n}\left\langle T^{n} y_{n}^{1}-x^{*}, \frac{\left\|x_{n+1}-x^{*}\right\|}{\phi\left(\left\|x_{n+1}-x^{*}\right\|\right)} j_{\phi}\left(x_{n+1}-x^{*}\right)\right\rangle \\
= & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2} \\
& +2 \alpha_{n} \frac{\left\|x_{n+1}-x^{*}\right\|}{\phi\left(\left\|x_{n+1}-x^{*}\right\|\right)}\left\langle T^{n} y_{n}^{1}-T^{n} x_{n+1}+T^{n} x_{n+1}-x^{*}, j_{\phi}\left(x_{n+1}-x^{*}\right)\right\rangle \\
= & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n} \frac{\left\|x_{n+1}-x^{*}\right\|}{\phi\left(\left\|x_{n+1}-x^{*}\right\|\right)}\left\langle T^{n} x_{n+1}-x^{*}, j_{\phi}\left(x_{n+1}-x^{*}\right)\right\rangle \\
& +2 \alpha_{n} \frac{\left\|x_{n+1}-x^{*}\right\|}{\phi\left(\left\|x_{n+1}-x^{*}\right\|\right)}\left\langle T^{n} y_{n}^{1}-T^{n} x_{n+1}, j_{\phi}\left(x_{n+1}-x^{*}\right)\right\rangle \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n} k_{n}\left\|x_{n+1}-x^{*}\right\| \phi\left(\left\|x_{n+1}-x^{*}\right\|\right) \\
& +2 \alpha_{n} \frac{\left\|x_{n+1}-x^{*}\right\|}{\phi\left(\left\|x_{n+1}-x^{*}\right\|\right)}\left\|T^{n} y_{n}^{1}-T^{n} x_{n+1}\right\| \phi\left(\left\|x_{n+1}-x^{*}\right\|\right) \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n} k_{n} M^{*}\left\|x_{n+1}-x^{*}\right\|+2 \alpha_{n} M_{1}\left\|T^{n} y_{n}^{1}-T^{n} x_{n+1}\right\| \\
= & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n} k_{n} M^{*}\left\|x_{n+1}-x^{*}\right\|+2 \alpha_{n} \delta_{n},
\end{align*}
$$

where $\delta_{n}=M_{1}\left\|T^{n} y_{n}^{1}-T^{n} x_{n+1}\right\|$. From (2.1), we have

$$
\begin{align*}
& \left\|y_{n}^{1}-x_{n+1}\right\| \tag{2.3}\\
= & \left\|y_{n}^{1}-x_{n}+x_{n}-x_{n+1}\right\| \\
\leq & \left\|y_{n}^{1}-x_{n}\right\|+\left\|x_{n}-x_{n+1}\right\| \\
= & \left\|\left(1-\beta_{n}^{1}\right) x_{n}+\beta_{n}^{1} S_{1}^{n} y_{n}^{2}-x_{n}\right\|+\left\|x_{n}-\left\{\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T^{n} y_{n}^{1}\right\}\right\| \\
= & \left\|-\beta_{n}^{1}\left(x_{n}-S_{1}^{n} y_{n}^{2}\right)\right\|+\left\|\alpha_{n}\left(x_{n}-T^{n} y_{n}^{1}\right)\right\| \\
= & \beta_{n}^{1}\left\|x_{n}-x^{*}+x^{*}-S_{1}^{n} y_{n}^{2}\right\|+\alpha_{n}\left\|x_{n}-x^{*}+x^{*}-T^{n} y_{n}^{1}\right\| \\
\leq & \beta_{n}^{1}\left(\left\|x_{n}-x^{*}\right\|+\left\|x^{*}-S_{1}^{n} y_{n}^{2}\right\|\right)+\alpha_{n}\left(\left\|x_{n}-x^{*}\right\|+\left\|x^{*}-T^{n} y_{n}^{1}\right\|\right) \\
\leq & 2 M \beta_{n}^{1}+2 M \alpha_{n}=2 M\left(\alpha_{n}+\beta_{n}^{1}\right) .
\end{align*}
$$

By the condition that $\lim _{n \rightarrow \infty} \alpha_{n}=0, \lim _{n \rightarrow \infty} \beta_{n}^{1}=0$, from (2.3), we obtain

$$
\lim _{n \rightarrow \infty}\left\|y_{n}^{1}-x_{n+1}\right\|=0
$$

and by the uniform continuity of T, we also obtain

$$
\lim _{n \rightarrow \infty}\left\|T^{n} y_{n}^{1}-T^{n} x_{n+1}\right\|=0
$$

Thus, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \delta_{n}=0 \tag{2.4}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\| & =\left\|\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T^{n} y_{n}^{1}-x^{*}\right\| \tag{2.5}\\
& =\left\|\left(1-\alpha_{n}\right)\left(x_{n}-x^{*}\right)+\alpha_{n}\left(T^{n} y_{n}^{1}-x^{*}\right)\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n}\left\|T^{n} y_{n}^{1}-x^{*}\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n} M .
\end{align*}
$$

Since $\lim _{n \rightarrow \infty} \alpha_{n}=0$ for all $\epsilon>0$, there exists $k \in \mathbb{N}$ such that $\alpha_{n} \leq \epsilon$ for all $n \geq k$.

Substituting (2.5) into (2.2), we get

$$
\begin{align*}
& \left\|x_{n+1}-x^{*}\right\|^{2} \tag{2.6}\\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n} k_{n} M^{*}\left\|x_{n+1}-x^{*}\right\|+2 \alpha_{n} \delta_{n} \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n} k_{n} M^{*}\left\{\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n} M\right\}+2 \alpha_{n} \delta_{n} \\
= & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n} k_{n}\left(1-\alpha_{n}\right) M^{*}\left\|x_{n}-x^{*}\right\|+2 \alpha_{n}^{2} k_{n} M M^{*}+2 \alpha_{n} \delta_{n} \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n} k_{n}\left(1-\alpha_{n}\right) M^{*}\left\{\left(1-\alpha_{n-1}\right)\left\|x_{n-1}-x^{*}\right\|+\alpha_{n-1} M\right\} \\
& \quad+2 \alpha_{n}\left(\alpha_{n} k_{n} M M^{*}+\delta_{n}\right) \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n} k_{n}\left(1-\alpha_{n}\right)\left(1-\alpha_{n-1}\right) M^{*}\left\|x_{n-1}-x^{*}\right\| \\
& \quad+2 \alpha_{n}\left[k_{n} M M^{*}\left\{\alpha_{n}+\alpha_{n-1}\left(1-\alpha_{n}\right)\right\}+\delta_{n}\right] \\
\leq & \ldots \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n} k_{n} \prod_{j=k}^{n}\left(1-\alpha_{j}\right) M^{*}\left\|x_{k}-x^{*}\right\| \\
& \quad+2 \alpha_{n}\left\{2 \alpha_{n} k_{n} M M^{*}+k_{n} M M^{*} \sum_{j=k}^{n-1}\left(\alpha_{n-1-j} \prod_{j=k}^{n-1}\left(1-\alpha_{n-j}\right)\right)+\delta_{n}\right\} \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n}\left\{k_{n} \prod_{j=k}^{n}\left(1-\alpha_{j}\right) M^{*} M\right.
\end{align*}
$$

$$
\left.+2 \alpha_{n} k_{n} M M^{*}+k_{n} M M^{*} \sum_{j=k}^{n-1}\left(\alpha_{n-1-j} \prod_{j=k}^{n-1}\left(1-\alpha_{n-j}\right)\right)+\delta_{n}\right\}
$$

$\leq\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n} \pi_{n}$,
where $\pi_{n}=\left[\prod_{j=k}^{n}\left(1-\alpha_{j}\right)+2 \alpha_{n}+\sum_{j=k}^{n-1}\left\{\alpha_{n-1-j} \prod_{j=k}^{n-1}\left(1-\alpha_{n-j}\right)\right\}\right] k_{n} M M^{*}+\delta_{n}$.
Here, we check $\left\{\pi_{n}\right\}_{n \geq 0}$ converges to 0 as $n \rightarrow \infty$. In fact,

$$
\prod_{j=k}^{n}\left(1-\alpha_{j}\right) \leq e^{-\sum_{j=k}^{n} \alpha_{j}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

and

$$
\sum_{j=k}^{n-1}\left\{\alpha_{n-1-j} \prod_{j=k}^{n-1}\left(1-\alpha_{n-j}\right)\right\} \leq \sum_{j=k}^{n-1} \epsilon \rightarrow 0 \text { as } \epsilon \rightarrow 0
$$

Let $a_{n}=\left\|x_{n}-x^{*}\right\|^{2}, \theta_{n}=\alpha_{n}$ and $b_{n}=2 \alpha_{n} \pi_{n}$. Since $\lim _{n \rightarrow \infty} \pi_{n}=0$, by (2.4) and Lemma 1.2, we obtain from (2.6) that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-x^{*}\right\|=0
$$

Remark 2.1. (1) For $p=2, \beta_{n}^{1}=0$ and $S_{j}=T$, we can obtain the results with Mann iteration [6, 9].
(2) For $p=3, \beta_{n}^{2}=0$ and $S_{j}=T$, we can obtain the results with Ishikawa iteration [4].

References

[1] Y. J. Cho, H. Zhou and G. Guo, Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings, Comput. Math. Appl. 47 (2004), no. 4-5, 707-717.
[2] R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia, 1989.
[3] K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174.
[4] G. Isac and Jinlu Li, The convergence property of Ishikawa iteration schemes in noncompact subsets of Hilbert spaces and its applications to complementarity theory, Comput. Math. Appl. 47 (2004), no. 10-11, 1745-1751.
[5] M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000), no. 1, 217-229.
[6] E. U. Ofoedu, Strong convergence theorem for uniformly L-Lipschitzian asymptotically pseudocontractive mapping in real Banach space, J. Math. Anal. Appl. 321 (2006), no. 2, 722-728.
[7] B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977), 257-290.
[8] B. E. Rhoades and Stefan M. Soltuz, The equivalence between Mann-Ishikawa iterations and multistep iteration, Nonlinear Anal. 58 (2004), no. 1-2, 219-228.
[9] J. Schu, Iterative construction of fixed point of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 158 (1991), no. 2, 407-413.
[10] X. Weng, Fixed point iteration for local strictly pseudo-contractive mapping, Proc. Amer. Math. Soc. 113 (1991), no. 3, 727-731.
[11] H. K. Xu, Inequalities in Banach spaces with application, Nonlinear Anal. 16 (1991), no. 12, 1127-1138.

Seung Hyun Kim
Department of Mathematics
Kyungsung University
Busan 608-736, Korea
E-mail address: jiny0610@hotmail.com
Byung Soo Lee
Department of Mathematics
Kyungsung University
Busan 608-736, Korea
E-mail address: bslee@ks.ac.kr

[^0]: Received September 8, 2010.
 2010 Mathematics Subject Classification. 47H09, 47H10, 47J25.
 Key words and phrases. ϕ-nonexpansive mappings, ϕ-uniformly L-Lipschitzian mappings, asymptotically ϕ-nonexpansive mappings, asymptotically ϕ-pseudocontractive mappings, asymptotically ϕ-hemicontractive mappings, Banach spaces.

