THE ESSENCE OF SUBTRACTION ALGEBRAS BASED ON $$\mathcal{N}$\mbox{-}structures$

Kyoung Ja Lee and Young Bae Jun

ABSTRACT. Using N-structures, the notion of an N-essence in a subtraction algebra is introduced, and related properties are investigated. Relations among an N-ideal, an N-subalgebra and an N-essence are investigated.

1. Introduction

A (crisp) set A in a universe X can be defined in the form of its characteristic function $\mu_A: X \to \{0, 1\}$ yielding the value 1 for elements belonging to the set A and the value 0 for elements excluded from the set A. So far most of the generalization of the crisp set have been conducted on the unit interval [0,1]and they are consistent with the asymmetry observation. In other words, the generalization of the crisp set to fuzzy sets relied on spreading positive information that fit the crisp point $\{1\}$ into the interval [0, 1]. Because no negative meaning of information is suggested, we now feel a need to deal with negative information. To do so, we also feel a need to supply mathematical tool. To attain such object, Jun et al. [6] introduced a new function which is called negative-valued function, and constructed \mathcal{N} -structures. They discussed \mathcal{N} subalgebras and \mathcal{N} -ideals in BCK/BCI-algebras. Schein [8] considered systems of the form $(\Phi; \circ, \backslash)$, where Φ is a set of functions closed under the composition " \circ " of functions (and hence ($\Phi; \circ$) is a function semigroup) and the set theoretic subtraction "\" (and hence $(\Phi; \setminus)$ is a subtraction algebra in the sense of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. Zelinka [9] discussed a problem proposed by Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. Jun et al. [3, 5] introduced the notion of ideals in subtraction algebras and discussed characterization of ideals. Jun et al. [7] provided conditions for an ideal to be irreducible. They introduced the notion

Key words and phrases. subtraction algebra, \mathcal{N} -subalgebra, \mathcal{N} -ideal, \mathcal{N} -essence.

 $\bigodot 2012$ The Korean Mathematical Society

Received August 20, 2010.

²⁰¹⁰ Mathematics Subject Classification. 06F35, 03G25.

of an order system in a subtraction algebra, and investigated related properties. They provided relations between ideals and order systems, and dealt with the concept of a fixed map in a subtraction algebra, and investigate related properties. In [2], Jun et al. introduced the notion of a (created) \mathcal{N} -ideal of subtraction algebras, and investigated several characterizations of \mathcal{N} -ideals. They discussed how to make a created \mathcal{N} -ideal of an \mathcal{N} -structure (X, f).

In this paper, we introduced the notion of an \mathcal{N} -essence of a subtraction algebra, and investigate related properties. We consider relations among an \mathcal{N} -ideal, an \mathcal{N} -subalgebra and an \mathcal{N} -essence. We show that the union (resp. intersection) of \mathcal{N} -essences is also an \mathcal{N} -essence.

2. Preliminaries

By a subtraction algebra we mean an algebra (X; -) with a single binary operation "-" that satisfies the following identities: for any $x, y, z \in X$,

- (S1) x (y x) = x;
- (S2) x (x y) = y (y x);(S3) (x y) z = (x z) y.

The last identity permits us to omit parentheses in expressions of the form (x-y)-z. The subtraction determines an order relation on X: $a \leq b \Leftrightarrow$ a-b=0, where 0=a-a is an element that does not depend on the choice of $a \in X$. The ordered set $(X; \leq)$ is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in which every interval [0, a] is a Boolean algebra with respect to the induced order. Here $a \wedge b = a - (a - b)$; the complement of an element $b \in [0, a]$ is a - b; and if $b, c \in [0, a]$, then

$$\begin{array}{rcl} b \lor c & = & (b' \land c')' = a - ((a - b) \land (a - c)) \\ & = & a - ((a - b) - ((a - b) - (a - c))). \end{array}$$

In a subtraction algebra, the following are true (see [5]):

(a1) (x - y) - y = x - y. (a2) x - 0 = x and 0 - x = 0. (a3) (x - y) - x = 0.(a4) $x - (x - y) \le y$. (a5) (x - y) - (y - x) = x - y. (a6) x - (x - (x - y)) = x - y. (a7) $(x-y) - (z-y) \le x - z$. (a8) $x \leq y$ if and only if x = y - w for some $w \in X$. (a9) $x \leq y$ implies $x - z \leq y - z$ and $z - y \leq z - x$ for all $z \in X$. (a10) $x, y \leq z$ implies $x - y = x \land (z - y)$. (a11) $(x \wedge y) - (x \wedge z) \leq x \wedge (y - z).$

Definition 2.1 ([5]). A nonempty subset A of a subtraction algebra X is called an *ideal* of X, denoted by $A \triangleleft X$, if it satisfies:

(b1) $a - x \in A$ for all $a \in A$ and $x \in X$.

THE ESSENCE OF SUBTRACTION ALGEBRAS BASED ON N-STRUCTURES 17

(b2) for all $a, b \in A$, whenever $a \lor b$ exists in X then $a \lor b \in A$.

Proposition 2.2 ([5]). A nonempty subset A of a subtraction algebra X is an ideal of X if and only if it satisfies:

(b3) $0 \in A$,

(b4) $(\forall x \in X)(\forall y \in A)(x - y \in A \Rightarrow x \in A).$

Proposition 2.3. An ideal A of a subtraction algebra X has the following property:

$$(\forall x \in X) \ (\forall y \in A) \ (x \le y \Rightarrow x \in A).$$

Proposition 2.4 ([5]). Let X be a subtraction algebra and let $x, y \in X$. If $w \in X$ is an upper bound for x and y, then the element

$$x \lor y := w - ((w - y) - x)$$

is a least upper bound for x and y.

3. N-essences of subtraction algebras

Denote by $\mathcal{F}(X, [-1, 0])$ the collection of functions from a set X to [-1, 0]. We say that an element of $\mathcal{F}(X, [-1, 0])$ is a *negative-valued function* from X to [-1, 0] (briefly, \mathcal{N} -function on X). By an \mathcal{N} -structure we mean an ordered pair (X, f) of X and an \mathcal{N} -function f on X. In what follows, let X denote a subtraction algebra and f an \mathcal{N} -function on X unless otherwise specified.

For any \mathcal{N} -structure (X, f) and $t \in [-1, 0)$, the set

$$C(f;t) := \{x \in X \mid f(x) \le t\}$$

is called a *closed* (f, t)-*cut* of (X, f).

Definition 3.1 ([4]). If a nonempty subset G of X satisfies G - X = G, then we say that G is an *essence* of X, where $G - X := \{a - x \mid a \in G, x \in X\}$.

Definition 3.2. By an essence of X based on \mathcal{N} -function f (briefly, \mathcal{N} -essence of X), we mean an \mathcal{N} -structure (X, f) in which every nonempty closed (f, t)-cut of (X, f) is an essence of X for all $t \in [-1, 0)$.

Example 3.3. Let (X, f) be an \mathcal{N} -structure in which f is given by

$$f(x) = \begin{cases} t_1 & \text{if } x = 0, \\ t_2 & \text{otherwise} \end{cases}$$

for all $x \in X$ and $t_1, t_2 \in [-1, 0)$ with $t_1 < t_2$. Then

$$C(f;r) = \begin{cases} \emptyset & \text{if } r \in [-1,t_1), \\ \{0\} & \text{if } r \in [t_1,t_2), \\ X & \text{if } r \in [t_2,0). \end{cases}$$

Thus if $r \in [t_1, t_2)$, then $C(f; r) - X = \{0\} - X = \{0\} = C(f; r)$. If $r \in [t_2, 0)$, then C(f; r) - X = X - X = X = C(f; r). Hence (X, f) is an \mathcal{N} -essence of X.

TABLE 1. Cayley table

-	0	a	b	c
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
c	c	b	a	0

Example 3.4. Let $X = \{0, a, b, c\}$ be a subtraction algebra with the Cayley table which is given in Table 1 (see [4]). Let (X, f) be an \mathcal{N} -structure in which f is given by

$$f = \begin{pmatrix} 0 & a & b & c \\ -0.7 & -0.7 & -0.4 & -0.4 \end{pmatrix}.$$

It is easy to check that (X, f) is an \mathcal{N} -essence of X. But, if we consider an \mathcal{N} -structure (X, g) in which g is given by

$$g = \begin{pmatrix} 0 & a & b & c \\ -0.7 & -0.4 & -0.4 & -0.7 \end{pmatrix},$$

then

$$C(g;t) = \begin{cases} X & \text{if } -0.4 \le t < 0, \\ \{0,c\} & \text{if } -0.7 \le t < -0.4, \\ \emptyset & \text{if } -1 \le t < -0.7. \end{cases}$$

If $-0.7 \le t < -0.4$, then $C(g;t) - X = \{0, a, b, c\} \neq \{0, c\} = C(g;t)$. Hence (X, g) is not an \mathcal{N} -essence of X.

Proposition 3.5. If an \mathcal{N} -structure (X, f) is an \mathcal{N} -essence of X, then

(3.1) $(\forall t \in [-1, 0)) (C(f; t) = \{x \in X \mid x \le e \text{ for some } e \in C(f; t)\}).$

Proof. Let $E := \{x \in X \mid x \leq e \text{ for some } e \in C(f;t)\}$. If $x \in E$, then $x \leq e$, i.e., x - e = 0, for some $e \in C(f;t)$, and so

$$x = x - 0 = x - (x - e) = e - (e - x) \in C(f; t) - X = C(f; t)$$

by using (a2) and (S2). Hence $E \subseteq C(f;t)$. Now let $x \in C(f;t)$. Then $x = e - y \leq e$ for some $e \in C(f;t)$ and $y \in X$. Thus $x \in E$, and therefore $C(f;t) \subseteq E$.

The following example shows that if (X, f) is not an \mathcal{N} -essence of X in Proposition 3.5, then (3.1) is not valid, i.e., there exists $t \in [-1, 0)$ such that

$$C(f;t) \neq \{x \in X \mid x \le e \text{ for some } e \in C(f;t)\}$$

Example 3.6. Note that the \mathcal{N} -structure (X, g) in Example 3.4 is not an \mathcal{N} -essence of X. If we take $t \in [-0.7, -0.4)$, then

$$C(g;t) = \{0,c\} \neq X = \{x \in X \mid x \le c\}.$$

Lemma 3.7 ([4]). Let E be an essence of X. Then

$$(3.2) \qquad (\forall x \in X) \ (\forall a \in E) \ (x \le a \ \Rightarrow \ x \in E).$$

Lemma 3.8 ([4]). For any subset H of X with $0 \in H$, we have

$$(\forall G \subseteq X) \ (G \subseteq G - H).$$

Theorem 3.9. Given an essence E of X and $a \in X$, let (X, f_a) be an \mathcal{N} -structure in which f_a is given by

$$f_a(x) = \begin{cases} \alpha & if \ x \in \{y \in X \mid y - a \in E\}, \\ \beta & otherwise \end{cases}$$

for all $x \in X$ and $\alpha, \beta \in [-1, 0)$ with $\alpha < \beta$. Then (X, f_a) is an \mathcal{N} -essence of X.

Proof. Let $\gamma \in [-1,0)$. If $\gamma < \alpha$, then $C(f_a;\gamma) = \emptyset$. If $\alpha \leq \gamma < \beta$, then $C(f_a;\gamma) = \{y \in X \mid y - a \in E\}$. Let $z \in C(f_a;\gamma)$ and $x \in X$. Then $(z - x) - a = (z - a) - x \leq z - a$. Since $z - a \in E$ and E is an essence, it follows from Lemma 3.7 that $(z - x) - a \in E$ so that $z - x \in C(f_a;\gamma)$. This shows that $C(f_a;\gamma) - X = C(f_a;\gamma)$. The reverse inclusion follows from Lemma 3.8. Hence $C(f_a;\gamma) - X = C(f_a;\gamma)$. If $\gamma \geq \beta$, then $C(f_a;\gamma) = X$ and thus $C(f_a;\gamma) - X = C(f_a;\gamma)$. Therefore f_a is an \mathcal{N} -essence of X. \Box

Proposition 3.10. Every \mathcal{N} -essence (X, f) of X satisfies the following inequality:

$$(3.3) \qquad (\forall x \in X) \ (f(0) \le f(x)).$$

Proof. Let (X, f) be an \mathcal{N} -essence of X. Then $C(f; \alpha) - X = C(f; \alpha)$ for all $\alpha \in \text{Im}(f)$. Since $C(f; \alpha) \neq \emptyset$, there exists $x \in C(f; \alpha)$ and so

$$0 = x - x \in C(f; \alpha) - X = C(f; \alpha)$$

It follows $f(0) \leq f(x)$ for all $x \in X$.

Theorem 3.11. For any $a \in X$, let (X, f) be an \mathcal{N} -structure in which f is given by

$$f(x) = \begin{cases} \alpha & if \ x \le a, \\ \beta & otherwise \end{cases}$$

for all $x \in X$ and $\alpha, \beta \in [-1, 0)$ with $\alpha < \beta$. Then (X, f) is an \mathcal{N} -essence of X.

Proof. Let $\gamma \in [-1,0)$. If $\gamma < \alpha$, then $C(f;\gamma) = \emptyset$. If $\alpha \leq \gamma < \beta$, then $C(f;\gamma) = \{x \in X \mid x \leq a\}$. Let $x \in C(f;\gamma)$ and $y \in X$. Then $x \leq a$, and so $x - y \leq a - y \leq a$. Hence $x - y \in C(f;\gamma)$, which shows that $C(f;\gamma) - X \subseteq C(f;\gamma)$. The reverse inclusion follows from Lemma 3.8. Hence $C(f;\gamma) - X = C(f,\gamma)$. If $\gamma \geq \beta$, then clearly $C(f;\gamma) - X = C(f,\gamma)$. Thus f is an \mathcal{N} -essence of X. \Box

Definition 3.12 ([2]). By an *ideal* (resp. *subalgebra*) of X based on \mathcal{N} -function f (briefly, \mathcal{N} -*ideal* (resp. \mathcal{N} -*subalgebra*) of X), we mean an \mathcal{N} -structure (X, f) in which every nonempty closed (f, t)-cut of (X, f) is an ideal (resp. subalgebra) of X for all $t \in [-1, 0)$.

Theorem 3.13. Every \mathcal{N} -ideal is an \mathcal{N} -essence.

Proof. Let (X, f) be an \mathcal{N} -ideal of X. Assume that $C(f; \alpha) \neq \emptyset$ for all $\alpha \in [-1, 0)$. Let $x \in X$ and $y \in C(f; \alpha)$. Since $y - x \leq y$ and $C(f; \alpha)$ is an ideal, it follows from Lemma 2.3 that $y - x \in C(f; \alpha)$. This shows that

(3.4)
$$C(f;\alpha) - X \subseteq C(f;\alpha).$$

Combining (3.4) and Lemma 3.8, we have $C(f; \alpha) - X = C(f; \alpha)$. Hence (X, f) is an \mathcal{N} -essence of X.

The converse of Theorem 3.13 is not true in general as seen in the following example.

Example 3.14. Consider the subtraction algebra $X = \{0, a, b, c\}$ which is established in Example 3.4. Let (X, f) be an \mathcal{N} -structure in which f is given by

$$f = \begin{pmatrix} 0 & a & b & c \\ -0.7 & -0.7 & -0.7 & -0.5 \end{pmatrix}.$$

It is easy to check that (X, f) is an \mathcal{N} -essence of X. But it is not an \mathcal{N} -ideal of X since $C(f; t) = \{0, a, b\}$ is not an ideal of X for $t \in [-0.7, -0.5)$.

Theorem 3.15. Every \mathcal{N} -essence is an \mathcal{N} -subalgebra.

Proof. Let (X, f) be an \mathcal{N} -essence of X. Assume that $C(f; \alpha) \neq \emptyset$ for all $\alpha \in [-1, 0)$. For any $x, y \in C(f; \alpha)$, we have $x - y \in C(f; \alpha) - C(f; \alpha) \subseteq C(f; \alpha) - X = C(f; \alpha)$. Thus $C(f; \alpha)$ is a subalgebra of X, and so (X, f) is an \mathcal{N} -subalgebra of X.

The converse of Theorem 3.15 is not true in general as seen in the following example.

Example 3.16. Consider the \mathcal{N} -structure (X, g) which is given in Example 3.4. Then it is an \mathcal{N} -subalgebra of X, but not an \mathcal{N} -essence of X.

Combining Theorems 3.13 and 3.15, we have the following corollary.

Corollary 3.17. Every \mathcal{N} -ideal is an \mathcal{N} -subalgebra.

For any family $\{a_i \mid i \in \Lambda\}$ of real numbers, we define

$$\forall \{a_i \mid i \in \Lambda\} := \begin{cases} \max\{a_i \mid i \in \Lambda\} & \text{if } \Lambda \text{ is finite,} \\ \sup\{a_i \mid i \in \Lambda\} & \text{otherwise.} \end{cases} \\ \land \{a_i \mid i \in \Lambda\} := \begin{cases} \min\{a_i \mid i \in \Lambda\} & \text{if } \Lambda \text{ is finite,} \\ \inf\{a_i \mid i \in \Lambda\} & \text{otherwise.} \end{cases}$$

Given \mathcal{N} -structures (X, f) and (X, g), we consider new two \mathcal{N} -structures $(X, f \cap g)$ and $(X, f \cup g)$ in which $f \cap g$ and $f \cup g$ are given by

$$(f \cap g)(x) = \wedge \{f(x), g(x)\}$$
 and $(f \cup g)(x) = \vee \{f(x), g(x)\},\$

respectively, for all $x \in X$. Note that $C(f \cup g; \alpha) = C(f; \alpha) \cap C(g; \alpha)$ and $C(f \cap g; \alpha) = C(f; \alpha) \cup C(g; \alpha)$.

Lemma 3.18 ([4]). For any subsets A, B and E of X, we have

- (1) $A \subseteq B \Rightarrow A E \subseteq B E, E A \subseteq E B.$
- $(2) (A \cap B) E \subseteq (A E) \cap (B E).$
- (3) $E (A \cap B) \subseteq (E A) \cap (E B).$
- (4) $(A \cup B) E = (A E) \cup (B E).$
- (5) $E (A \cup B) = (E A) \cup (E B).$

Theorem 3.19. If two \mathcal{N} -structures (X, f) and (X, g) are \mathcal{N} -essences of X, then so are $(X, f \cup g)$ and $(X, f \cap g)$.

Proof. Let $\alpha \in [-1,0)$ be such that $C(f \cup g; \alpha) \neq \emptyset$. Then there exists $x \in C(f \cup g; \alpha)$, and so $(f \cup g)(x) = \lor \{f(x), g(x)\} \leq \alpha$. It follows that $f(x) \leq \alpha$ and $g(x) \leq \alpha$, that is, $x \in C(f; \alpha)$ and $x \in C(g; \alpha)$ so that $C(f; \alpha) - X = C(f; \alpha)$ and $C(g; \alpha) - X = C(g; \alpha)$. Using Lemma 3.18(2), we have

$$C(f \cup g; \alpha) - X = (C(f; \alpha) \cap C(g; \alpha)) - X$$
$$\subseteq (C(f; \alpha) - X) \cap (C(g; \alpha) - X)$$
$$= C(f; \alpha) \cap C(g; \alpha) = C(f \cup g; \alpha).$$

Since $0 \in X$, the reverse inclusion follows from Lemma 3.8. Hence we have $C(f \cup g; \alpha) - X = C(f \cup g; \alpha)$, and so $(X, f \cup g)$ is an \mathcal{N} -essence of X. Now assume that $C(f \cap g; \beta) \neq \emptyset$. Then there exists $y \in C(f \cap g; \beta)$, and thus $(f \cap g)(y) = \wedge \{f(y), g(y)\} \leq \beta$. It follows that $f(y) \leq \beta$ or $g(y) \leq \beta$. We may assume that $f(y) \leq \beta$ without loss of generality. Then $y \in C(f; \beta)$, and so $C(f; \beta) - X = C(f; \beta)$. If $C(g; \beta) = \emptyset$, then $C(f \cap g; \beta) - X = (C(f; \beta) \cup C(g; \beta)) - X = C(f; \beta) - X = C(f; \beta) = C(f; \beta) \cup C(g; \beta) = C(f \cap g; \beta)$. If $C(g; \beta) \neq \emptyset$, then $C(g; \beta) - X = C(f; \beta) \cup C(g; \beta) = C(f \cap g; \beta)$. If $C(g; \beta) - X = C(f; \beta) \cup C(g; \beta) = C(f \cap g; \beta) - X = C(f; \beta) \cup C(g; \beta) = C(f \cap g; \beta)$. Therefore $(X, f \cap g)$ is an \mathcal{N} -essence of X. \Box

Generally, we have the following assertion.

Theorem 3.20. If $\{(X, f_i) \mid i \in \Lambda \subseteq \mathbb{N}\}$ is a family of \mathcal{N} -essences of X, then so are $(X, \bigcup_{i \in \Lambda} f_i)$ and $(X, \bigcap_{i \in \Lambda} f_i)$, where $(\bigcup_{i \in \Lambda} f_i)(x) = \vee \{f_i(x) \mid i \in \Lambda\}$ and $(\bigcap_{i \in \Lambda} f_i)(x) = \wedge \{f_i(x) \mid i \in \Lambda\}$.

References

- [1] J. C. Abbott, *Sets, Lattices and Boolean Algebras*, Allyn and Bacon, Inc., Boston, Mass. 1969.
- [2] Y. B. Jun, J. Kavikumar, and K. S. So, *N*-ideals of subtraction algebras, Commun. Korean Math. Soc. 25 (2010), no. 2, 173–184.
- [3] Y. B. Jun and H. S. Kim, On ideals in subtraction algebras, Sci. Math. Jpn. 65 (2007), no. 1, 129–134.
- [4] Y. B. Jun, H. S. Kim, and K. J. Lee, The essence of subtraction algebras, Sci. Math. Jpn. 64 (2006), no. 3, 601–606.
- [5] Y. B. Jun, H. S. Kim, and E. H. Roh, Ideal theory of subtraction algebras, Sci. Math. Jpn. 61 (2005), no. 3, 459–464.
- [6] Y. B. Jun, K. J. Lee, and S. Z. Song, *N*-ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc. 22 (2009), 417–437.
- [7] Y. B. Jun, C. H. Park, and E. H. Roh, Order systems, ideals and right fixed maps of subtraction algebras, Commun. Korean Math. Soc. 23 (2008), no. 1, 1–10.
- [8] B. M. Schein, Difference semigroups, Comm. Algebra 20 (1992), no. 8, 2153–2169.
- [9] B. Zelinka, Subtraction semigroups, Math. Bohem. 120 (1995), no. 4, 445–447.

Kyoung Ja Lee Department of Mathematics Education Hannam University Daejeon 306-791, Korea *E-mail address*: kjlee@hnu.kr

Young Bae Jun Department of Mathematics Education (and RINS) Gyeongsang National University Chinju 660-701, Korea *E-mail address:* skywine@gmail.com