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ON THE PLURIGENUS OF A CANONICAL THREEFOLD

Dong-Kwan Shin

Abstract. It is well known that plurigenus does not vanish for a suf-
ficiently large multiple on a canonical threefold over C. There is Reid-

Fletcher formula for plurigenus. But, unlike in the case of surface of
general type, it is not easy to compute plurigenus. In this paper, we in-
duce a different version of Reid-Fletcher formula and show that the con-

stant term in the induced formula has periodic properties. Using these
properties we have an application to nonvanishing of plurigenus.

Throughout this paper X is assumed to be a projective threefold with only
canonical singularities and an ample canonical divisor KX over the complex
number field C, i.e., a canonical threefold.

It is well known that H0(X,OX(mKX)) does not vanish for a sufficiently
large integer m. In the case of surface of general type and an algebraic curve,
such integer m is well known. In a case of threefold, when χ(OX) ≤ 0, it is easy
to have such integer m (see Fletcher [1]); however, when χ(OX) > 0, it is not
easy even to obtain an integer m such that dimH0(X,OX(mKX)) ≥ 1. There
are some results about dimH0(X,OX(mKX)), i.e., plurigenus. In Fletcher [1],
A. R. Fletcher showed that

dimH0(X,OX(12KX)) ≥ 1 and dimH0(X,OX(24KX)) ≥ 2

when χ(OX) = 1. In Shin [7], Shin improved results of Fletcher. In Hanamura
[2], Hanamura induced a formula for plurigenus and computed plurigenus ac-
cording to ‘global index’. For detailed matters, see Fletcher [1], Reid [6], Hana-
mura [2], Shin [7]. In this paper, we induce a different version of Reid-Fletcher
formula and show that the constant term in the induced formula has periodic
properties. Using these properties we have an application to nonvanishing of
plurigenus.

M. Reid and A. R. Fletcher described the formula for χ(OX(nKX)). Com-
bining the formula for χ(OX(nKX)) with a vanishing theorem, it is possible to
compute dimH0(X,OX(nKX)).

Received September 9, 2010; Revised March 10, 2011.
2010 Mathematics Subject Classification. 14E05, 14J30.
Key words and phrases. pluricanonical system, plurigenus, threefold of general type.
This research is supported by Konkuk University 2006.

c⃝2012 The Korean Mathematical Society

37



38 DONG-KWAN SHIN

Reid-Flethcer formula for χ(OX(nKX)) is described as follows:

χ(OX(nKX)) =
n(n− 1)(2n− 1)

12
K3

X + (1− 2n)χ(OX) +
∑
q

l(q, n),

where the summation is over a basket of singularities. Although singularities
in a basket are not necessarily singularities in X, the singularities in X make
the contribution as if they were in a basket. For detailed explanations about
a basket of singularities, see Reid [6], Fletcher [1] or Kawamata [3]. The exact
formula for l(q, n) is as follows:

l(q, n) =

n−1∑
k=1

kbq(rq − kbq)

2rq
,

where q is a singularity of type 1
rq
(1,−1, bq), rq and bq are relatively prime,

and ibq is the nonnegative least residue of ibq modulo rq. To distinguish each
point in a basket of singularities, we keep using a notation rq, but for the sake
of simplicity, we use a notation b instead of bq without causing troubles.

We denote l.c.m of rq in the baskets of singularities by r. Let’s denote
n(n−1)(2n−1)

12 K3
X by Kn for the sake of simplicity.

The following proposition is a standard application of the Kawamata-Vieh-
weg Vanishing Theorem.

Proposition 1. For all n ≥ 2,

pn :
def
= dim H0(X,OX(nKX)) = Kn + (1− 2n)χ(OX) +

∑
q

l(q, n).

Lemma 1. Let (r, b) = 1 and 0 < b < r. Then

r∑
k=1

bk(r − bk) =
r−1∑
k=1

k(r − k) =
r(r2 − 1)

6
.

Proof. The set {b, 2b, . . . , rb} is the same as {0, 1, 2, . . . , r − 1} since (r, b) =
1. □

In Reid [6] or Fletcher [1], R. Barlow’s work is given as follows:

ρ∗KX · c2(Y ) =
∑ r2q − 1

rq
− 24χ(OX),

where ρ : Y → X is a resolution of singularities of X. For the sake of simplicity,
let’s denote ρ∗KX · c2(Y ) by KX · c2(X).

In [2], Hanamura induced the formula of the same type as in the following
theorem, but our method is different and is a key to find the periodic behavior
of the constant term in the formula.
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Theorem 1. Let X be a canonical threefold and let KX be a canonical divisor
of X. Then for n ≥ 2,

pn = Kn +
2n− 1

24
KX · c2(X) + cts,

where n = mr + s, 0 ≤ s < r and cts is a constant depending on s.

Proof. By Proposition 1 and R. Barlow’s work, pn is given as follows:

pn = Kn + (1− 2n)χ(X,OX) +
∑
q

l(q, n)

= Kn + (1− 2n)

[
1

24

∑
q

r2q − 1

rq
− 1

24
KX · c2(X)

]
+
∑
q

l(q, n)

= Kn +
2n− 1

24
KX · c2(X) +

∑
q

l(q, n)− 2n− 1

24

∑
q

r2q − 1

rq
.

The term
∑

q l(q, n)−
2n−1
24

∑
q

r2q−1

rq
can be computed easily as follows:

∑
q

l(q, n)− 2n− 1

24

∑
q

r2q − 1

rq

=
∑
q

n−1∑
k=1

bk(rq − bk)

2rq
− 2n− 1

24

∑
q

r2q − 1

rq

=
∑
q

1

2rq

[
n−1∑
k=1

bk(rq − bk)−
(2n− 1)(r2q − 1)

12

]
.

Since r is a multiple of rq, we let r = hqrq and n = mr + s = mhqrq + s.
When s = 0 or 1, we have

n−1∑
k=1

bk(rq − bk)−
(2n− 1)(r2q − 1)

12

=

mhqrq∑
k=1

bk(rq − bk)−
2mhqrq(r

2
q − 1)

12
−

(2s− 1)(r2q − 1)

12

= mhq

[
rq−1∑
k=1

bk(rq − bk)−
rq(r

2
q − 1)

6

]
−

(2s− 1)(r2q − 1)

12
.

By Lemma 1,
∑rq−1

k=1 bk(rq − bk)− rq(r
2
q−1)

6 = 0. Thus,

n−1∑
k=1

bk(rq − bk)−
(2n− 1)(r2q − 1)

12
= −

(2s− 1)(r2q − 1)

12
.
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When s > 1, we have

n−1∑
k=1

bk(rq − bk)−
(2n− 1)(r2q − 1)

12

=

mhqrq∑
k=1

bk(rq − bk)−
2mhqrq(r

2
q − 1)

12
+

mhqrq+s−1∑
k=mhqrq+1

bk(rq − bk)−
(2s− 1)(r2q − 1)

12

= mhq

[
rq−1∑
k=1

bk(rq − bk)−
rq(r

2
q − 1)

6

]
+

s−1∑
k=1

bk(rq − bk)−
(2s− 1)(r2q − 1)

12
.

By Lemma 1,
∑rq−1

k=1 bk(rq − bk)− rq(r
2
q−1)

6 = 0. Thus,

n−1∑
k=1

bk(rq − bk)−
(2n− 1)(r2q − 1)

12
=

s−1∑
k=1

bk(rq − bk)−
(2s− 1)(r2q − 1)

12
.

For the sake of simplicity, we may denote that the notation of the sum means

a zero if j < i in the summation notation
∑j

k=i. Hence∑
q

l(q, n)− 2n− 1

24

∑
q

r2q − 1

rq
=
∑
q

1

2rq

[
s−1∑
k=1

bk(rq − bk)−
(2s− 1)(r2q − 1)

12

]
.

Then we denote∑
q

1

2rq

[
s−1∑
k=1

bk(rq − bk)−
(2s− 1)(r2q − 1)

12

]
by cts.

Hence we have

pn = Kn +
2n− 1

24
KX · c2(X) + cts,

where the term cts depends on s. □

Corollary 1 (Formula for cts). Under the same conditions and notations in
Theorem 1, let s = mqrq + sq, (0 ≤ sq < rq) for each point in a basket of
singularities. Then we have

cts =
∑
q

1

2rq

[
sq−1∑
k=1

bk(rq − bk)−
(2sq − 1)(r2q − 1)

12

]
.

Proof. As in the proof of Theorem 1, we apply the same procedure and notation
to the term in cts which is computed as follows:

s−1∑
k=1

bk(rq − bk)−
(2s− 1)(r2q − 1)

12
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=

mqrq∑
k=1

bk(rq − bk)−
2mqrq(r

2
q − 1)

12
+

mqrq+sq−1∑
k=mqrq+1

bk(rq − bk)−
(2sq − 1)(r2q − 1)

12

= mq

[
rq−1∑
k=1

bk(rq − bk)−
rq(r

2
q − 1)

6

]
+

sq−1∑
k=1

bk(rq − bk)−
(2sq − 1)(r2q − 1)

12

=

sq−1∑
k=1

bk(rq − bk)−
(2sq − 1)(r2q − 1)

12
.

By Lemma 1, we have a formula for cts. □

Remark 1. Recall that KX ·c2(X) is positive (For a reference, see Miyaoka [4]).
Thus, in order for pn to be 0, cts must be negative.

By the periodic property (Theorem 1), we consider ctr+i as the same as cti.
Denote by [x] the largest integer less than or equal to x.

Theorem 2 (Properties of cts). Under the same conditions and notations in
Theorem 1, we have the following:

(1) ct0 =
∑ r2q−1

24rq
. In particular, ct0 ≥ 0.

(2) ct0 = −ct1.
(3) cts = −ctr−s+1 when s ≥ 2.
(4) ct[r/2]+1 = 0 when r is odd ≥ 3.

(5) ctr−1 ≥ 0 if r is odd or even without the type 1
2 (1,−1, 1).

(6) χ(OX) < ct0.

Proof. Since r is the l.c.m of rq, the cases (1) and (2) both come directly from
a formula of cts in the proof of Theorem 1. Thus, we may assume s ≥ 2. Recall
that s = mqrq + sq (0 ≤ sq < rq).

The constant cts is given as follows:

cts =
∑
q

1

2rq

[
sq−1∑
k=1

bk(rq − bk)−
(2sq − 1)(r2q − 1)

12

]
.

Let’s denote
∑sq−1

k=1 bk(rq − bk)− (2sq−1)(r2q−1)

12 by cts,q. Then

cts =
∑
q

1

2rq
cts,q.

If we prove cts,q = −ctr−s+1,q, then our proof for (3) is complete.
If sq = 0 or 1, then cts,q = −ctr−s+1,q clearly. Thus we may assume sq ≥ 2.

Then rq − sq + 1 is the nonnegative least residue of r − s+ 1 modulo rq.

ctr−s+1,q =

rq−sq∑
k=1

bk(rq − bk)−
(2rq − 2sq + 2− 1)(r2q − 1)

12
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=

rq−1∑
k=1

bk(rq − bk)−
rq−1∑

rq−sq+1

bk(rq − bk)−
(2rq − 2sq + 1)(r2q − 1)

12

=
rq(r

2
q − 1)

6
−

rq−1∑
rq−sq+1

bk(rq − bk)−
(2rq − 2sq + 1)(r2q − 1)

12

= −
rq−1∑

rq−sq+1

bk(rq − bk) +
(2sq − 1)(r2q − 1)

12
.

The sum
∑rq−1

rq−sq+1 bk(rq − bk) can be computed as follows:

rq−1∑
rq−sq+1

bk(rq − bk)

= b(rq − sq + 1)(rq − b(rq − sq + 1)) + · · ·+ b(rq − 1)(rq − b(rq − 1))

= −b(sq − 1)(rq −−b(sq − 1)) + · · ·+−b(rq −−b)

= (rq − b(sq − 1))(rq − (rq − b(sq − 1))) + · · ·+ (rq − b)(rq − (rq − b))

= b(sq − 1)(rq − b(sq − 1)) + · · ·+ b(rq − b)

=

sq−1∑
k=1

bk(rq − bk).

Therefore,

ctr−s+1,q = −
rq−1∑

rq−sq+1

bk(rq − bk) +
(2sq − 1)(r2q − 1)

12

= −
sq−1∑
k=1

bk(rq − bk) +
(2sq − 1)(r2q − 1)

12

= −cts,q.

So the property (3) is proved.

For a proof of the property (4), ct[r/2]+1 = −ctr−[r/2] by the property (3).
Since r is odd, [r/2] + 1 = r − [r/2]. Hence ct[r/2]+1 = 0.

For a proof of the property (5), ctr−1 = −ct2 by the property (3). It is
enough to prove ct2 ≤ 0.

ct2 =
∑
q

1

2rq

(
b(rq − b)−

r2q − 1

4

)

=
∑
q

1

2rq

(
4brq − 4b2 − r2q + 1

4

)
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=
∑
q

1

2rq

(
1− (rq − 2b)2

4

)
.

1− (r − 2b)2 ≤ 0 since r is odd or even without the type 1
2 (1,−1, 1).

For a proof of the property (6), as in the proof of Theorem 1,

χ(X,OX) =
1

24

∑
q

r2q − 1

rq
− 1

24
KX · c2(X).

Since 1
24KX · c2(X) > 0 by Miyaoka inequality and ct0 =

∑
q

r2q−1

24rq
, we have

χ(X,OX) < ct0 (For a reference, see Miyaoka [4]). □

In the next theorem, we show an application of these periodic properties of
constant terms cts. Some of the following results may be already known, but
we may have the same results very easily using these periodic properties.

Theorem 3. Under the same conditions and notations in Theorem 1, we have
the following:

(1) p[r/2]+1 ≥ 1 when r is odd ≥ 3.

(2) pr−1 ≥ 1 if r is odd or even without the type 1
2 (1,−1, 1).

(3) For r ≥ 3 we have the following:

1 ≤ pr−[r/2] + p[r/2]+1 < pr−[r/2]−1 + p[r/2]+2 < · · · < p2 + pr−1.

Thus, pn ≥ 1 for more than half of {2, . . . , r − 1}.
Moreover, if r ≥ 7, then 3 ≤ pr−[r/2] + p[r/2]+1. Thus, pn ≥ 2 for

more than half of {2, . . . , r − 1}.
(4) pr ≥ 1. Moreover, pr ≥ 2 with the following possible exceptions:

(i) K3
X = 1/2, KX · c2 = 9/2, χ(OX) = 0, r = 2

B =

{
1

2
(1,−1, 1)× 3

}
, p2 = 1, pn ≥ 2 (n ≥ 3),

(ii) K3
X = 1, KX · c2 = 3, χ(OX) = 0, r = 2

B =

{
1

2
(1,−1, 1)× 2

}
, p2 = 1, pn ≥ 2 (n ≥ 3),

(iii) K3
X = 3/2, KX · c2 = 3/2, χ(OX) = 0, r = 2

B =

{
1

2
(1,−1, 1)

}
, p2 = 1, pn ≥ 2 (n ≥ 3),

where 1
2 (1,−1, 1)× n means n points of type 1

2 (1,−1, 1).
(5) pn ≥ 2 for n > r + 1.

Proof. For a proof of (1), ct[r/2]+1 = 0 by (4) of Theorem 2 when r is odd ≥ 3.
p[r/2]+1 ≥ 1 by Theorem 1 since KX · c2(X) > 0.
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For a proof of (2), recall ctr−1 ≥ 0 if r is odd or even without type 1
2 (1,−1, 1).

Thus pr−1 ≥ 1 by Theorem 1.

For a proof of (3), recall cts = −ctr−s+1 for s ≥ 2 by (3) of Theorem 2. For
s ([r/2] + 1 ≤ s ≤ r − 1), add up pr−s+1 + ps. Then we have

pr−s+1 + ps =
[(r + 1)(2r + 1) + 6s(s− r − 1)]

12
rK3

X +
rKX · c2(X)

12
.

In the above expression, the minimum of term 6s(s− r− 1) occurs at s = r+1
2 .

Thus, pr−s+1 + ps is strictly increasing from s = [r/2] + 1 to s = r − 1. Now,
we have

pr−s+1 + ps >
r2 − 1

24
,

since KX · c2(X) > 0 and rK3
X is a positive integer. pr−s+1 + ps ≥ 1 and

moreover, greater than 2 if r ≥ 7. Thus, a proof for (3) is complete.

For a proof of (4), pr ≥ 1 since ct0 ≥ 0. For the second part, we are going
to consider the following three cases:

(i) χ(OX) < 0, (ii) χ(OX) > 0, (iii) χ(OX) = 0.

If χ(OX) < 0, then pn ≥ 2 for n ≥ 2 by Reid-Fletcher formula.
If χ(OX) > 0, then pr ≥ 2 since ct0 > χ(OX) ≥ 1 by (6) of Theorem 2.
In the case of χ(OX) = 0, ct0 = 1

24KX ·c2(X) since χ(X,OX) = ct0− 1
24KX ·

c2(X) by combining the Barlow’s work and (1) of Theorem 2. Thus,

pr =
(r − 1)(2r − 1)

12
rK3

X + 2rct0.

If r ≥ 4, then (r−1)(2r−1)
12 > 1. Thus, pr ≥ 2 since ct0 > 0.

If r = 3, then the basket of singularities must contain points of type 1
3 (1,

−1, b) only. Thus we have ct0 ≥ 1
9 by (1) of Theorem 2 and p3 ≥ 5

6 +
2
3 by the

formula of pr given above. Thus p3 ≥ 2.
Hence it is enough to consider the case r = 2. The basket of singularities

must contain points of type 1
2 (1,−1, 1) only. Thus, by (1) of Theorem 2,

ct0 =
1

16
#,

where # is the number of points in the basket of singularities. Then, by the
formula of pr given above, we have

p2 =
K3

X

2
+

1

4
#.

If # ≥ 4, then p2 ≥ 2. The only remaining cases p2 = 1 can occur when
# ≤ 3. Recall p2 ≥ 1 since ct0 > 0. By computing p2 according to the cases
# = 1, 2, 3, we have three possible exceptions which are described in the
statement of Theorem 3.

For a proof of (5), if X is one of the possible exceptions in (4), then pn is
positive and strictly increasing. Thus we may assume pr ≥ 2.
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Let n = qr + s (0 ≤ s < r). We consider the following three cases:

(i) s = 0, (ii) s ≥ 2, (iii) s = 1.

If s = 0, then n is a multiple of r, i.e., n = qr (q ≥ 2) since n > r+1. Since
pr ≥ 2, pn ≥ 2 clearly (For a reference, see [5, Theorem 3.4.15, p. 258]).

Let’s prove the case s ≥ 2. For this case, it is enough to prove pr+s ≥ 2. The
reason is as follows: if pr+s ≥ 2 and q ≥ 2, then pn ≥ p(q−1)r + pr+s − 1 ≥ 2
(For a reference, see [5, Theorem 3.4.15, p. 258]).

We have proved ps + pr−s+1 ≥ 1 in (3). Compute the following:

pr+s − ps − (ps + pr−s+1) = r2(s− 1/2)K3
X > 0.

Thus, pr+s > ps + pr−s+1 ≥ 1. Hence we prove pr+s ≥ 2.
Now, we are going to prove the case s = 1. Similarly, for this case, it is

enough to prove p2r+1 ≥ 2. If p2r+1 ≥ 2, then pqr+1 ≥ p2r+1 clearly for q ≥ 3
since pqr+1 ≥ p(q−2)r + p2r+1 − 1.

Choose k such that 2 ≤ r−k ≤ r−1 and pr−k ≥ 1. This is possible because
pt ̸= 0 for more than half of t ∈ {2, . . . , r − 1}. We proved pr+k+1 ≥ 2 just
before since 2 ≤ k + 1 ≤ r − 1. Thus,

p2r+1 ≥ pr−k + pr+k+1 − 1 ≥ 2.

A proof for (5) is complete. □

Remark 2. In Theorem 3, we described the numerical data of possible excep-
tions. But it does not imply the existence of canonical threefolds with given
numerical data. Those exceptional cases may or may not exist.

Remark 3. We have no example which shows pr+1 = 0 yet.

Acknowledgement. Author would like to express his gratitude to the referee
for kind and constructive suggestions.
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