ON MINIMALITY IN PSEUDO-BCI-ALGEBRAS

Young Hee Kim and Keum Sook So

Abstract

In this paper we consider pseudo- $B C K / B C I$-algebras. In particular, we consider properties of minimal elements ($x \leq a$ implies $x=a$) in terms of the binary relation \leq which is reflexive and antisymmetric along with several more complicated conditions. Some of the properties of minimal elements obtained bear resemblance to properties of B-algebras in case the algebraic operations $*$ and \circ are identical, including the property $0 \circ(0 * a)=a$. The condition $0 *(0 \circ x)=0 \circ(0 * x)=x$ for all $x \in X$ defines the class of p-semisimple pseudo- $B C K / B C I$-algebras ($0 \leq x$ implies $x=0$) as an interesting subclass whose further properties are also investigated below.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: $B C K$ algebras and $B C I$-algebras $([6,7])$. We refer useful textbooks for $B C K / B C I$ algebra to $[5,10,11]$. G. Georgescu and A. Iorgulescu ([3]) introduced the notion of a pseudo $B C K$-algebra as an extension of $B C K$-algebra, and Y. B. Jun ([8]) characterized pseudo $B C K$-algebras. He found conditions for a pseudo $B C K$-algebras to be \wedge-semilattice ordered. S. S. Ahn et al. ([1]) fuzzified the notion of pseudo-BCI-ideals, and Y. B. Jun et al. ([9]) discussed pseudo-BCI ideals in pseudo-BCI-algebras. A. Gilani and B. N. Waphare ([4]) studied pseudo a-ideals in pseudo- $B C I$-algebras. Recently, G. Dymek ([2]) introduced the notion of p-semisimple pseudo- $B C I$-algebras, and discussed the set $L_{p}(X)$ of pseudo-atoms of a pseudo- $B C I$-algebra X. He showed that $L_{p}(X)$ is a p semisimple pseudo- $B C I$-algebra and showed that a pseudo- $B C I$-algebra X is p-semisimple if and only if $X=L_{p}(X)$.

In this paper we deal with a class of algebras which shows similarity to the class of companion d-algebras but which in addition is equipped with a reflexive and antisymmetric relation subject to certain constraints imposed by the binary relations defined for these algebras. Introducing the notion of minimality in a rather natural way permits us to consider minimal elements either singly or

Received August 19, 2010.
2010 Mathematics Subject Classification. 06F35.
Key words and phrases. (pseudo-) $B C K / B C I$-algebra, minimal, p-semisimple. This work is supported by Chungbuk National University Fund, 2010.
collectively and so characterize them and the algebra they belong to in a variety of ways. In particular, we introduce the notion of p-semisimplicity below and we develop alternative descriptions of p-semisimple pseudo- $B C K / B C I$-algebras as a consequence. In several instances one may note some similarity with B algebras, especially when the two algebraic operations are identical, while other aspects compare to defining identities for $B C K / B C I$-algebras, thus justifying the terminology which has been used.

2. Preliminaries

A pseudo-BCI-algebra is an algebraic structure $X=(X, \leq, *, \circ, 0)$ where " \leq " is a binary relation on a set $X, " * "$ and " \circ " are binary operations on X and " 0 " is an element of X satisfying the following axioms: for any $x, y, z \in X$,
(a1) $(x * y) \circ(x * z) \leq z * y,(x \circ y) *(x \circ z) \leq z \circ y$;
(a2) $x *(x \circ y) \leq y, x \circ(x * y) \leq y$;
(a3) $x \leq x$;
(a4) $x \leq y, y \leq x$ imply $x=y$;
(a5) $x \leq y \Longleftrightarrow x * y=0 \Longleftrightarrow x \circ y=0$.
Note that every pseudo- $B C I$-algebra satisfying $x * y=x \circ y$ for any $x, y \in X$ is a $B C I$-algebra, and every pseudo- $B C I$-algebra satisfying $0 \leq x$ for all $x \in X$ is called a pseudo-BCK-algebra.

Proposition 2.1 ([2]). Let X be a pseudo-BCI-algebra. Then the following holds: for any $x, y, z \in X$,
(b1) $x \leq 0 \Longrightarrow x=0$;
(b2) $x \leq y \Longrightarrow z * y \leq z * x, z \circ y \leq z \circ x$;
(b3) $x \leq y, y \leq z \Longrightarrow x \leq z$;
(b4) $(x * y) \circ z=(x \circ z) * y$;
(b5) $x * y \leq z \Longleftrightarrow x \circ z \leq y$;
(b6) $x \leq y \Longrightarrow x * z \leq y * z, x \circ z \leq y \circ z$;
(b7) $x *(x \circ(x * y))=x * y, x \circ(x *(x \circ y))=x \circ y$;
(b8) $0 \circ(x \circ y)=(0 * x) *(0 \circ y)$;
(b9) $0 * x=0 \circ x$;
(b10) $x * 0=x=x \circ 0$.
Proposition 2.2 ([2]). An algebraic structure $X=(X, \leq, *, \circ, 0)$ is a pseudo$B C I$-algebra if and only if it satisfies (a1), (a4), (a5) and (b9).

Example $2.3([9])$. Let $X:=[0, \infty)$ and let " \leq " be the usual order on X. If we define binary operations " $*$ " and " \circ " on X by

$$
\begin{gathered}
x * y= \begin{cases}0 & \text { if } x \leq y, \\
\frac{2 x}{\pi} \tan ^{-1}\left(\ln \left(\frac{x}{y}\right)\right) & \text { otherwise },\end{cases} \\
x \circ y= \begin{cases}0 & \text { if } x \leq y, \\
x e^{-\tan \left(\frac{\pi y}{2 x}\right)} & \text { otherwise }\end{cases}
\end{gathered}
$$

for any $x, y \in X$, then $X=(X, \leq, *, \circ, 0)$ is a pseudo- $B C K$-algebra, and hence it is a pseudo- $B C I$-algebra.

Example 2.4 ([2]). Let $Y=\mathbb{R}^{2}$. If we define two binary operations "*" and "०" and a binary relation " \leq " on Y by

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)=\left(x_{1}-x_{2},\left(y_{1}-y_{2}\right) e^{-x_{2}}\right), \\
& \left(x_{1}, y_{1}\right) \circ\left(x_{2}, y_{2}\right)=\left(x_{1}-x_{2}, y_{1}-y_{2} e^{x_{1}-x_{2}}\right),
\end{aligned}
$$

$\left(x_{1}, y_{1}\right) \leq\left(x_{2}, y_{2}\right) \Leftrightarrow\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)=(0,0)=\left(x_{1}, y_{1}\right) \circ\left(x_{2}, y_{2}\right)$ for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in Y$, then $Y=(Y, \leq, *, \circ, 0)$ is a pseudo- $B C I$-algebra.

Example 2.5 ([2]). Let Z be the set of all bijective mappings $f: A \rightarrow A$, where $A \neq \emptyset$. Define two binary operations "*" and "○" and a binary relation " \leq " on Z by

$$
\begin{aligned}
f * g & =f g^{-1} \\
f \circ g & =g^{-1} f \\
f \leq g & \Leftrightarrow f * g=I_{A}=f \circ g
\end{aligned}
$$

for all $f, g \in Z$, where I_{A} is the identity map on A. Then $Z=\left(Z, \leq, *, \circ, I_{A}\right)$ is a pseudo- $B C I$-algebra.

A pseudo- $B C I$-algebra X is said to be p-semisimple if for any $x \in X$,

$$
0 \leq x \Rightarrow x=0
$$

Theorem 2.6 ([2]). Let X be a pseudo-BCI-algebra. Then the following are equivalent: for all $x, y, a, b \in X$,
(1) X is p-semisimple;
(2) $x \leq y \Rightarrow x=y$;
(3) $x *(x \circ y)=y=x \circ(x * y)$;
(4) $0 *(0 \circ x)=x=0 \circ(0 * x)$;
(5) $x * a=x * b \Rightarrow a=b$;
(6) $x \circ a=x \circ b \Rightarrow a=b$.

3. Minimality of pseudo-BCI-algebras

Let X be a pseudo- $B C I$-algebra. An element $a \in X$ is said to be minimal if $x \leq a \Rightarrow x=a$.

Theorem 3.1. Let $X=(X, \leq, *, \circ, 0)$ be a pseudo-BCI-algebra and let $a \in X$. Then the following are equivalent:
(1) a is minimal;
(2) $0 \circ(0 * a)=a$;
(3) there exists $x \in X$ such that $a=0 * x$.

Proof. $(1) \Rightarrow(2)$: By Proposition 2.6-(b4), $(0 \circ(0 * a)) * a=(0 * a) \circ(0 * a)=0$ and hence $0 \circ(0 * a) \leq a$. Since a is minimal, we obtain $a=0 \circ(0 * a)$.
$(2) \Rightarrow(3)$: If we let $x:=0 * a$, then $a=0 \circ(0 * a)=0 \circ x=0 * x$.
$(3) \Rightarrow(1):$ Let $a:=0 * x$ for some $x \in X$. If $y \leq a$, then $0=y \circ a=y \circ(0 * x)$ and hence

$$
\begin{array}{rlrl}
a \circ y & =(0 * x) \circ y & & \\
& =[0 *(0 \circ(0 * x))] \circ y & & {[\mathrm{by}(\mathrm{~b} 7)]} \\
& =(0 \circ y) *(0 \circ(0 * x)) & & {[\mathrm{by}(\mathrm{~b} 4)]} \\
& =(0 * y) *(0 \circ(0 * x)) & & {[\mathrm{by}(\mathrm{~b} 9)]} \\
& =0 \circ(y \circ(0 * x)) & & {[\mathrm{by}(\mathrm{~b} 8)]} \\
& =0, &
\end{array}
$$

i.e., $a \leq y$, proving that $a=y$, i.e., a is minimal.

Example 3.2. (i) Consider a pseudo-BCI-algebra $Y=(Y, \leq, *, \circ, 0)$ in Example 2.4. Assume $a:=\left(a_{1}, a_{2}\right)$ is any element of Y. Then $0 * a=(0,0) *\left(a_{1}, a_{2}\right)=$ $\left(-a_{1},-a_{2} e^{-a_{1}}\right)$ and $0 \circ(0 * a)=(0,0) \circ\left(-a_{1},-a_{2} e^{-a_{1}}\right)=\left(a_{1}, a_{2}\right)=a$. By Proposition 3.1, a is a minimal element of Y. (ii) It is easy to show that every element of Z in Example 2.5 is a minimal element of Z, since $I_{A} \circ\left(I_{A} * f\right)=f$ for any $f \in Z$.
Example 3.3. Consider a pseudo- $B C K$-algebra X in Example 2.3. Since $0 \circ(0 * x)=0 \circ 0=0 \neq x$ for any $x \neq 0$ in X, every non-zero element of X is not a minimal element of X.
Proposition 3.4. Let $X=(X, \leq, *, \circ, 0)$ be a pseudo-BCI-algebra and let $a \in X$. Then the following are equivalent:
(1) a is minimal;
(2) $a * x=(0 * x) \circ(0 * a)$ for any $x \in X$;
(3) $a * x=0 \circ(x * a)$ for any $x \in X$.

Proof. (1) $\Rightarrow(2)$: If a is minimal, then, by Theorem 3.1 and (b4), $a * x=$ $(0 \circ(0 * a)) * x=(0 * x) \circ(0 * a)$.
$(2) \Rightarrow(3)$: Assume that $a * x=(0 * x) \circ(0 * a)$ for any $x \in X$. Then $0 \circ(x * a)=(0 \circ x) \circ(0 * a)=(0 * x) \circ(0 * a)=a * x$. $(3) \Rightarrow(1)$: Let $y \leq a$. Then $y * a=y \circ a=0$. Hence $a * y=0 \circ(y * a)=0 \circ 0=0$, i.e., $a \leq y$ and hence $y=a$, proving the proposition.

Proposition 3.4'. Let $X=(X, \leq, *, \circ, 0)$ be a pseudo-BCI-algebra and let $a \in X$. Then the following are equivalent:
(1) a is minimal;
(2) $a \circ x=(0 \circ x) *(0 \circ a)$ for any $x \in X$;
(3) $a \circ x=0 *(x \circ a)$ for any $x \in X$.

Proposition 3.5. Let $X=(X, \leq, *, \circ, 0)$ be a pseudo- $B C I$-algebra and $x, y \in$ X. Then
(1) $0 * x$ is minimal;
(2) if $y \leq x$, then $0 \circ x=0 * x=0 * y=0 \circ y$.

Proof. (1). Since $0 \circ(0 *(0 \circ x))=0 \circ x$, if we take $a:=0 \circ x$, then $0 \circ(0 * a)=a$. By Theorem 3.1, $a=0 * x=0 \circ x$ is minimal.
(2). If $y \leq x$, then by (b2) $0 * x \leq 0 * y$. Since $0 * x, 0 * y$ are minimal, we obtain $0 * x=0 * y$.

Proposition 3.6. Let $X=(X, \leq, *, \circ, 0)$ be a p-semisimple pseudo-BCIalgebra. Then $(X \backslash\{0\}, \leq)$ is an anti-chain.

Proof. Let $x, y \in X \backslash\{0\}$ with $x \nsupseteq y$. Then by Proposition 3.5, we have $0 * x=0 * y$. Since X is p-semisimple, by Theorem 2.6, we obtain $x=y$, a contradiction.

Theorem 3.7. Let $X=(X, \leq, *, \circ, 0)$ be a pseudo-BCI-algebra and a, $x \in X$ satisfying
(q)

$$
a *(a \circ x)=x .
$$

Then $a *(a \circ(x * y))=x * y$ for any $y \in X$.
Proof. Given $y \in X$, we claim that $[(a \circ(x * y)) *(a \circ x)] * y=0$. In fact, by (a1), $(a \circ(x * y)) *(a \circ x) \leq x \circ(x * y)$ and hence $[(a \circ(x * y)) *(a \circ x)] * y \leq[x \circ(x * y)] * y=0$. Using (b1), we obtain the result. Using the claim and the condition (q) we obtain

$$
\begin{aligned}
(x * y) \circ[a *(a \circ(x * y)] & =[\{a *(a \circ x)\} * y] \circ[a *(a \circ(x * y)] \\
& =[\{a *(a \circ x)\} \circ[a *(a \circ(x * y)]] * y \\
& =[\{a \circ[a *(a \circ(x * y)]\} *(a \circ x)] * y \\
& =[(a \circ(x * y)) *(a \circ x)] * y \\
& =0,
\end{aligned}
$$

which proves $x * y \leq a *(a \circ(x * y)$. By applying (a2), we proves the proposition.

Theorem 3.7'. Let $X=(X, \leq, *, \circ, 0)$ be a pseudo-BCI-algebra and $a, x \in X$ satisfying
(q^{\prime})

$$
a \circ(a * x)=x .
$$

Then $a \circ(a *(x \circ y))=x \circ y$ for any $y \in X$.
Let $X=(X, \leq, *, \circ, 0)$ be a pseudo- $B C I$-algebra and let $u \in X$. We denote $u * X, u *[X], u \circ X$ and $u \circ[X]$ as follows:

$$
\begin{aligned}
u * X & =\{u * x \mid x \in X\}, \\
u *[X] & =\{x \in X \mid u *(u \circ x)=x\}, \\
u \circ X & =\{u \circ x \mid x \in X\}, \\
u \circ[X] & =\{x \in X \mid u \circ(u * x)=x\} .
\end{aligned}
$$

By Theorems 3.7 and 3.7^{\prime}, we obtain $(a *[X]) * X \subseteq a *[X]$ and $(a \circ[X]) \circ X \subseteq$ $a \circ[X]$ for any $a \in X$.

Theorem 3.8. Let $X=(X, \leq, *, \circ, 0)$ be a pseudo-BCI-algebra and let $u \in X$. Then
(1) $u * X=u *[X]$;
(2) $u \circ X=u \circ[X]$;
(3) $(u *[X], *)$ is a subalgebra of $(X, *)$;
(4) $(u \circ[X], \circ)$ is a subalgebra of (X, \circ);
(5) if $v \in u * X$, then $v * X \subseteq u * X$;
(6) if $v \in u \circ X$, then $v \circ X \subseteq u \circ X$.

Proof. (1) If $\alpha \in u *[X]$, then $\alpha=u *(u \circ \alpha)$. Since $u \circ \alpha \in X$, we have $\alpha \in u * X$. Conversely, if $\alpha \in u * X$, then there exists $x_{0} \in X$ such that $\alpha=u * x_{0}$ and hence $u *(u \circ \alpha)=u *\left(u \circ\left(u * x_{0}\right)\right)=u * x_{0}=\alpha$. Hence $\alpha \in u *[X]$.
(2) Similar to (1).
(3) Since $u *(u \circ u)=u * 0=u, u \in u *[X]$, i.e., $u *[X] \neq \emptyset$. For any $x, y \in u *[X]$, we have $u *(u \circ x)=x, u *(u \circ y)=y$. By applying Theorem 3.7, we obtain $u *(u \circ(x * y))=x * y$, i.e., $x * y \in u *[X]$.
(4) Using Theorem 3.7^{\prime}, it is similar to (3).
(5) Since $u * X=u *[X]$, if $v \in u * X$, then $v=u *(u \circ v)$. By Theorem 3.7, $v * x=u *(u \circ(v * x))$ for any $x \in X$. This means that $v * x \in u *[X]=u * X$ for any $x \in X$. Thus $v * X \subseteq u * X$.
(6) If we apply Theorem 3.7^{\prime}, then it is similar to (5).

Theorem 3.9. Let $X=(X, \leq, *, \circ, 0)$ be a pseudo-BCI-algebra and let $P:=$ $\{x \in X \mid x$ is minimal $\}$. Then $(P, \leq, *, \circ, 0)$ is a subalgebra of $X=(X, \leq, *, \circ$, $0)$.

Proof. Since 0 is minimal element, $P \neq \emptyset$. Given $a, b \in P$, let $x \in X$ such that $x \leq a * b$.

$$
\begin{aligned}
x \circ a & \leq(a * b) \circ a & & {[\text { by }(\mathrm{b} 6)] } \\
& =(a \circ a) * b & & {[\mathrm{by}(\mathrm{~b} 4)] } \\
& =0 * b, & & {[\text { by }(\mathrm{a} 3)] }
\end{aligned}
$$

i.e., $x \circ a \leq 0 * b$. It follows that $x *(0 * b) \leq a$ by (b5). Since a is minimal, we obtain $a=x *(0 * b)$. Hence $a \circ x=(x *(0 * b)) \circ x=(x \circ x) *(0 * b)=$ $0 *(0 * b)=0 *(0 \circ b) \leq b$, i.e., $a \circ x \leq b$. By (b5), we have $a * b \leq x$. This proves that $x=a * b$, i.e., $a * b$ is minimal. On the other hand, given $a, b \in P$, let $x \in X$ such that $x \leq a \circ b$. Using the same method, we can see that $x=a \circ b$, i.e., $a \circ b$ is minimal. This completes the proof.

References

[^0][2] G. Dymek, p-semisimple pseudo-BCI-algebras, submitted.
[3] G. Georgescu and A. Iorgulescu, Pseudo BCK-algebras: an extension of BCK-algebras, Combinatorics, computability and logic (Constanţa, 2001), 97-114, Springer Ser. Discrete Math. Theor. Comput. Sci., Springer, London, 2001.
[4] A. Gilani and B. N. Waphare, On pseudo a-ideal of pseudo-BCI-algebras, Sci. Magna 3 (2007), no. 2, 50-59.
[5] A. Iorgulescu, Algebras of Logic as BCK-Algebras, Editura ASE, Bucharest, 2008.
[6] K. Iséki, On BCI-algebras, Math. Sem. Notes Kobe Univ. 8 (1980), no. 1, 125-130.
[7] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978/79), no. 1, 1-26.
[8] Y. B. Jun, Characterizations of pseudo BCK-algebras, Math. Japonicae Online 7 (2002), 225-230.
[9] Y. B. Jun, H. S. Kim, and J. Neggers, On pseudo-BCI ideals of pseudo BCI-algebras, Mate. Vesnik 58 (2006), no. 1-2, 39-46.
[10] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa, Seoul, 1994.
[11] H. Yisheng, BCI-algebras, Science Press, Beijing, 2006.
Young Hee Kim
Department of Mathematics
Chungbuk National University
Cheonguu 361-791, Korea
E-mail address: yhkim@chungbuk.ac.kr
Keum Sook So
Department of Mathematics
Hallym University
Chuncheon 200-702, Korea
E-mail address: ksso@hallym.ac.kr

[^0]: [1] S. S. Ahn, Y. B. Jun, H. S. Kim, and M. Kondo, Fuzzifications of pseudo-BCI-algebras, Sci. Math. Jpn. 60 (2004), no. 1, 15-19.

