ON THE PLURIGENUS OF A CANONICAL THREEFOLD

Dong-Kwan Shin

Abstract

It is well known that plurigenus does not vanish for a sufficiently large multiple on a canonical threefold over \mathbb{C}. There is ReidFletcher formula for plurigenus. But, unlike in the case of surface of general type, it is not easy to compute plurigenus. In this paper, we induce a different version of Reid-Fletcher formula and show that the constant term in the induced formula has periodic properties. Using these properties we have an application to nonvanishing of plurigenus.

Throughout this paper X is assumed to be a projective threefold with only canonical singularities and an ample canonical divisor K_{X} over the complex number field \mathbb{C}, i.e., a canonical threefold.

It is well known that $H^{0}\left(X, \mathcal{O}_{X}\left(m K_{X}\right)\right)$ does not vanish for a sufficiently large integer m. In the case of surface of general type and an algebraic curve, such integer m is well known. In a case of threefold, when $\chi\left(\mathcal{O}_{X}\right) \leq 0$, it is easy to have such integer m (see Fletcher [1]); however, when $\chi\left(\mathcal{O}_{X}\right)>0$, it is not easy even to obtain an integer m such that $\operatorname{dim} H^{0}\left(X, \mathcal{O}_{X}\left(m K_{X}\right)\right) \geq 1$. There are some results about $\operatorname{dim} H^{0}\left(X, \mathcal{O}_{X}\left(m K_{X}\right)\right)$, i.e., plurigenus. In Fletcher [1], A. R. Fletcher showed that

$$
\operatorname{dim} H^{0}\left(X, \mathcal{O}_{X}\left(12 K_{X}\right)\right) \geq 1 \text { and } \operatorname{dim} H^{0}\left(X, \mathcal{O}_{X}\left(24 K_{X}\right)\right) \geq 2
$$

when $\chi\left(\mathcal{O}_{X}\right)=1$. In Shin [7], Shin improved results of Fletcher. In Hanamura [2], Hanamura induced a formula for plurigenus and computed plurigenus according to 'global index'. For detailed matters, see Fletcher [1], Reid [6], Hanamura [2], Shin [7]. In this paper, we induce a different version of Reid-Fletcher formula and show that the constant term in the induced formula has periodic properties. Using these properties we have an application to nonvanishing of plurigenus.
M. Reid and A. R. Fletcher described the formula for $\chi\left(\mathcal{O}_{X}\left(n K_{X}\right)\right)$. Combining the formula for $\chi\left(\mathcal{O}_{X}\left(n K_{X}\right)\right)$ with a vanishing theorem, it is possible to compute $\operatorname{dim} H^{0}\left(X, \mathcal{O}_{X}\left(n K_{X}\right)\right)$.

[^0]Reid-Flethcer formula for $\chi\left(\mathcal{O}_{X}\left(n K_{X}\right)\right)$ is described as follows:

$$
\chi\left(\mathcal{O}_{X}\left(n K_{X}\right)\right)=\frac{n(n-1)(2 n-1)}{12} K_{X}^{3}+(1-2 n) \chi\left(\mathcal{O}_{X}\right)+\sum_{q} l(q, n)
$$

where the summation is over a basket of singularities. Although singularities in a basket are not necessarily singularities in X, the singularities in X make the contribution as if they were in a basket. For detailed explanations about a basket of singularities, see Reid [6], Fletcher [1] or Kawamata [3]. The exact formula for $l(q, n)$ is as follows:

$$
l(q, n)=\sum_{k=1}^{n-1} \frac{\overline{k b_{q}}\left(r_{q}-\overline{k b_{q}}\right)}{2 r_{q}}
$$

where q is a singularity of type $\frac{1}{r_{q}}\left(1,-1, b_{q}\right), r_{q}$ and b_{q} are relatively prime, and $\overline{i b_{q}}$ is the nonnegative least residue of $i b_{q}$ modulo r_{q}. To distinguish each point in a basket of singularities, we keep using a notation r_{q}, but for the sake of simplicity, we use a notation b instead of b_{q} without causing troubles.

We denote l.c.m of r_{q} in the baskets of singularities by r. Let's denote $\frac{n(n-1)(2 n-1)}{12} K_{X}^{3}$ by K_{n} for the sake of simplicity.

The following proposition is a standard application of the Kawamata-Viehweg Vanishing Theorem.

Proposition 1. For all $n \geq 2$,

$$
p_{n}: \stackrel{\text { def }}{=} \operatorname{dim} H^{0}\left(X, \mathcal{O}_{X}\left(n K_{X}\right)\right)=K_{n}+(1-2 n) \chi\left(\mathcal{O}_{X}\right)+\sum_{q} l(q, n)
$$

Lemma 1. Let $(r, b)=1$ and $0<b<r$. Then

$$
\sum_{k=1}^{r} \overline{b k}(r-\overline{b k})=\sum_{k=1}^{r-1} k(r-k)=\frac{r\left(r^{2}-1\right)}{6}
$$

Proof. The set $\{\bar{b}, \overline{2 b}, \ldots, \overline{r b}\}$ is the same as $\{0,1,2, \ldots, r-1\}$ since $(r, b)=$ 1.

In Reid [6] or Fletcher [1], R. Barlow's work is given as follows:

$$
\rho^{*} K_{X} \cdot c_{2}(Y)=\sum \frac{r_{q}^{2}-1}{r_{q}}-24 \chi\left(\mathcal{O}_{X}\right)
$$

where $\rho: Y \rightarrow X$ is a resolution of singularities of X. For the sake of simplicity, let's denote $\rho^{*} K_{X} \cdot c_{2}(Y)$ by $K_{X} \cdot c_{2}(X)$.

In [2], Hanamura induced the formula of the same type as in the following theorem, but our method is different and is a key to find the periodic behavior of the constant term in the formula.

Theorem 1. Let X be a canonical threefold and let K_{X} be a canonical divisor of X. Then for $n \geq 2$,

$$
p_{n}=K_{n}+\frac{2 n-1}{24} K_{X} \cdot c_{2}(X)+c t_{s}
$$

where $n=m r+s, 0 \leq s<r$ and $c t_{s}$ is a constant depending on s.
Proof. By Proposition 1 and R. Barlow's work, p_{n} is given as follows:

$$
\begin{aligned}
p_{n} & =K_{n}+(1-2 n) \chi\left(X, \mathcal{O}_{X}\right)+\sum_{q} l(q, n) \\
& =K_{n}+(1-2 n)\left[\frac{1}{24} \sum_{q} \frac{r_{q}^{2}-1}{r_{q}}-\frac{1}{24} K_{X} \cdot c_{2}(X)\right]+\sum_{q} l(q, n) \\
& =K_{n}+\frac{2 n-1}{24} K_{X} \cdot c_{2}(X)+\sum_{q} l(q, n)-\frac{2 n-1}{24} \sum_{q} \frac{r_{q}^{2}-1}{r_{q}} .
\end{aligned}
$$

The term $\sum_{q} l(q, n)-\frac{2 n-1}{24} \sum_{q} \frac{r_{q}^{2}-1}{r_{q}}$ can be computed easily as follows:

$$
\begin{aligned}
& \sum_{q} l(q, n)-\frac{2 n-1}{24} \sum_{q} \frac{r_{q}^{2}-1}{r_{q}} \\
= & \sum_{q} \sum_{k=1}^{n-1} \frac{\overline{b k}\left(r_{q}-\overline{b k}\right)}{2 r_{q}}-\frac{2 n-1}{24} \sum_{q} \frac{r_{q}^{2}-1}{r_{q}} \\
= & \sum_{q} \frac{1}{2 r_{q}}\left[\sum_{k=1}^{n-1} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{(2 n-1)\left(r_{q}^{2}-1\right)}{12}\right] .
\end{aligned}
$$

Since r is a multiple of r_{q}, we let $r=h_{q} r_{q}$ and $n=m r+s=m h_{q} r_{q}+s$. When $s=0$ or 1 , we have

$$
\begin{aligned}
& \sum_{k=1}^{n-1} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{(2 n-1)\left(r_{q}^{2}-1\right)}{12} \\
= & \sum_{k=1}^{m h_{q} r_{q}} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{2 m h_{q} r_{q}\left(r_{q}^{2}-1\right)}{12}-\frac{(2 s-1)\left(r_{q}^{2}-1\right)}{12} \\
= & m h_{q}\left[\sum_{k=1}^{r_{q}-1} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{r_{q}\left(r_{q}^{2}-1\right)}{6}\right]-\frac{(2 s-1)\left(r_{q}^{2}-1\right)}{12} .
\end{aligned}
$$

By Lemma 1, $\sum_{k=1}^{r_{q}-1} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{r_{q}\left(r_{q}^{2}-1\right)}{6}=0$. Thus,

$$
\sum_{k=1}^{n-1} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{(2 n-1)\left(r_{q}^{2}-1\right)}{12}=-\frac{(2 s-1)\left(r_{q}^{2}-1\right)}{12}
$$

When $s>1$, we have

$$
\begin{aligned}
& \sum_{k=1}^{n-1} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{(2 n-1)\left(r_{q}^{2}-1\right)}{12} \\
= & \sum_{k=1}^{m h_{q} r_{q}} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{2 m h_{q} r_{q}\left(r_{q}^{2}-1\right)}{12}+\sum_{k=m h_{q} r_{q}+1}^{m h_{q} r_{q}+s-1} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{(2 s-1)\left(r_{q}^{2}-1\right)}{12} \\
= & m h_{q}\left[\sum_{k=1}^{r_{q}-1} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{r_{q}\left(r_{q}^{2}-1\right)}{6}\right]+\sum_{k=1}^{s-1} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{(2 s-1)\left(r_{q}^{2}-1\right)}{12} .
\end{aligned}
$$

By Lemma 1, $\sum_{k=1}^{r_{q}-1} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{r_{q}\left(r_{q}^{2}-1\right)}{6}=0$. Thus,

$$
\sum_{k=1}^{n-1} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{(2 n-1)\left(r_{q}^{2}-1\right)}{12}=\sum_{k=1}^{s-1} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{(2 s-1)\left(r_{q}^{2}-1\right)}{12}
$$

For the sake of simplicity, we may denote that the notation of the sum means a zero if $j<i$ in the summation notation $\sum_{k=i}^{j}$. Hence

$$
\sum_{q} l(q, n)-\frac{2 n-1}{24} \sum_{q} \frac{r_{q}^{2}-1}{r_{q}}=\sum_{q} \frac{1}{2 r_{q}}\left[\sum_{k=1}^{s-1} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{(2 s-1)\left(r_{q}^{2}-1\right)}{12}\right] .
$$

Then we denote

$$
\sum_{q} \frac{1}{2 r_{q}}\left[\sum_{k=1}^{s-1} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{(2 s-1)\left(r_{q}^{2}-1\right)}{12}\right]
$$

by $c t_{s}$.
Hence we have

$$
p_{n}=K_{n}+\frac{2 n-1}{24} K_{X} \cdot c_{2}(X)+c t_{s}
$$

where the term $c t_{s}$ depends on s.
Corollary 1 (Formula for $c t_{s}$). Under the same conditions and notations in Theorem 1, let $s=m_{q} r_{q}+s_{q},\left(0 \leq s_{q}<r_{q}\right)$ for each point in a basket of singularities. Then we have

$$
c t_{s}=\sum_{q} \frac{1}{2 r_{q}}\left[\sum_{k=1}^{s_{q}-1} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{\left(2 s_{q}-1\right)\left(r_{q}^{2}-1\right)}{12}\right] .
$$

Proof. As in the proof of Theorem 1, we apply the same procedure and notation to the term in $c t_{s}$ which is computed as follows:

$$
\sum_{k=1}^{s-1} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{(2 s-1)\left(r_{q}^{2}-1\right)}{12}
$$

$$
\begin{aligned}
& =\sum_{k=1}^{m_{q} r_{q}} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{2 m_{q} r_{q}\left(r_{q}^{2}-1\right)}{12}+\sum_{k=m_{q} r_{q}+1}^{m_{q} r_{q}+s_{q}-1} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{\left(2 s_{q}-1\right)\left(r_{q}^{2}-1\right)}{12} \\
& =m_{q}\left[\sum_{k=1}^{r_{q}-1} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{r_{q}\left(r_{q}^{2}-1\right)}{6}\right]+\sum_{k=1}^{s_{q}-1} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{\left(2 s_{q}-1\right)\left(r_{q}^{2}-1\right)}{12} \\
& =\sum_{k=1}^{s_{q}-1} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{\left(2 s_{q}-1\right)\left(r_{q}^{2}-1\right)}{12} .
\end{aligned}
$$

By Lemma 1, we have a formula for $c t_{s}$.
Remark 1. Recall that $K_{X} \cdot c_{2}(X)$ is positive (For a reference, see Miyaoka [4]). Thus, in order for p_{n} to be $0, c t_{s}$ must be negative.

By the periodic property (Theorem 1), we consider $c t_{r+i}$ as the same as $c t_{i}$. Denote by $[x]$ the largest integer less than or equal to x.

Theorem 2 (Properties of $c t_{s}$). Under the same conditions and notations in Theorem 1, we have the following:
(1) $c t_{0}=\sum \frac{r_{q}^{2}-1}{24 r_{q}}$. In particular, $c t_{0} \geq 0$.
(2) $c t_{0}=-c t_{1}$.
(3) $c t_{s}=-c t_{r-s+1}$ when $s \geq 2$.
(4) $c t_{[r / 2]+1}=0$ when r is odd ≥ 3.
(5) $c t_{r-1} \geq 0$ if r is odd or even without the type $\frac{1}{2}(1,-1,1)$.
(6) $\chi\left(\mathcal{O}_{X}\right)<c t_{0}$.

Proof. Since r is the l.c.m of r_{q}, the cases (1) and (2) both come directly from a formula of $c t_{s}$ in the proof of Theorem 1. Thus, we may assume $s \geq 2$. Recall that $s=m_{q} r_{q}+s_{q}\left(0 \leq s_{q}<r_{q}\right)$.

The constant $c t_{s}$ is given as follows:

$$
c t_{s}=\sum_{q} \frac{1}{2 r_{q}}\left[\sum_{k=1}^{s_{q}-1} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{\left(2 s_{q}-1\right)\left(r_{q}^{2}-1\right)}{12}\right] .
$$

Let's denote $\sum_{k=1}^{s_{q}-1} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{\left(2 s_{q}-1\right)\left(r_{q}^{2}-1\right)}{12}$ by $c t_{s, q}$. Then

$$
c t_{s}=\sum_{q} \frac{1}{2 r_{q}} c t_{s, q}
$$

If we prove $c t_{s, q}=-c t_{r-s+1, q}$, then our proof for (3) is complete.
If $s_{q}=0$ or 1 , then $c t_{s, q}=-c t_{r-s+1, q}$ clearly. Thus we may assume $s_{q} \geq 2$. Then $r_{q}-s_{q}+1$ is the nonnegative least residue of $r-s+1$ modulo r_{q}.

$$
c t_{r-s+1, q}=\sum_{k=1}^{r_{q}-s_{q}} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{\left(2 r_{q}-2 s_{q}+2-1\right)\left(r_{q}^{2}-1\right)}{12}
$$

$$
\begin{aligned}
& =\sum_{k=1}^{r_{q}-1} \overline{b k}\left(r_{q}-\overline{b k}\right)-\sum_{r_{q}-s_{q}+1}^{r_{q}-1} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{\left(2 r_{q}-2 s_{q}+1\right)\left(r_{q}^{2}-1\right)}{12} \\
& =\frac{r_{q}\left(r_{q}^{2}-1\right)}{6}-\sum_{r_{q}-s_{q}+1}^{r_{q}-1} \overline{b k}\left(r_{q}-\overline{b k}\right)-\frac{\left(2 r_{q}-2 s_{q}+1\right)\left(r_{q}^{2}-1\right)}{12} \\
& =-\sum_{r_{q}-s_{q}+1}^{r_{q}-1} \overline{b k}\left(r_{q}-\overline{b k}\right)+\frac{\left(2 s_{q}-1\right)\left(r_{q}^{2}-1\right)}{12} .
\end{aligned}
$$

The sum $\sum_{r_{q}-s_{q}+1}^{r_{q}-1} \overline{b k}\left(r_{q}-\overline{b k}\right)$ can be computed as follows:

$$
\begin{aligned}
& \sum_{r_{q}-s_{q}+1}^{r_{q}-1} \overline{b k}\left(r_{q}-\overline{b k}\right) \\
= & \overline{b\left(r_{q}-s_{q}+1\right)}\left(r_{q}-\overline{b\left(r_{q}-s_{q}+1\right)}\right)+\cdots+\overline{b\left(r_{q}-1\right)}\left(r_{q}-\overline{b\left(r_{q}-1\right)}\right) \\
= & \overline{-b\left(s_{q}-1\right)}\left(r_{q}-\overline{-b\left(s_{q}-1\right)}\right)+\cdots+\overline{-b}\left(r_{q}-\overline{-b}\right) \\
= & \left(r_{q}-\overline{b\left(s_{q}-1\right)}\right)\left(r_{q}-\left(r_{q}-\overline{b\left(s_{q}-1\right)}\right)\right)+\cdots+\left(r_{q}-\bar{b}\right)\left(r_{q}-\left(r_{q}-\bar{b}\right)\right) \\
= & \overline{b\left(s_{q}-1\right)}\left(r_{q}-\overline{b\left(s_{q}-1\right)}\right)+\cdots+\bar{b}\left(r_{q}-\bar{b}\right) \\
= & \sum_{k=1}^{s_{q}-1} \overline{b k}\left(r_{q}-\overline{b k}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
c t_{r-s+1, q} & =-\sum_{r_{q}-s_{q}+1}^{r_{q}-1} \overline{b k}\left(r_{q}-\overline{b k}\right)+\frac{\left(2 s_{q}-1\right)\left(r_{q}^{2}-1\right)}{12} \\
& =-\sum_{k=1}^{s_{q}-1} \overline{b k}\left(r_{q}-\overline{b k}\right)+\frac{\left(2 s_{q}-1\right)\left(r_{q}^{2}-1\right)}{12} \\
& =-c t_{s, q}
\end{aligned}
$$

So the property (3) is proved.
For a proof of the property (4), $c t_{[r / 2]+1}=-c t_{r-[r / 2]}$ by the property (3). Since r is odd, $[r / 2]+1=r-[r / 2]$. Hence $c t_{[r / 2]+1}=0$.

For a proof of the property (5), $c t_{r-1}=-c t_{2}$ by the property (3). It is enough to prove $c t_{2} \leq 0$.

$$
\begin{aligned}
c t_{2} & =\sum_{q} \frac{1}{2 r_{q}}\left(b\left(r_{q}-b\right)-\frac{r_{q}^{2}-1}{4}\right) \\
& =\sum_{q} \frac{1}{2 r_{q}}\left(\frac{4 b r_{q}-4 b^{2}-r_{q}^{2}+1}{4}\right)
\end{aligned}
$$

$$
=\sum_{q} \frac{1}{2 r_{q}}\left(\frac{1-\left(r_{q}-2 b\right)^{2}}{4}\right) .
$$

$1-(r-2 b)^{2} \leq 0$ since r is odd or even without the type $\frac{1}{2}(1,-1,1)$.
For a proof of the property (6), as in the proof of Theorem 1,

$$
\chi\left(X, \mathcal{O}_{X}\right)=\frac{1}{24} \sum_{q} \frac{r_{q}^{2}-1}{r_{q}}-\frac{1}{24} K_{X} \cdot c_{2}(X)
$$

Since $\frac{1}{24} K_{X} \cdot c_{2}(X)>0$ by Miyaoka inequality and $c t_{0}=\sum_{q} \frac{r_{q}^{2}-1}{24 r_{q}}$, we have $\chi\left(X, \mathcal{O}_{X}\right)<c t_{0}$ (For a reference, see Miyaoka [4]).

In the next theorem, we show an application of these periodic properties of constant terms $c t_{s}$. Some of the following results may be already known, but we may have the same results very easily using these periodic properties.

Theorem 3. Under the same conditions and notations in Theorem 1, we have the following:
(1) $p_{[r / 2]+1} \geq 1$ when r is odd ≥ 3.
(2) $p_{r-1} \geq 1$ if r is odd or even without the type $\frac{1}{2}(1,-1,1)$.
(3) For $r \geq 3$ we have the following:
$1 \leq p_{r-[r / 2]}+p_{[r / 2]+1}<p_{r-[r / 2]-1}+p_{[r / 2]+2}<\cdots<p_{2}+p_{r-1}$.
Thus, $p_{n} \geq 1$ for more than half of $\{2, \ldots, r-1\}$.
Moreover, if $r \geq 7$, then $3 \leq p_{r-[r / 2]}+p_{[r / 2]+1}$. Thus, $p_{n} \geq 2$ for more than half of $\{2, \ldots, r-1\}$.
(4) $p_{r} \geq 1$. Moreover, $p_{r} \geq 2$ with the following possible exceptions:
(i) $K_{X}^{3}=1 / 2, K_{X} \cdot c_{2}=9 / 2, \chi\left(\mathcal{O}_{X}\right)=0, r=2$

$$
\mathcal{B}=\left\{\frac{1}{2}(1,-1,1) \times 3\right\}, p_{2}=1, p_{n} \geq 2(n \geq 3)
$$

(ii) $K_{X}^{3}=1, K_{X} \cdot c_{2}=3, \chi\left(\mathcal{O}_{X}\right)=0, r=2$

$$
\mathcal{B}=\left\{\frac{1}{2}(1,-1,1) \times 2\right\}, p_{2}=1, p_{n} \geq 2(n \geq 3)
$$

(iii) $K_{X}^{3}=3 / 2, K_{X} \cdot c_{2}=3 / 2, \chi\left(\mathcal{O}_{X}\right)=0, r=2$

$$
\mathcal{B}=\left\{\frac{1}{2}(1,-1,1)\right\}, p_{2}=1, p_{n} \geq 2(n \geq 3)
$$

where $\frac{1}{2}(1,-1,1) \times n$ means n points of type $\frac{1}{2}(1,-1,1)$.
(5) $p_{n} \geq 2$ for $n>r+1$.

Proof. For a proof of (1), $c t_{[r / 2]+1}=0$ by (4) of Theorem 2 when r is odd ≥ 3. $p_{[r / 2]+1} \geq 1$ by Theorem 1 since $K_{X} \cdot c_{2}(X)>0$.

For a proof of (2), recall $c t_{r-1} \geq 0$ if r is odd or even without type $\frac{1}{2}(1,-1,1)$. Thus $p_{r-1} \geq 1$ by Theorem 1 .

For a proof of (3), recall $c t_{s}=-c t_{r-s+1}$ for $s \geq 2$ by (3) of Theorem 2. For $s([r / 2]+1 \leq s \leq r-1)$, add up $p_{r-s+1}+p_{s}$. Then we have

$$
p_{r-s+1}+p_{s}=\frac{[(r+1)(2 r+1)+6 s(s-r-1)]}{12} r K_{X}^{3}+\frac{r K_{X} \cdot c_{2}(X)}{12}
$$

In the above expression, the minimum of term $6 s(s-r-1)$ occurs at $s=\frac{r+1}{2}$. Thus, $p_{r-s+1}+p_{s}$ is strictly increasing from $s=[r / 2]+1$ to $s=r-1$. Now, we have

$$
p_{r-s+1}+p_{s}>\frac{r^{2}-1}{24}
$$

since $K_{X} \cdot c_{2}(X)>0$ and $r K_{X}^{3}$ is a positive integer. $p_{r-s+1}+p_{s} \geq 1$ and moreover, greater than 2 if $r \geq 7$. Thus, a proof for (3) is complete.

For a proof of (4), $p_{r} \geq 1$ since $c t_{0} \geq 0$. For the second part, we are going to consider the following three cases:

$$
\text { (i) } \chi\left(\mathcal{O}_{X}\right)<0 \text {, (ii) } \chi\left(\mathcal{O}_{X}\right)>0 \text {, (iii) } \chi\left(\mathcal{O}_{X}\right)=0 \text {. }
$$

If $\chi\left(\mathcal{O}_{X}\right)<0$, then $p_{n} \geq 2$ for $n \geq 2$ by Reid-Fletcher formula.
If $\chi\left(\mathcal{O}_{X}\right)>0$, then $p_{r} \geq 2$ since $c t_{0}>\chi\left(\mathcal{O}_{X}\right) \geq 1$ by (6) of Theorem 2.
In the case of $\chi\left(\mathcal{O}_{X}\right)=0, c t_{0}=\frac{1}{24} K_{X} \cdot c_{2}(X)$ since $\chi\left(X, \mathcal{O}_{X}\right)=c t_{0}-\frac{1}{24} K_{X}$. $c_{2}(X)$ by combining the Barlow's work and (1) of Theorem 2. Thus,

$$
p_{r}=\frac{(r-1)(2 r-1)}{12} r K_{X}^{3}+2 r c t_{0}
$$

If $r \geq 4$, then $\frac{(r-1)(2 r-1)}{12}>1$. Thus, $p_{r} \geq 2$ since $c t_{0}>0$.
If $r=3$, then the basket of singularities must contain points of type $\frac{1}{3}(1$, $-1, b)$ only. Thus we have $c t_{0} \geq \frac{1}{9}$ by (1) of Theorem 2 and $p_{3} \geq \frac{5}{6}+\frac{2}{3}$ by the formula of p_{r} given above. Thus $p_{3} \geq 2$.

Hence it is enough to consider the case $r=2$. The basket of singularities must contain points of type $\frac{1}{2}(1,-1,1)$ only. Thus, by (1) of Theorem 2,

$$
c t_{0}=\frac{1}{16} \#
$$

where $\#$ is the number of points in the basket of singularities. Then, by the formula of p_{r} given above, we have

$$
p_{2}=\frac{K_{X}^{3}}{2}+\frac{1}{4} \#
$$

If $\# \geq 4$, then $p_{2} \geq 2$. The only remaining cases $p_{2}=1$ can occur when $\# \leq 3$. Recall $p_{2} \geq 1$ since $c t_{0}>0$. By computing p_{2} according to the cases $\#=1,2,3$, we have three possible exceptions which are described in the statement of Theorem 3 .

For a proof of (5), if X is one of the possible exceptions in (4), then p_{n} is positive and strictly increasing. Thus we may assume $p_{r} \geq 2$.

Let $n=q r+s(0 \leq s<r)$. We consider the following three cases:

$$
\text { (i) } s=0, \quad \text { (ii) } s \geq 2, \quad \text { (iii) } s=1
$$

If $s=0$, then n is a multiple of r, i.e., $n=q r(q \geq 2)$ since $n>r+1$. Since $p_{r} \geq 2, p_{n} \geq 2$ clearly (For a reference, see [5, Theorem 3.4.15, p. 258]).

Let's prove the case $s \geq 2$. For this case, it is enough to prove $p_{r+s} \geq 2$. The reason is as follows: if $p_{r+s} \geq 2$ and $q \geq 2$, then $p_{n} \geq p_{(q-1) r}+p_{r+s}-1 \geq 2$ (For a reference, see [5, Theorem 3.4.15, p. 258]).

We have proved $p_{s}+p_{r-s+1} \geq 1$ in (3). Compute the following:

$$
p_{r+s}-p_{s}-\left(p_{s}+p_{r-s+1}\right)=r^{2}(s-1 / 2) K_{X}^{3}>0
$$

Thus, $p_{r+s}>p_{s}+p_{r-s+1} \geq 1$. Hence we prove $p_{r+s} \geq 2$.
Now, we are going to prove the case $s=1$. Similarly, for this case, it is enough to prove $p_{2 r+1} \geq 2$. If $p_{2 r+1} \geq 2$, then $p_{q r+1} \geq p_{2 r+1}$ clearly for $q \geq 3$ since $p_{q r+1} \geq p_{(q-2) r}+p_{2 r+1}-1$.

Choose k such that $2 \leq r-k \leq r-1$ and $p_{r-k} \geq 1$. This is possible because $p_{t} \neq 0$ for more than half of $t \in\{2, \ldots, r-1\}$. We proved $p_{r+k+1} \geq 2$ just before since $2 \leq k+1 \leq r-1$. Thus,

$$
p_{2 r+1} \geq p_{r-k}+p_{r+k+1}-1 \geq 2
$$

A proof for (5) is complete.
Remark 2. In Theorem 3, we described the numerical data of possible exceptions. But it does not imply the existence of canonical threefolds with given numerical data. Those exceptional cases may or may not exist.

Remark 3. We have no example which shows $p_{r+1}=0$ yet.
Acknowledgement. Author would like to express his gratitude to the referee for kind and constructive suggestions.

References

[1] A. R. Fletcher, Contributions to Riemann-Roch on projective 3-folds with only canonical singularities and applications, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 221-231, Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987.
[2] M. Hanamura, Stability of the pluricanonical maps of threefolds, Algebraic geometry, Sendai, 1985, 185-205, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987.
[3] Y. Kawamata, On the plurigenera of minimal algebraic 3-folds with $K \equiv 0$, Math. Ann. 275 (1986), no. 4, 539-546.
[4] Y. Miyaoka, The Chern classes and Kodaira dimension of a minimal variety, Algebraic geometry, Sendai, 1985, 449-476, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987.
[5] M. Namba, Geometry of Projective Algebraic Curves, Monographs and Textbooks in Pure and Applied Mathematics, 88. Marcel Dekker, Inc., New York, 1984.
[6] M. Reid, Young person's guide to canonical singularities, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 345-414, Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987.
[7] D.-K. Shin, On a computation of plurigenera of a caninical threefold, J. Algebra. 309 (2007), no. 2, 559-568.

Department of Mathematics
Konkuk University
Seoul 143-701, Korea
E-mail address: dkshin@konkuk.ac.kr

[^0]: Received September 9, 2010; Revised March 10, 2011.
 2010 Mathematics Subject Classification. 14E05, 14J30.
 Key words and phrases. pluricanonical system, plurigenus, threefold of general type.
 This research is supported by Konkuk University 2006.

