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DISCRETE DUALITY FOR TSH-ALGEBRAS

Aldo Victorio Figallo, Gustavo Pelaitay, and Claudia Sanza

Abstract. In this article, we continue the study of tense symmetric
Heyting algebras (or TSH-algebras). These algebras constitute a gen-

eralization of tense algebras. In particular, we describe a discrete duality
for TSH-algebras bearing in mind the results indicated by Or lowska and
Rewitzky in [E. Or lowska and I. Rewitzky, Discrete Dualities for Heyting

Algebras with Operators, Fund. Inform. 81 (2007), no. 1-3, 275–295]
for Heyting algebras. In addition, we introduce a propositional calculus
and prove this calculus has TSH-algebras as algebraic counterpart. Fi-
nally, the duality mentioned above allowed us to show the completeness

theorem for this calculus.

1. Introduction

Propositional logics usually do not incorporate the dimension of time. To
obtain a tense logic, we enrich a propositional logic by adding new unary op-
erators (or connectives) which are usually denoted by G, H, F and P. We
can define F and P by means of G and H as follows: F(x) = ¬G(¬x) and
P(x) = ¬H(¬x), where ¬x denotes negation of the proposition x.

It is worth saying that tense operators were firstly introduced for the clas-
sical propositional logic (see [3]). Tense algebras are algebraic structures cor-
responding to the propositional tense logic [3, 13]. Recall that an algebra
⟨W,∨,∧,¬, G,H, 0, 1⟩ is a tense algebra if ⟨W,∨,∧,¬, 0, 1⟩ is a Boolean alge-
bra and G, H are unary operators on W satisfying the axioms

G(1) = 1, H(1) = 1,

G(x ∧ y) = G(x) ∧G(y), H(x ∧ y) = H(x) ∧H(y),

x ≤ GP(x), x ≤ HF(x),

where P(x) = ¬H(¬x) and F(x) = ¬G(¬x).
In the last few years tense operators have been considered by different au-

thors for varied classes of algebras. Some contributions in this area have been
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the papers of Diaconescu and Georgescu [7], Chiriţă [5, 6], Figallo and Pelaitay
[10, 9], Chajda [4], and Botur et al. [2].

In 1942, Gr. C. Moisil [14] introduced the modal symmetric propositional
calculus as an extension of the positive calculus of Hilbert-Bernays obtained
by adding a new negation connective, ∼, the axiom schemata

α →∼∼ α, ∼∼ α → α

and the contraposition rule

if α → β, then ∼ β →∼ α.

This propositional calculus has symmetric Heyting algebras as the algebraic
counterpart. These algebras were investigated by Monteiro [15] and also by
Iturrioz [12] and Sankappanavar [19]. Recall that an algebra ⟨W,∨,∧,→,∼,
0, 1⟩ is a symmetric Heyting algebra (see [15]) if ⟨W,∨,∧,∼, 0, 1⟩ is a De Morgan
algebra and ⟨W,∨,∧,→, 0, 1⟩ is a Heyting algebra.

On the other hand, a discrete duality (see [16, 17, 8]) is a duality where a
class of abstract systems is a dual counterpart to a class of algebras. These
relational systems are referred to as frames following the terminology of non–
classical logics.

A topology is not involved in the construction of these frames and hence
they may be thought of as having a discrete topology.

Establishing discrete duality involves the following steps. Given a class Alg
of algebras (resp. a class Frm of frames) we define a class Frm of frames (resp.
a class Alg of algebras). Next, for an algebra W ∈ Alg we define its canonical
frame X (W ) and for each frame X ∈ Frm we define its complex algebra C(X).
Then we prove that X (W ) ∈ Frm and C(X) ∈ Alg. A duality between Alg
and Frm holds provided that the following facts are proved:

• Every algebra W ∈ Alg is embeddable into the complex algebra C(X (W ))
of its canonical frame.

• Every frame X ∈ Frm is embeddable into the canonical frame X (C(X))
of its complex algebra.

An important application of discrete duality is that it provides a Kripke
semantics (resp. an algebraic semantics) once an algebraic semantics (resp. a
Kripke semantics) for a formal language is given (see [17]).

In this paper we apply the methodology of discrete duality to tense sym-
metric Heyting algebras (or TSH-algebras, for short) [11]. In addition, we
introduce a propositional calculus and prove this calculus has TSH-algebras
as algebraic counterpart. Finally, the duality mentioned above allowed us to
show the completeness theorem for this calculus.

2. Preliminaries

In this paper we take for granted the concepts and results on Heyting alge-
bras. To obtain more information on this topics, we direct the reader to the



DISCRETE DUALITY FOR TSH-ALGEBRAS 49

bibliography indicated in [1]. However, in order to simplify reading, in this
section we summarize the fundamental concepts we use.

Let T be a binary relation on a set X and let A be a subset of X. In what
follows we will denote by [T ]A the set {x ∈ X : for all y, x T y implies y ∈ A}.

In [16], Orlowska and Rewitzky introduced the notion of Heyting frame
(or H-frame, for short) as a pair (X,≤) where X is a non-empty set and ≤
is a quasi-order on X. These authors proved that if ⟨W,∨,∧,→, 0, 1⟩ is a
Heyting algebra, then its canonical frame is (X (W ),≤c), where X (W ) is the
set of all prime filters of W and ≤c is ⊆. It is easy to see that this canonical
frame is an H-frame. On the other hand, given an H-frame (X,≤), they
show that its complex algebra is ⟨C(X),∨c,∧c,→c, 0c, 1c⟩, where C(X) = {A ⊆
X : [≤]A = A}, 0c = ∅, 1c = X, A ∨c B = A ∪ B, A ∧c B = A ∩ B and
A →c B = [≤]((X \A) ∪B) for all A,B ∈ C(X).

These results allowed them to obtain a discrete duality for Heyting algebras
by defining the embeddings as follows:

h : W → C(X (W )), h(a) = {F ∈ X (W ) : a ∈ F},
k : X → X (C(X)), k(x) = {A ∈ C(X) : x ∈ A}.

3. Tense symmetric Heyting algebras

In this section we shall recall some definitions and basic results on tense
symmetric Heyting algebras from [11].

Definition 1. A tense symmetric Heyting algebra (or TSH-algebra, for short)
is an algebra ⟨W,∨,∧,→,∼, G,H, 0, 1⟩, where the reduct ⟨W,∨,∧,→,∼, 0, 1⟩
is a symmetric Heyting algebra and G, H are unary operators on W verifying
the following conditions,

(T1) G(1) = 1, H(1) = 1,
(T2) G(x ∧ y) = G(x) ∧G(y), H(x ∧ y) = H(x) ∧H(y),
(T3) x ≤ G(∼ H(∼ x)), x ≤ H(∼ G(∼ x)).

In what follows, we will denote these algebras by (W,G,H) or simply by W
where no confusion may arise.

Remark 3.1. If ⟨W,∨,∧,→,∼, G,H, 0, 1⟩ is a TSH-algebra in which every el-
ement of W is Boolean, then ⟨W,∨,∧,∼, G,H, 0, 1⟩ is a tense algebra.

Definition 2. For any TSH-algebra (W,G,H), let us considerer the unary
operations P, F defined by P(x) =∼ H(∼ x) and F(x) =∼ G(∼ x).

Lemma 3.2. The following properties hold in any TSH-algebra (W,G,H):

(i) x ≤ y implies G(x) ≤ G(y) and H(x) ≤ H(y),
(ii) x ≤ y implies P(x) ≤ P(y) and F(x) ≤ F(y),
(iii) P(0) = 0 and F(0) = 0,
(iv) P(x ∨ y) = P(x) ∨ P(y) and F(x ∨ y) = F(x) ∨ F(y),
(v) FH(x) ≤ x and PG(x) ≤ x.
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Proof. It is routine. □
Lemma 3.3. Let G, H be two unary operations on a symmetric Heyting al-
gebra ⟨W,∨,∧,→,∼, 0, 1⟩ such that G(1) = 1, H(1) = 1. Then condition (T2)
is equivalent to the following one:

(1) G(x → y) ≤ G(x) → G(y), H(x → y) ≤ H(x) → H(y).

Proof. We will only prove the equivalence between (T2) and (1) in the case
of G. From (T2), and (i) in Lemma 3.2, we have that G(x) ∧ G(x → y) =
G(x ∧ (x → y)) = G(x ∧ y) ≤ G(y). Therefore, G(x → y) ≤ G(x) → G(y).
Conversely, let x, y ∈ W be such that x ≤ y. Then, x → y = 1 and so, from
(1) and the hypothesis, we obtain that 1 = G(x → y) ≤ G(x) → G(y). Hence,
G(x) ≤ G(y) from which we get that G is increasing. This last assertion
and (1) we infer that G(x) ≤ G(y → (x ∧ y)) ≤ G(y) → G(x ∧ y). Thus,
G(x) ∧G(y) ≤ G(x ∧ y). From this statement and taking into account that G
is increasing we conclude that G(x) ∧G(y) = G(x ∧ y). □

Thus, if we replace in Definition 1 the axiom (T2) with the condition (1),
we obtain an equivalent definition of TSH-algebra.

Lemma 3.4. Let (W,G,H) be a TSH-algebra. If F is a filter of W , then
G−1(F ) and H−1(F ) are also filters of W .

Proof. The proof is a direct consecuence of (T1) and (T2). □

4. A discrete duality for TSH-algebras

In this section, we describe a discrete duality for TSH-algebras taking into
account the one indicated above for Heyting algebras. To this end, we introduce
the following:

Definition 3. A TSH-frame is a structure (X,≤, g, R,Q) where (X,≤) is a
H-frame, g : X → X is a function, R,Q are binary relations on X and the
following conditions are satisfied:

(K1) if x ≤ y, then g(y) ≤ g(x) for x, y ∈ X,
(K2) g(g(x)) = x for x ∈ X,
(K3) (≤ ◦R◦ ≤) ⊆ R,
(K4) (≤ ◦Q◦ ≤) ⊆ Q,
(K5) xR g(y) if and only if y Qg(x) for x, y ∈ X.

In what follows, TSH-frames will be denoted simply byX when no confusion
may arise.

Definition 4. A canonical frame of a TSH-algebra (W,G,H) is a structure
(X (W ),≤c, gc, Rc, Qc), where (X (W ),≤c) is the canonical frame associated
with ⟨W,∨,∧,→, 0, 1⟩ and the following conditions are verified for P, F ∈
X (W ):

(F1) gc(P ) = {a ∈ W :∼ a /∈ P},
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(F2) PRcF if and only if G−1(P ) ⊆ F ,
(F3) PQcF if and only if H−1(P ) ⊆ F .

Lemma 4.1. The canonical frame of a TSH-algebra is a TSH-frame.

Proof. Taking into account the results established in [8, Lemma 11.1], we only
have to prove (K3), (K4) and (K5).
(K3): Let (P, F ) ∈≤c ◦Rc◦ ≤c. Then there exist T, S ∈ X (W ) such that P ⊆
T , TRcS and S ⊆ F. From the last two assertions we have that G−1(T ) ⊆ F .
Therefore, since P ⊆ T we infer that P Rc F .
(K4): It is proved in a similar way to (K3).
(K5): Let F Rcgc(P ) and a ∈ H−1(P ). Suppose that ∼ a ∈ F . On the
other hand, from (T3) we have that ∼ a ≤ G(∼ H(a)) and so, we get that
G(∼ H(a)) ∈ F . From this last assertion and the fact that G−1(F ) ⊆ gc(P ), we
obtain ∼ H(a) ∈ gc(P ). Hence, H(a) /∈ P which is a contradiction. Therefore,
a ∈ gc(F ) from which we conclude that PQcgc(F ). The converse is proved
similarly. □

Definition 5. The complex algebra of a TSH-frame (X,≤, g, R,Q) is ⟨C(X),
∨c, ∧c,→c,∼c, Gc,Hc, 0c, 1c⟩, where ⟨C(X),∨c,∧c,→c, 0c, 1c⟩ is the complex
algebra of the H-frame (X,≤), ∼c A = X \ g(A), Gc(A) = [R]A and Hc(A) =
[Q]A for all A ∈ C(X).

Lemma 4.2. The complex algebra of a TSH-frame is a TSH-algebra.

Proof. From [8, 16], C(X) is closed under the lattice operations, ∼c and →c.
Now, we show that it is also closed under Gc, i.e., GcA = [≤]GcA. From
the reflexivity of ≤, we have that [≤]GcA ⊆ GcA. Assume that x ∈ GcA.
Let y ∈ X be such that x ≤ y and take any z ∈ X verifying yRz. Hence,
from the reflexivity of ≤ and (K3) we infer that xRz. So, z ∈ A and therefore,
x ∈ [≤]GcA. Thus, GcA ⊆ [≤]GcA. Similarly, it is proved thatHcA = [≤]HcA.
On the other hand, clearly (T1) and (T2) are verified. Therefore, it only
remains to prove (T3). Let x ∈ A and suppose that x /∈ Gc(∼c Hc(∼c A)).
Then there is y such that xRy and y /∈∼c Hc(∼c A). From this last statement,
y ∈ g(Hc(∼c A)) and so, y = g(z) for some z ∈ Hc(∼c A). Hence, xRg(z) and
from (K5) we get that zQg(x). This assertion and the fact that z ∈ Hc(∼c A)
enable us to infer that g(x) /∈ g(A), which is a contradiction. So, A ⊆ Gc(∼c

Hc(∼c A)). Analogously, it is proved that A ⊆ Hc(∼c Gc(∼c A)). □

Theorem 4.3. Each TSH-algebra W is embeddable into C(X (W )).

Proof. Let us consider the function h : W → C(X (W )) defined by h(a) =
{P ∈ X (W ) : a ∈ P} for all a ∈ W (see [8, 16]). Let F ∈ h(G(a)); then
G(a) ∈ F . Suppose that P ∈ X (W ) verifies that FRcP . Then from (F2),
G−1(F ) ⊆ P and so, a ∈ P . Therefore, F ∈ Gc(h(a)) from which we infer
that h(G(a)) ⊆ Gc(h(a)). Conversely, assume that F ∈ Gc(h(a)). Then for
every P ∈ X (W ), FRcP implies that P ∈ h(a). Suppose that G(a) /∈ F .
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Then G−1(F ) is a filter and a /∈ G−1(F ). Hence, there is T ∈ X (W ) such that
a /∈ T and G−1(F ) ⊆ T . This last assertion and (F2) allow us to conclude
that FRcT . From this statement we have that T ∈ h(a) and so, a ∈ T , which
is a contradiction. Therefore, h(G(a)) = Gc(h(a)). Similarly, it is shown that
h(H(a)) = Hc(h(a)). Thus, by virtue of the results established in [8, 16] the
proof is completed. □

Lemma 4.4 will show that the order-embedding k : X → X (C(X)) defined
by k(x) = {A ∈ C(X) : x ∈ A} for every x ∈ X (see [8, 16]) preserves the
relations R and Q.

Lemma 4.4. Let (X,≤, g, R,Q) be a TSH-frame and let x, y ∈ X. Then

(i) xRy if and only if k(x)Rck(y),
(ii) xQy if and only if k(x)Qck(y).

Proof. We will only prove (i). Assume that xRy and suppose that A ∈ C(X)
verifies Gc(A) ∈ k(x). Then it is easy to see that y ∈ A and so, k(x)Rck(y).
Conversely, let x, y ∈ X be such that k(x)Rck(y). Then Gc−1(k(x)) ⊆ k(y).
On the other hand, note that [≤](X \ (y]) ∈ C(X) and y /∈ [≤](X \ (y]).
Thus, [≤](X \ (y]) /∈ k(y) and so, [≤](X \ (y]) /∈ Gc−1(k(x)). Therefore,
[R]([≤](X \ (y])) /∈ k(x) from which we infer that x /∈ [R]([≤](X \ (y])). Then
there is z such that xRz and z /∈ [≤](X \ (y]). From this last assertion there is
w such that z ≤ w and w ≤ y, which allow us to infer that z ≤ y. Hence, by
virtue of the reflexivity of ≤ and (K3), xRy as required. □

Lemma 4.4 and the results indicated in [8, 16] enable us to conclude:

Theorem 4.5. Every TSH-frame X is embeddable into the canonical frame
of its complex algebra X (C(X)).

Theorems 4.3 and 4.5 enable us to obtain a discrete duality for TSH-
algebras.

5. A propositional calculus based on TSH-algebras

In this section, we will describe a propositional calculus that has TSH-
algebras as the algebraic counterpart. The terminology and symbols used here
coincide in general with those used in [18].

Let L = (A0,For[V ]) be a formalized language of zero order, where in the
alphabet A0 = (V, L0, L1, L2, U) the set

• V of propositional variables is enumerable,
• L0 is empty,
• L1 contains three elements denoted by ∼, G and H called negation sign
and tense operators signs, respectively,

• L2 contains three elements denoted by ∨, ∧, →, called disjunction
sign, conjunction sign and implication sign, respectively,

• U contains two elements denoted by (, ).
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For any α, β in the set For[V ] of all formulas over A0, instead of (α →
β) ∧ (β → α), ∼ G ∼ α and ∼ H ∼ α we will write for brevity α ↔ β, Fα and
Pα, respectively.

We assume that the set Al of logical axioms consists of all formulas of the
following form, where α, β are any formulas in For[V ]:

(M0) the axioms of the symmetric modal propositional calculus, i.e., the
axioms (A1)-(A10) indicated in [15, page 60],

(M1) G(α → β) → (Gα → Gβ), H(α → β) → (Hα → Hβ),
(M2) α → GPα, α → HFα.

The consequence operation CL in L is determined by Al and by the following
rules of inference:

(R1)
α, α → β

β
, (R3)

α

Gα
,

(R2)
α → β

∼ β →∼ α
, (R4)

α

Hα
.

The system T MS = (L, CL) thus obtained will be called the T MS-proposi-
tional calculus. We will denote by T the set of all formulas derivable in T MS.
If α belongs to T we will write ⊢ α.

Let ≈ be the binary relation on For[V ] defined by

α ≈ β if and only if ⊢ α ↔ β.

Then it is easy to check that ≈ is a congruence relation on ⟨For[V ],∨,∧,→,
∼, G,H⟩ and T determines an equivalence class which we will denote by 1.
Moreover, taking into account [15, page 62] it is straightforward to prove:

Theorem 5.1. ⟨For[V ]/ ≈,∨,∧,→,∼, G,H, 0, 1⟩ is a TSH-algebra, being 0 =∼
1.

Definition 6. A TSH-model based on a TSH-frame K = (X,≤, g, R,Q) is
a system M = (K,m) such that m : V → P(X) is a meaning function that
assigns subsets of states to propositional variables, i.e., satisfies the following
condition:

(her) x ≤ y and x ∈ m(p) imply y ∈ m(p).

Definition 7. A TSH-model M = ((X,≤, g, R,Q);m) satisfies a formula α
at the state x and we write M |=x α, if the following conditions are satisfied:

• M |=x p if and only if x ∈ m(p) for p ∈ V ,
• M |=x α ∨ β if and only if M |=x α or M |=x β,
• M |=x α ∧ β if and only if M |=x α and M |=x β,
• M |=x∼ α if and only if M ̸|=g(x) α,
• M |=x α → β if and only if for all y, if x ≤ y and M |=y α, then
M |=y β,

• M |=x Gα if and only if for all y, if xRy, then M |=y α,
• M |=x Hα if and only if for all y, if xQy, then M |=y α.
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A formula α is true in a TSH-model M (denoted by M |= α) if and only if
for every x ∈ W , M |=x α. The formula α is true in a TSH-frame K (denoted
by K |= α) if and only if it is true in every TSH-model based on K. The
formula α is TSH-valid if and only if it is true in every TSH-frame.

Proposition 5.2. Given a TSH-model M = ((X,≤, g, R,Q);m), the meaning
function m can be extended to all formulae by m(α) = {x ∈ X : M |=x α}. For
every TSH-model M and for every formula α, this extension has the property

(her) if x ≤ y and x ∈ m(α), then y ∈ m(α).

Proof. The proof is by induction with respect to complexity of α. By way
of an example we show (her) for formulas of the form Gα. Let (1) x ≤ y
and (2) M |=x G(α). Suppose that yRz, then by (1), (2) and (K3), we have
M |=z α. □

Theorem 5.3 (Completeness Theorem). Let α be a formula in T MS. Then
the following conditions are equivalent:

(i) α is derivable in T MS;
(ii) α is TSH-valid.

Proof. (i) ⇒ (ii): We proceed by induction on the complexity of the formula
α. For example, we shall prove that the axiom (M2) is TSH-valid. Let K =
(X,≤, g, R,Q) be a TSH-frame and M a TSH-model based on K.

(1) Let x, y ∈ X be such that x ≤ y, [hip.]
(2) M |=y α, [hip.]
(3) Let z ∈ X be such that y Q z. [hip.]

Suppose that

(4) M |=g(z) G ∼ α, [hip.]
(5) g(z)Rg(y), [(3),(K2),(K5)]
(6) M |=g(y)∼ α, [(4),(5)]
(7) M ̸|=y α. [(6),(K2)]

(7) contradicts (2). Then

(8) M ̸|=g(z) G ∼ α, [(4),(7)]
(9) M |=z∼ G ∼ α, [(8)]
(10) M |=y H ∼ G ∼ α, [(3),(9)]
(11) M |=x α → H ∼ G ∼ α. [(1),(2),(10)]

(ii) ⇒ (i): Assume that α is not derivable, i.e., [α]≈ ̸= 1. We apply The-
orem 4.3 to the TSH-algebra For[V ]/ ≈, hence there exists a TSH-frame
X (For[V ]/ ≈) and an injective morphism of TSH-algebras h : For[V ]/ ≈→
C(X (For[V ]/ ≈)). Let us consider the function m : T MS → C(X (For[V ]/ ≈))
defined bym(α) = h([α]≈) for all α ∈ For[V ]. It is straightforward to prove that
m is an meaning function. Since h is injective, m(α) = h([α]≈) ̸= X (For[V ]/ ≈
), i.e., (X (For[V ]/ ≈),m) ̸|=xo α for some xo ∈ X (For[V ]/ ≈). Thus α is not
TSH-valid. □
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