THE ESSENCE OF SUBTRACTION ALGEBRAS BASED ON \mathcal{N}-STRUCTURES

Kyoung Ja Lee and Young Bae Jun

Abstract

Using \mathcal{N}-structures, the notion of an \mathcal{N}-essence in a subtraction algebra is introduced, and related properties are investigated. Relations among an \mathcal{N}-ideal, an \mathcal{N}-subalgebra and an \mathcal{N}-essence are investigated.

1. Introduction

A (crisp) set A in a universe X can be defined in the form of its characteristic function $\mu_{A}: X \rightarrow\{0,1\}$ yielding the value 1 for elements belonging to the set A and the value 0 for elements excluded from the set A. So far most of the generalization of the crisp set have been conducted on the unit interval $[0,1]$ and they are consistent with the asymmetry observation. In other words, the generalization of the crisp set to fuzzy sets relied on spreading positive information that fit the crisp point $\{1\}$ into the interval $[0,1]$. Because no negative meaning of information is suggested, we now feel a need to deal with negative information. To do so, we also feel a need to supply mathematical tool. To attain such object, Jun et al. [6] introduced a new function which is called negative-valued function, and constructed \mathcal{N}-structures. They discussed \mathcal{N} subalgebras and \mathcal{N}-ideals in BCK/BCI-algebras. Schein [8] considered systems of the form $(\Phi ; \circ, \backslash)$, where Φ is a set of functions closed under the composition "०" of functions (and hence ($\Phi ; \circ$) is a function semigroup) and the set theoretic subtraction " \backslash " (and hence $(\Phi ; \backslash)$ is a subtraction algebra in the sense of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. Zelinka [9] discussed a problem proposed by Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. Jun et al. [3, 5] introduced the notion of ideals in subtraction algebras and discussed characterization of ideals. Jun et al. [7] provided conditions for an ideal to be irreducible. They introduced the notion
of an order system in a subtraction algebra, and investigated related properties. They provided relations between ideals and order systems, and dealt with the concept of a fixed map in a subtraction algebra, and investigate related properties. In [2], Jun et al. introduced the notion of a (created) \mathcal{N}-ideal of subtraction algebras, and investigated several characterizations of \mathcal{N}-ideals. They discussed how to make a created \mathcal{N}-ideal of an \mathcal{N}-structure (X, f).

In this paper, we introduced the notion of an \mathcal{N}-essence of a subtraction algebra, and investigate related properties. We consider relations among an \mathcal{N}-ideal, an \mathcal{N}-subalgebra and an \mathcal{N}-essence. We show that the union (resp. intersection) of \mathcal{N}-essences is also an \mathcal{N}-essence.

2. Preliminaries

By a subtraction algebra we mean an algebra ($X ;-$) with a single binary operation "-" that satisfies the following identities: for any $x, y, z \in X$,
(S1) $x-(y-x)=x$;
(S2) $x-(x-y)=y-(y-x)$;
(S3) $(x-y)-z=(x-z)-y$.
The last identity permits us to omit parentheses in expressions of the form $(x-y)-z$. The subtraction determines an order relation on $X: a \leq b \Leftrightarrow$ $a-b=0$, where $0=a-a$ is an element that does not depend on the choice of $a \in X$. The ordered set $(X ; \leq)$ is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in which every interval $[0, a]$ is a Boolean algebra with respect to the induced order. Here $a \wedge b=a-(a-b)$; the complement of an element $b \in[0, a]$ is $a-b$; and if $b, c \in[0, a]$, then

$$
\begin{aligned}
b \vee c & =\left(b^{\prime} \wedge c^{\prime}\right)^{\prime}=a-((a-b) \wedge(a-c)) \\
& =a-((a-b)-((a-b)-(a-c))) .
\end{aligned}
$$

In a subtraction algebra, the following are true (see [5]):
(a1) $(x-y)-y=x-y$.
(a2) $x-0=x$ and $0-x=0$.
(a3) $(x-y)-x=0$.
(a4) $x-(x-y) \leq y$.
(a5) $(x-y)-(y-x)=x-y$.
(a6) $x-(x-(x-y))=x-y$.
(a7) $(x-y)-(z-y) \leq x-z$.
(a8) $x \leq y$ if and only if $x=y-w$ for some $w \in X$.
(a9) $x \leq y$ implies $x-z \leq y-z$ and $z-y \leq z-x$ for all $z \in X$.
(a10) $x, y \leq z$ implies $x-y=x \wedge(z-y)$.
(a11) $(x \wedge y)-(x \wedge z) \leq x \wedge(y-z)$.
Definition 2.1 ([5]). A nonempty subset A of a subtraction algebra X is called an ideal of X, denoted by $A \triangleleft X$, if it satisfies:
(b1) $a-x \in A$ for all $a \in A$ and $x \in X$.
(b2) for all $a, b \in A$, whenever $a \vee b$ exists in X then $a \vee b \in A$.
Proposition 2.2 ([5]). A nonempty subset A of a subtraction algebra X is an ideal of X if and only if it satisfies:
(b3) $0 \in A$,
(b4) $(\forall x \in X)(\forall y \in A)(x-y \in A \Rightarrow x \in A)$.
Proposition 2.3. An ideal A of a subtraction algebra X has the following property:

$$
(\forall x \in X)(\forall y \in A)(x \leq y \Rightarrow x \in A)
$$

Proposition 2.4 ([5]). Let X be a subtraction algebra and let $x, y \in X$. If $w \in X$ is an upper bound for x and y, then the element

$$
x \vee y:=w-((w-y)-x)
$$

is a least upper bound for x and y.

3. \mathcal{N}-essences of subtraction algebras

Denote by $\mathcal{F}(X,[-1,0])$ the collection of functions from a set X to $[-1,0]$. We say that an element of $\mathcal{F}(X,[-1,0])$ is a negative-valued function from X to $[-1,0]$ (briefly, \mathcal{N}-function on X). By an \mathcal{N}-structure we mean an ordered pair (X, f) of X and an \mathcal{N}-function f on X. In what follows, let X denote a subtraction algebra and f an \mathcal{N}-function on X unless otherwise specified.

For any \mathcal{N}-structure (X, f) and $t \in[-1,0)$, the set

$$
C(f ; t):=\{x \in X \mid f(x) \leq t\}
$$

is called a closed (f, t)-cut of (X, f).
Definition 3.1 ([4]). If a nonempty subset G of X satisfies $G-X=G$, then we say that G is an essence of X, where $G-X:=\{a-x \mid a \in G, x \in X\}$.
Definition 3.2. By an essence of X based on \mathcal{N}-function f (briefly, \mathcal{N}-essence of X), we mean an \mathcal{N}-structure (X, f) in which every nonempty closed (f, t)-cut of (X, f) is an essence of X for all $t \in[-1,0)$.

Example 3.3. Let (X, f) be an \mathcal{N}-structure in which f is given by

$$
f(x)= \begin{cases}t_{1} & \text { if } x=0 \\ t_{2} & \text { otherwise }\end{cases}
$$

for all $x \in X$ and $t_{1}, t_{2} \in[-1,0)$ with $t_{1}<t_{2}$. Then

$$
C(f ; r)= \begin{cases}\emptyset & \text { if } r \in\left[-1, t_{1}\right) \\ \{0\} & \text { if } r \in\left[t_{1}, t_{2}\right) \\ X & \text { if } r \in\left[t_{2}, 0\right)\end{cases}
$$

Thus if $r \in\left[t_{1}, t_{2}\right)$, then $C(f ; r)-X=\{0\}-X=\{0\}=C(f ; r)$. If $r \in\left[t_{2}, 0\right)$, then $C(f ; r)-X=X-X=X=C(f ; r)$. Hence (X, f) is an \mathcal{N}-essence of X.

Table 1. Cayley table

-	0	a	b	c
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
c	c	b	a	0

Example 3.4. Let $X=\{0, a, b, c\}$ be a subtraction algebra with the Cayley table which is given in Table 1 (see [4]). Let (X, f) be an \mathcal{N}-structure in which f is given by

$$
f=\left(\begin{array}{cccc}
0 & a & b & c \\
-0.7 & -0.7 & -0.4 & -0.4
\end{array}\right) .
$$

It is easy to check that (X, f) is an \mathcal{N}-essence of X. But, if we consider an \mathcal{N}-structure (X, g) in which g is given by

$$
g=\left(\begin{array}{cccc}
0 & a & b & c \\
-0.7 & -0.4 & -0.4 & -0.7
\end{array}\right)
$$

then

$$
C(g ; t)= \begin{cases}X & \text { if }-0.4 \leq t<0 \\ \{0, c\} & \text { if }-0.7 \leq t<-0.4 \\ \emptyset & \text { if }-1 \leq t<-0.7\end{cases}
$$

If $-0.7 \leq t<-0.4$, then $C(g ; t)-X=\{0, a, b, c\} \neq\{0, c\}=C(g ; t)$. Hence (X, g) is not an \mathcal{N}-essence of X.

Proposition 3.5. If an \mathcal{N}-structure (X, f) is an \mathcal{N}-essence of X, then

$$
(3.1) \quad(\forall t \in[-1,0))(C(f ; t)=\{x \in X \mid x \leq e \text { for some } e \in C(f ; t)\})
$$

Proof. Let $E:=\{x \in X \mid x \leq e$ for some $e \in C(f ; t)\}$. If $x \in E$, then $x \leq e$, i.e., $x-e=0$, for some $e \in C(f ; t)$, and so

$$
x=x-0=x-(x-e)=e-(e-x) \in C(f ; t)-X=C(f ; t)
$$

by using (a2) and (S2). Hence $E \subseteq C(f ; t)$. Now let $x \in C(f ; t)$. Then $x=$ $e-y \leq e$ for some $e \in C(f ; t)$ and $y \in X$. Thus $x \in E$, and therefore $C(f ; t) \subseteq$ E.

The following example shows that if (X, f) is not an \mathcal{N}-essence of X in Proposition 3.5, then (3.1) is not valid, i.e., there exists $t \in[-1,0)$ such that

$$
C(f ; t) \neq\{x \in X \mid x \leq e \text { for some } e \in C(f ; t)\}
$$

Example 3.6. Note that the \mathcal{N}-structure (X, g) in Example 3.4 is not an \mathcal{N}-essence of X. If we take $t \in[-0.7,-0.4)$, then

$$
C(g ; t)=\{0, c\} \neq X=\{x \in X \mid x \leq c\} .
$$

Lemma 3.7 ([4]). Let E be an essence of X. Then

$$
\begin{equation*}
(\forall x \in X)(\forall a \in E)(x \leq a \Rightarrow x \in E) . \tag{3.2}
\end{equation*}
$$

Lemma 3.8 ([4]). For any subset H of X with $0 \in H$, we have

$$
(\forall G \subseteq X)(G \subseteq G-H)
$$

Theorem 3.9. Given an essence E of X and $a \in X$, let $\left(X, f_{a}\right)$ be an \mathcal{N} structure in which f_{a} is given by

$$
f_{a}(x)= \begin{cases}\alpha & \text { if } x \in\{y \in X \mid y-a \in E\} \\ \beta & \text { otherwise }\end{cases}
$$

for all $x \in X$ and $\alpha, \beta \in[-1,0)$ with $\alpha<\beta$. Then $\left(X, f_{a}\right)$ is an \mathcal{N}-essence of X.

Proof. Let $\gamma \in[-1,0)$. If $\gamma<\alpha$, then $C\left(f_{a} ; \gamma\right)=\emptyset$. If $\alpha \leq \gamma<\beta$, then $C\left(f_{a} ; \gamma\right)=\{y \in X \mid y-a \in E\}$. Let $z \in C\left(f_{a} ; \gamma\right)$ and $x \in X$. Then $(z-$ $x)-a=(z-a)-x \leq z-a$. Since $z-a \in E$ and E is an essence, it follows from Lemma 3.7 that $(z-x)-a \in E$ so that $z-x \in C\left(f_{a} ; \gamma\right)$. This shows that $C\left(f_{a} ; \gamma\right)-X=C\left(f_{a} ; \gamma\right)$. The reverse inclusion follows from Lemma 3.8. Hence $C\left(f_{a} ; \gamma\right)-X=C\left(f_{a} ; \gamma\right)$. If $\gamma \geq \beta$, then $C\left(f_{a} ; \gamma\right)=X$ and thus $C\left(f_{a} ; \gamma\right)-X=C\left(f_{a} ; \gamma\right)$. Therefore f_{a} is an \mathcal{N}-essence of X.

Proposition 3.10. Every \mathcal{N}-essence (X, f) of X satisfies the following inequality:

$$
\begin{equation*}
(\forall x \in X)(f(0) \leq f(x)) \tag{3.3}
\end{equation*}
$$

Proof. Let (X, f) be an \mathcal{N}-essence of X. Then $C(f ; \alpha)-X=C(f ; \alpha)$ for all $\alpha \in \operatorname{Im}(f)$. Since $C(f ; \alpha) \neq \emptyset$, there exists $x \in C(f ; \alpha)$ and so

$$
0=x-x \in C(f ; \alpha)-X=C(f ; \alpha)
$$

It follows $f(0) \leq f(x)$ for all $x \in X$.
Theorem 3.11. For any $a \in X$, let (X, f) be an \mathcal{N}-structure in which f is given by

$$
f(x)= \begin{cases}\alpha & \text { if } x \leq a \\ \beta & \text { otherwise }\end{cases}
$$

for all $x \in X$ and $\alpha, \beta \in[-1,0)$ with $\alpha<\beta$. Then (X, f) is an \mathcal{N}-essence of X.

Proof. Let $\gamma \in[-1,0)$. If $\gamma<\alpha$, then $C(f ; \gamma)=\emptyset$. If $\alpha \leq \gamma<\beta$, then $C(f ; \gamma)=\{x \in X \mid x \leq a\}$. Let $x \in C(f ; \gamma)$ and $y \in X$. Then $x \leq a$, and so $x-$ $y \leq a-y \leq a$. Hence $x-y \in C(f ; \gamma)$, which shows that $C(f ; \gamma)-X \subseteq C(f ; \gamma)$. The reverse inclusion follows from Lemma 3.8. Hence $C(f ; \gamma)-X=C(f, \gamma)$. If $\gamma \geq \beta$, then clearly $C(f ; \gamma)-X=C(f, \gamma)$. Thus f is an \mathcal{N}-essence of X.

Definition 3.12 ([2]). By an ideal (resp. subalgebra) of X based on \mathcal{N}-function f (briefly, \mathcal{N}-ideal (resp. \mathcal{N}-subalgebra) of X), we mean an \mathcal{N}-structure (X, f) in which every nonempty closed (f, t)-cut of (X, f) is an ideal (resp. subalgebra) of X for all $t \in[-1,0)$.

Theorem 3.13. Every \mathcal{N}-ideal is an \mathcal{N}-essence.
Proof. Let (X, f) be an \mathcal{N}-ideal of X. Assume that $C(f ; \alpha) \neq \emptyset$ for all $\alpha \in$ $[-1,0)$. Let $x \in X$ and $y \in C(f ; \alpha)$. Since $y-x \leq y$ and $C(f ; \alpha)$ is an ideal, it follows from Lemma 2.3 that $y-x \in C(f ; \alpha)$. This shows that

$$
\begin{equation*}
C(f ; \alpha)-X \subseteq C(f ; \alpha) \tag{3.4}
\end{equation*}
$$

Combining (3.4) and Lemma 3.8, we have $C(f ; \alpha)-X=C(f ; \alpha)$. Hence (X, f) is an \mathcal{N}-essence of X.

The converse of Theorem 3.13 is not true in general as seen in the following example.

Example 3.14. Consider the subtraction algebra $X=\{0, a, b, c\}$ which is established in Example 3.4. Let (X, f) be an \mathcal{N}-structure in which f is given by

$$
f=\left(\begin{array}{cccc}
0 & a & b & c \\
-0.7 & -0.7 & -0.7 & -0.5
\end{array}\right) .
$$

It is easy to check that (X, f) is an \mathcal{N}-essence of X. But it is not an \mathcal{N}-ideal of X since $C(f ; t)=\{0, a, b\}$ is not an ideal of X for $t \in[-0.7,-0.5)$.

Theorem 3.15. Every \mathcal{N}-essence is an \mathcal{N}-subalgebra.
Proof. Let (X, f) be an \mathcal{N}-essence of X. Assume that $C(f ; \alpha) \neq \emptyset$ for all $\alpha \in[-1,0)$. For any $x, y \in C(f ; \alpha)$, we have $x-y \in C(f ; \alpha)-C(f ; \alpha) \subseteq$ $C(f ; \alpha)-X=C(f ; \alpha)$. Thus $C(f ; \alpha)$ is a subalgebra of X, and so (X, f) is an \mathcal{N}-subalgebra of X.

The converse of Theorem 3.15 is not true in general as seen in the following example.

Example 3.16. Consider the \mathcal{N}-structure (X, g) which is given in Example 3.4. Then it is an \mathcal{N}-subalgebra of X, but not an \mathcal{N}-essence of X.

Combining Theorems 3.13 and 3.15 , we have the following corollary.
Corollary 3.17. Every \mathcal{N}-ideal is an \mathcal{N}-subalgebra.
For any family $\left\{a_{i} \mid i \in \Lambda\right\}$ of real numbers, we define

$$
\begin{aligned}
& \vee\left\{a_{i} \mid i \in \Lambda\right\}:= \begin{cases}\max \left\{a_{i} \mid i \in \Lambda\right\} & \text { if } \Lambda \text { is finite, } \\
\sup \left\{a_{i} \mid i \in \Lambda\right\} & \text { otherwise. }\end{cases} \\
& \wedge\left\{a_{i} \mid i \in \Lambda\right\}:= \begin{cases}\min \left\{a_{i} \mid i \in \Lambda\right\} & \text { if } \Lambda \text { is finite }, \\
\inf \left\{a_{i} \mid i \in \Lambda\right\} & \text { otherwise. }\end{cases}
\end{aligned}
$$

Given \mathcal{N}-structures (X, f) and (X, g), we consider new two \mathcal{N}-structures $(X, f \cap g)$ and $(X, f \cup g)$ in which $f \cap g$ and $f \cup g$ are given by

$$
(f \cap g)(x)=\wedge\{f(x), g(x)\} \text { and }(f \cup g)(x)=\vee\{f(x), g(x)\}
$$

respectively, for all $x \in X$. Note that $C(f \cup g ; \alpha)=C(f ; \alpha) \cap C(g ; \alpha)$ and $C(f \cap g ; \alpha)=C(f ; \alpha) \cup C(g ; \alpha)$.

Lemma 3.18 ([4]). For any subsets A, B and E of X, we have
(1) $A \subseteq B \Rightarrow A-E \subseteq B-E, E-A \subseteq E-B$.
(2) $(A \cap B)-E \subseteq(A-E) \cap(B-E)$.
(3) $E-(A \cap B) \subseteq(E-A) \cap(E-B)$.
(4) $(A \cup B)-E=(A-E) \cup(B-E)$.
(5) $E-(A \cup B)=(E-A) \cup(E-B)$.

Theorem 3.19. If two \mathcal{N}-structures (X, f) and (X, g) are \mathcal{N}-essences of X, then so are $(X, f \cup g)$ and $(X, f \cap g)$.

Proof. Let $\alpha \in[-1,0)$ be such that $C(f \cup g ; \alpha) \neq \emptyset$. Then there exists $x \in$ $C(f \cup g ; \alpha)$, and so $(f \cup g)(x)=\vee\{f(x), g(x)\} \leq \alpha$. It follows that $f(x) \leq \alpha$ and $g(x) \leq \alpha$, that is, $x \in C(f ; \alpha)$ and $x \in C(g ; \alpha)$ so that $C(f ; \alpha)-X=C(f ; \alpha)$ and $C(g ; \alpha)-X=C(g ; \alpha)$. Using Lemma 3.18(2), we have

$$
\begin{aligned}
C(f \cup g ; \alpha)-X & =(C(f ; \alpha) \cap C(g ; \alpha))-X \\
& \subseteq(C(f ; \alpha)-X) \cap(C(g ; \alpha)-X) \\
& =C(f ; \alpha) \cap C(g ; \alpha)=C(f \cup g ; \alpha) .
\end{aligned}
$$

Since $0 \in X$, the reverse inclusion follows from Lemma 3.8. Hence we have $C(f \cup g ; \alpha)-X=C(f \cup g ; \alpha)$, and so $(X, f \cup g)$ is an \mathcal{N}-essence of X. Now assume that $C(f \cap g ; \beta) \neq \emptyset$. Then there exists $y \in C(f \cap g ; \beta)$, and thus $(f \cap g)(y)=\wedge\{f(y), g(y)\} \leq \beta$. It follows that $f(y) \leq \beta$ or $g(y) \leq \beta$. We may assume that $f(y) \leq \beta$ without loss of generality. Then $y \in C(f ; \beta)$, and so $C(f ; \beta)-X=C(f ; \beta)$. If $C(g ; \beta)=\emptyset$, then $C(f \cap g ; \beta)-X=(C(f ; \beta) \cup$ $C(g ; \beta))-X=C(f ; \beta)-X=C(f ; \beta)=C(f ; \beta) \cup C(g ; \beta)=C(f \cap g ; \beta)$. If $C(g ; \beta) \neq \emptyset$, then $C(g ; \beta)-X=C(g ; \beta)$. Using Lemma 3.18(4), we have $C(f \cap g ; \beta)-X=(C(f ; \beta) \cup C(g ; \beta))-X=(C(f ; \beta)-X) \cup(C(g ; \beta)-X)=$ $C(f ; \beta) \cup C(g ; \beta)=C(f \cap g ; \beta)$. Therefore $(X, f \cap g)$ is an \mathcal{N}-essence of X.

Generally, we have the following assertion.
Theorem 3.20. If $\left\{\left(X, f_{i}\right) \mid i \in \Lambda \subseteq \mathbb{N}\right\}$ is a family of \mathcal{N}-essences of X, then so are $\left(X, \bigcup_{i \in \Lambda} f_{i}\right)$ and $\left(X, \bigcap_{i \in \Lambda} f_{i}\right)$, where $\left(\bigcup_{i \in \Lambda} f_{i}\right)(x)=\vee\left\{f_{i}(x) \mid i \in \Lambda\right\}$ and $\left(\bigcap_{i \in \Lambda} f_{i}\right)(x)=\wedge\left\{f_{i}(x) \mid i \in \Lambda\right\}$.

References

[1] J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Inc., Boston, Mass. 1969.
[2] Y. B. Jun, J. Kavikumar, and K. S. So, \mathcal{N}-ideals of subtraction algebras, Commun. Korean Math. Soc. 25 (2010), no. 2, 173-184.
[3] Y. B. Jun and H. S. Kim, On ideals in subtraction algebras, Sci. Math. Jpn. 65 (2007), no. 1, 129-134.
[4] Y. B. Jun, H. S. Kim, and K. J. Lee, The essence of subtraction algebras, Sci. Math. Jpn. 64 (2006), no. 3, 601-606.
[5] Y. B. Jun, H. S. Kim, and E. H. Roh, Ideal theory of subtraction algebras, Sci. Math. Jpn. 61 (2005), no. 3, 459-464.
[6] Y. B. Jun, K. J. Lee, and S. Z. Song, \mathcal{N}-ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc. 22 (2009), 417-437.
[7] Y. B. Jun, C. H. Park, and E. H. Roh, Order systems, ideals and right fixed maps of subtraction algebras, Commun. Korean Math. Soc. 23 (2008), no. 1, 1-10.
[8] B. M. Schein, Difference semigroups, Comm. Algebra 20 (1992), no. 8, 2153-2169.
[9] B. Zelinka, Subtraction semigroups, Math. Bohem. 120 (1995), no. 4, 445-447.
Kyoung Ja Lee
Department of Mathematics Education
Hannam University
Daejeon 306-791, Korea
E-mail address: kjlee@hnu.kr
Young Bae Jun
Department of Mathematics Education (and Rins)
Gyeongsang National University
Chinju 660-701, Korea
E-mail address: skywine@gmail.com

