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THE ESSENCE OF SUBTRACTION ALGEBRAS BASED ON

N -STRUCTURES

Kyoung Ja Lee and Young Bae Jun

Abstract. Using N -structures, the notion of an N -essence in a sub-
traction algebra is introduced, and related properties are investigated.
Relations among an N -ideal, an N -subalgebra and an N -essence are in-

vestigated.

1. Introduction

A (crisp) set A in a universe X can be defined in the form of its characteris-
tic function µA : X → {0, 1} yielding the value 1 for elements belonging to the
set A and the value 0 for elements excluded from the set A. So far most of the
generalization of the crisp set have been conducted on the unit interval [0, 1]
and they are consistent with the asymmetry observation. In other words, the
generalization of the crisp set to fuzzy sets relied on spreading positive infor-
mation that fit the crisp point {1} into the interval [0, 1]. Because no negative
meaning of information is suggested, we now feel a need to deal with negative
information. To do so, we also feel a need to supply mathematical tool. To
attain such object, Jun et al. [6] introduced a new function which is called
negative-valued function, and constructed N -structures. They discussed N -
subalgebras and N -ideals in BCK/BCI-algebras. Schein [8] considered systems
of the form (Φ; ◦, \), where Φ is a set of functions closed under the composition
“◦” of functions (and hence (Φ; ◦) is a function semigroup) and the set theo-
retic subtraction “\” (and hence (Φ; \) is a subtraction algebra in the sense of
[1]). He proved that every subtraction semigroup is isomorphic to a difference
semigroup of invertible functions. Zelinka [9] discussed a problem proposed by
Schein concerning the structure of multiplication in a subtraction semigroup.
He solved the problem for subtraction algebras of a special type, called the
atomic subtraction algebras. Jun et al. [3, 5] introduced the notion of ideals
in subtraction algebras and discussed characterization of ideals. Jun et al. [7]
provided conditions for an ideal to be irreducible. They introduced the notion
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of an order system in a subtraction algebra, and investigated related proper-
ties. They provided relations between ideals and order systems, and dealt with
the concept of a fixed map in a subtraction algebra, and investigate related
properties. In [2], Jun et al. introduced the notion of a (created) N -ideal
of subtraction algebras, and investigated several characterizations of N -ideals.
They discussed how to make a created N -ideal of an N -structure (X, f).

In this paper, we introduced the notion of an N -essence of a subtraction
algebra, and investigate related properties. We consider relations among an
N -ideal, an N -subalgebra and an N -essence. We show that the union (resp.
intersection) of N -essences is also an N -essence.

2. Preliminaries

By a subtraction algebra we mean an algebra (X;−) with a single binary
operation “−” that satisfies the following identities: for any x, y, z ∈ X,

(S1) x− (y − x) = x;
(S2) x− (x− y) = y − (y − x);
(S3) (x− y)− z = (x− z)− y.

The last identity permits us to omit parentheses in expressions of the form
(x − y) − z. The subtraction determines an order relation on X: a ≤ b ⇔
a − b = 0, where 0 = a − a is an element that does not depend on the choice
of a ∈ X. The ordered set (X;≤) is a semi-Boolean algebra in the sense of [1],
that is, it is a meet semilattice with zero 0 in which every interval [0, a] is a
Boolean algebra with respect to the induced order. Here a ∧ b = a − (a − b);
the complement of an element b ∈ [0, a] is a− b; and if b, c ∈ [0, a], then

b ∨ c = (b′ ∧ c′)′ = a− ((a− b) ∧ (a− c))
= a− ((a− b)− ((a− b)− (a− c))).

In a subtraction algebra, the following are true (see [5]):

(a1) (x− y)− y = x− y.
(a2) x− 0 = x and 0− x = 0.
(a3) (x− y)− x = 0.
(a4) x− (x− y) ≤ y.
(a5) (x− y)− (y − x) = x− y.
(a6) x− (x− (x− y)) = x− y.
(a7) (x− y)− (z − y) ≤ x− z.
(a8) x ≤ y if and only if x = y − w for some w ∈ X.
(a9) x ≤ y implies x− z ≤ y − z and z − y ≤ z − x for all z ∈ X.

(a10) x, y ≤ z implies x− y = x ∧ (z − y).
(a11) (x ∧ y)− (x ∧ z) ≤ x ∧ (y − z).

Definition 2.1 ([5]). A nonempty subset A of a subtraction algebraX is called
an ideal of X, denoted by A◁X, if it satisfies:

(b1) a− x ∈ A for all a ∈ A and x ∈ X.
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(b2) for all a, b ∈ A, whenever a ∨ b exists in X then a ∨ b ∈ A.

Proposition 2.2 ([5]). A nonempty subset A of a subtraction algebra X is an
ideal of X if and only if it satisfies:

(b3) 0 ∈ A,
(b4) (∀x ∈ X)(∀y ∈ A)(x− y ∈ A ⇒ x ∈ A).

Proposition 2.3. An ideal A of a subtraction algebra X has the following
property:

(∀x ∈ X) (∀y ∈ A)
(
x ≤ y ⇒ x ∈ A

)
.

Proposition 2.4 ([5]). Let X be a subtraction algebra and let x, y ∈ X. If
w ∈ X is an upper bound for x and y, then the element

x ∨ y := w − ((w − y)− x)

is a least upper bound for x and y.

3. N -essences of subtraction algebras

Denote by F(X, [−1, 0]) the collection of functions from a set X to [−1, 0].
We say that an element of F(X, [−1, 0]) is a negative-valued function from X
to [−1, 0] (briefly, N -function on X). By an N -structure we mean an ordered
pair (X, f) of X and an N -function f on X. In what follows, let X denote a
subtraction algebra and f an N -function on X unless otherwise specified.

For any N -structure (X, f) and t ∈ [−1, 0), the set

C(f ; t) := {x ∈ X | f(x) ≤ t}

is called a closed (f, t)-cut of (X, f).

Definition 3.1 ([4]). If a nonempty subset G of X satisfies G−X = G, then
we say that G is an essence of X, where G−X := {a− x | a ∈ G, x ∈ X}.

Definition 3.2. By an essence of X based on N -function f (briefly, N -essence
ofX), we mean anN -structure (X, f) in which every nonempty closed (f, t)-cut
of (X, f) is an essence of X for all t ∈ [−1, 0).

Example 3.3. Let (X, f) be an N -structure in which f is given by

f(x) =

{
t1 if x = 0,
t2 otherwise

for all x ∈ X and t1, t2 ∈ [−1, 0) with t1 < t2. Then

C(f ; r) =

 ∅ if r ∈ [−1, t1),
{0} if r ∈ [t1, t2),
X if r ∈ [t2, 0).

Thus if r ∈ [t1, t2), then C(f ; r)−X = {0} −X = {0} = C(f ; r). If r ∈ [t2, 0),
then C(f ; r)−X = X −X = X = C(f ; r). Hence (X, f) is an N -essence of X.
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Table 1. Cayley table

− 0 a b c

0 0 0 0 0
a a 0 a 0
b b b 0 0
c c b a 0

Example 3.4. Let X = {0, a, b, c} be a subtraction algebra with the Cayley
table which is given in Table 1 (see [4]). Let (X, f) be an N -structure in which
f is given by

f =

(
0 a b c

−0.7 −0.7 −0.4 −0.4

)
.

It is easy to check that (X, f) is an N -essence of X. But, if we consider an
N -structure (X, g) in which g is given by

g =

(
0 a b c

−0.7 −0.4 −0.4 −0.7

)
,

then

C(g; t) =

 X if − 0.4 ≤ t < 0,
{0, c} if − 0.7 ≤ t < −0.4,
∅ if − 1 ≤ t < −0.7.

If −0.7 ≤ t < −0.4, then C(g; t) − X = {0, a, b, c} ̸= {0, c} = C(g; t). Hence
(X, g) is not an N -essence of X.

Proposition 3.5. If an N -structure (X, f) is an N -essence of X, then

(3.1) (∀t ∈ [−1, 0))
(
C(f ; t) = {x ∈ X | x ≤ e for some e ∈ C(f ; t)}

)
.

Proof. Let E := {x ∈ X | x ≤ e for some e ∈ C(f ; t)}. If x ∈ E, then x ≤ e,
i.e., x− e = 0, for some e ∈ C(f ; t), and so

x = x− 0 = x− (x− e) = e− (e− x) ∈ C(f ; t)−X = C(f ; t)

by using (a2) and (S2). Hence E ⊆ C(f ; t). Now let x ∈ C(f ; t). Then x =
e− y ≤ e for some e ∈ C(f ; t) and y ∈ X. Thus x ∈ E, and therefore C(f ; t) ⊆
E. □

The following example shows that if (X, f) is not an N -essence of X in
Proposition 3.5, then (3.1) is not valid, i.e., there exists t ∈ [−1, 0) such that

C(f ; t) ̸= {x ∈ X | x ≤ e for some e ∈ C(f ; t)}.

Example 3.6. Note that the N -structure (X, g) in Example 3.4 is not an
N -essence of X. If we take t ∈ [−0.7,−0.4), then

C(g; t) = {0, c} ≠ X = {x ∈ X | x ≤ c}.
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Lemma 3.7 ([4]). Let E be an essence of X. Then

(∀x ∈ X) (∀a ∈ E)
(
x ≤ a ⇒ x ∈ E

)
.(3.2)

Lemma 3.8 ([4]). For any subset H of X with 0 ∈ H, we have

(∀G ⊆ X)
(
G ⊆ G−H

)
.

Theorem 3.9. Given an essence E of X and a ∈ X, let (X, fa) be an N -
structure in which fa is given by

fa(x) =

{
α if x ∈ {y ∈ X | y − a ∈ E},
β otherwise

for all x ∈ X and α, β ∈ [−1, 0) with α < β. Then (X, fa) is an N -essence of
X.

Proof. Let γ ∈ [−1, 0). If γ < α, then C(fa; γ) = ∅. If α ≤ γ < β, then
C(fa; γ) = {y ∈ X | y − a ∈ E}. Let z ∈ C(fa; γ) and x ∈ X. Then (z −
x) − a = (z − a) − x ≤ z − a. Since z − a ∈ E and E is an essence, it
follows from Lemma 3.7 that (z − x) − a ∈ E so that z − x ∈ C(fa; γ). This
shows that C(fa; γ)−X = C(fa; γ). The reverse inclusion follows from Lemma
3.8. Hence C(fa; γ) − X = C(fa; γ). If γ ≥ β, then C(fa; γ) = X and thus
C(fa; γ)−X = C(fa; γ). Therefore fa is an N -essence of X. □

Proposition 3.10. Every N -essence (X, f) of X satisfies the following ineq-
uality:

(∀x ∈ X)
(
f(0) ≤ f(x)

)
.(3.3)

Proof. Let (X, f) be an N -essence of X. Then C(f ;α) − X = C(f ;α) for all
α ∈ Im(f). Since C(f ;α) ̸= ∅, there exists x ∈ C(f ;α) and so

0 = x− x ∈ C(f ;α)−X = C(f ;α).

It follows f(0) ≤ f(x) for all x ∈ X. □

Theorem 3.11. For any a ∈ X, let (X, f) be an N -structure in which f is
given by

f(x) =

{
α if x ≤ a,
β otherwise

for all x ∈ X and α, β ∈ [−1, 0) with α < β. Then (X, f) is an N -essence of
X.

Proof. Let γ ∈ [−1, 0). If γ < α, then C(f ; γ) = ∅. If α ≤ γ < β, then
C(f ; γ) = {x ∈ X | x ≤ a}. Let x ∈ C(f ; γ) and y ∈ X. Then x ≤ a, and so x−
y ≤ a−y ≤ a. Hence x−y ∈ C(f ; γ), which shows that C(f ; γ)−X ⊆ C(f ; γ).
The reverse inclusion follows from Lemma 3.8. Hence C(f ; γ) −X = C(f, γ).
If γ ≥ β, then clearly C(f ; γ)−X = C(f, γ). Thus f is an N -essence of X. □
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Definition 3.12 ([2]). By an ideal (resp. subalgebra) ofX based onN -function
f (briefly, N -ideal (resp. N -subalgebra) of X), we mean an N -structure (X, f)
in which every nonempty closed (f, t)-cut of (X, f) is an ideal (resp. subalgebra)
of X for all t ∈ [−1, 0).

Theorem 3.13. Every N -ideal is an N -essence.

Proof. Let (X, f) be an N -ideal of X. Assume that C(f ;α) ̸= ∅ for all α ∈
[−1, 0). Let x ∈ X and y ∈ C(f ;α). Since y − x ≤ y and C(f ;α) is an ideal, it
follows from Lemma 2.3 that y − x ∈ C(f ;α). This shows that

(3.4) C(f ;α)−X ⊆ C(f ;α).

Combining (3.4) and Lemma 3.8, we have C(f ;α)−X = C(f ;α). Hence (X, f)
is an N -essence of X. □

The converse of Theorem 3.13 is not true in general as seen in the following
example.

Example 3.14. Consider the subtraction algebra X = {0, a, b, c} which is
established in Example 3.4. Let (X, f) be an N -structure in which f is given
by

f =

(
0 a b c

−0.7 −0.7 −0.7 −0.5

)
.

It is easy to check that (X, f) is an N -essence of X. But it is not an N -ideal
of X since C(f ; t) = {0, a, b} is not an ideal of X for t ∈ [−0.7,−0.5).

Theorem 3.15. Every N -essence is an N -subalgebra.

Proof. Let (X, f) be an N -essence of X. Assume that C(f ;α) ̸= ∅ for all
α ∈ [−1, 0). For any x, y ∈ C(f ;α), we have x − y ∈ C(f ;α) − C(f ;α) ⊆
C(f ;α)−X = C(f ;α). Thus C(f ;α) is a subalgebra of X, and so (X, f) is an
N -subalgebra of X. □

The converse of Theorem 3.15 is not true in general as seen in the following
example.

Example 3.16. Consider the N -structure (X, g) which is given in Example
3.4. Then it is an N -subalgebra of X, but not an N -essence of X.

Combining Theorems 3.13 and 3.15, we have the following corollary.

Corollary 3.17. Every N -ideal is an N -subalgebra.

For any family {ai | i ∈ Λ} of real numbers, we define

∨{ai | i ∈ Λ} :=

{
max{ai | i ∈ Λ} if Λ is finite,
sup{ai | i ∈ Λ} otherwise.

∧{ai | i ∈ Λ} :=

{
min{ai | i ∈ Λ} if Λ is finite,
inf{ai | i ∈ Λ} otherwise.



THE ESSENCE OF SUBTRACTION ALGEBRAS BASED ON N -STRUCTURES 21

Given N -structures (X, f) and (X, g), we consider new two N -structures
(X, f ∩ g) and (X, f ∪ g) in which f ∩ g and f ∪ g are given by

(f ∩ g)(x) = ∧{f(x), g(x)} and (f ∪ g)(x) = ∨{f(x), g(x)},

respectively, for all x ∈ X. Note that C(f ∪ g;α) = C(f ;α) ∩ C(g;α) and
C(f ∩ g;α) = C(f ;α) ∪ C(g;α).

Lemma 3.18 ([4]). For any subsets A,B and E of X, we have

(1) A ⊆ B ⇒ A− E ⊆ B − E,E −A ⊆ E −B.
(2) (A ∩B)− E ⊆ (A− E) ∩ (B − E).
(3) E − (A ∩B) ⊆ (E −A) ∩ (E −B).
(4) (A ∪B)− E = (A− E) ∪ (B − E).
(5) E − (A ∪B) = (E −A) ∪ (E −B).

Theorem 3.19. If two N -structures (X, f) and (X, g) are N -essences of X,
then so are (X, f ∪ g) and (X, f ∩ g).

Proof. Let α ∈ [−1, 0) be such that C(f ∪ g;α) ̸= ∅. Then there exists x ∈
C(f∪g;α), and so (f∪g)(x) = ∨{f(x), g(x)} ≤ α. It follows that f(x) ≤ α and
g(x) ≤ α, that is, x ∈ C(f ;α) and x ∈ C(g;α) so that C(f ;α)−X = C(f ;α)
and C(g;α)−X = C(g;α). Using Lemma 3.18(2), we have

C(f ∪ g;α)−X =
(
C(f ;α) ∩ C(g;α)

)
−X

⊆
(
C(f ;α)−X

)
∩
(
C(g;α)−X

)
= C(f ;α) ∩ C(g;α) = C(f ∪ g;α).

Since 0 ∈ X, the reverse inclusion follows from Lemma 3.8. Hence we have
C(f ∪ g;α) − X = C(f ∪ g;α), and so (X, f ∪ g) is an N -essence of X. Now
assume that C(f ∩ g;β) ̸= ∅. Then there exists y ∈ C(f ∩ g;β), and thus
(f ∩ g)(y) = ∧{f(y), g(y)} ≤ β. It follows that f(y) ≤ β or g(y) ≤ β. We may
assume that f(y) ≤ β without loss of generality. Then y ∈ C(f ;β), and so
C(f ;β) − X = C(f ;β). If C(g;β) = ∅, then C(f ∩ g;β) − X =

(
C(f ;β) ∪

C(g;β)
)
− X = C(f ;β) − X = C(f ;β) = C(f ;β) ∪ C(g;β) = C(f ∩ g;β).

If C(g;β) ̸= ∅, then C(g;β) − X = C(g;β). Using Lemma 3.18(4), we have
C(f ∩ g;β)−X =

(
C(f ;β)∪C(g;β)

)
−X =

(
C(f ;β)−X

)
∪
(
C(g;β)−X

)
=

C(f ;β)∪C(g;β) = C(f ∩ g;β). Therefore (X, f ∩ g) is an N -essence of X. □

Generally, we have the following assertion.

Theorem 3.20. If {(X, fi) | i ∈ Λ ⊆ N} is a family of N -essences of X, then

so are
(
X,

∪
i∈Λ fi

)
and

(
X,

∩
i∈Λ fi

)
, where

(∪
i∈Λ fi

)
(x) = ∨{fi(x) | i ∈ Λ}

and
(∩

i∈Λ fi

)
(x) = ∧{fi(x) | i ∈ Λ}.
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