Commun. Korean Math. Soc. **27** (2012), No. 1, pp. 1–6 http://dx.doi.org/10.4134/CKMS.2012.27.1.001

ANSWERS TO LEE AND PARK'S QUESTIONS

Min Su Kang

ABSTRACT. In [K. J. Lee and C. H. Park, Some questions on fuzzifications of ideals in subtraction algebras, Commun. Korean Math. Soc. **22** (2007), no. 3, 359–363], Lee and Park posed three questions. In this paper, the affirmative answers to their questions are provided, and characterizations of fuzzy ideals are investigated.

1. Introduction

B. M. Schein [8] considered systems of the form $(\Phi; \circ, \backslash)$, where Φ is a set of functions closed under the composition " \circ " of functions (and hence $(\Phi; \circ)$ is a function semigroup) and the set theoretic subtraction " \backslash " (and hence $(\Phi; \backslash)$ is a subtraction algebra in the sense of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. B. Zelinka [9] discussed a problem proposed by B. M. Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. Y. B. Jun et al. [3] introduced the notion of ideals in subtraction algebras and discussed characterization of ideals. In [2], Y. B. Jun and H. S. Kim established the ideal generated by a set, and discussed related results. Jun et al. discussed several notions and properties in subtraction algebras (see [4, 5, 6]). Lee and Park posed three questions in the paper [7]. The aim of this paper is to provide affirmative answers to these questions. We investigate several characterizations of fuzzy ideals in subtraction algebras.

2. Preliminaries

By a subtraction algebra we mean an algebra (X; -) with a single binary operation "-" that satisfies the following identities: for any $x, y, z \in X$,

 $(S1) \quad x - (y - x) = x;$

(S2) x - (x - y) = y - (y - x);

(S3) (x - y) - z = (x - z) - y.

Received July 27, 2010.

2010 Mathematics Subject Classification. 03G25, 08A72.

Key words and phrases. subtraction algebra, ideal, fuzzy ideal.

 $\bigodot 2012$ The Korean Mathematical Society

1

The last identity permits us to omit parentheses in expressions of the form (x - y) - z. The subtraction determines an order relation on X: $a \le b \Leftrightarrow a - b = 0$, where 0 = a - a is an element that does not depend on the choice of $a \in X$. The ordered set $(X; \le)$ is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in which every interval [0, a] is a Boolean algebra with respect to the induced order. Here $a \wedge b = a - (a - b)$; the complement of an element $b \in [0, a]$ is a - b; and if $b, c \in [0, a]$, then

$$\begin{array}{rcl} b \lor c & = & (b' \land c')' = a - ((a-b) \land (a-c)) \\ & = & a - ((a-b) - ((a-b) - (a-c))). \end{array}$$

In a subtraction algebra, the following are true (see [3]):

(a1) (x - y) - y = x - y. (a2) x - 0 = x and 0 - x = 0. (a3) (x - y) - x = 0. (a4) $x - (x - y) \le y$. (a5) (x - y) - (y - x) = x - y. (a6) x - (x - (x - y)) = x - y. (a7) $(x - y) - (z - y) \le x - z$. (a8) $x \le y$ if and only if x = y - w for some $w \in X$. (a9) $x \le y$ implies $x - z \le y - z$ and $z - y \le z - x$ for all $z \in X$. (a10) $x, y \le z$ implies $x - y = x \land (z - y)$. (a11) $(x \land y) - (x \land z) \le x \land (y - z)$.

Definition 2.1 ([3]). A nonempty subset A of a subtraction algebra X is called an *ideal* of X, denoted by $A \triangleleft X$, if it satisfies:

(b1) $a - x \in A$ for all $a \in A$ and $x \in X$.

(b2) for all $a, b \in A$, whenever $a \lor b$ exists in X then $a \lor b \in A$.

Proposition 2.2 ([3]). Let X be a subtraction algebra and let $x, y \in X$. If $w \in X$ is an upper bound for x and y, then the element

$$x \lor y := w - ((w - y) - x)$$

is a least upper bound for x and y.

3. Answers to Lee and Park's questions

In what follows let X be a subtraction algebra unless otherwise specified.

Definition 3.1 ([7]). A fuzzy set μ in X is called a *fuzzy ideal* of X if it satisfies:

(c1) $(\forall x, y \in X) \ (\mu(x-y) \ge \mu(x)),$

 $(\text{c2}) \ (\forall x,y \in X) \ (\exists x \lor y \, \Rightarrow \, \mu(x \lor y) \geq \min\{\mu(x),\mu(y)\}).$

Proposition 3.2 ([7]). If a fuzzy set μ in X satisfies

(c3) $(\forall x, a, b \in X)$ $(\mu(x - ((x - a) - b)) \ge \min\{\mu(a), \mu(b)\}),$ then μ is a fuzzy ideal of X. **Proposition 3.3** ([7]). Let μ be a fuzzy set in X such that

(c4) $(\forall x \in X)(\mu(0) \ge \mu(x)),$

(c5) $(\forall x, y, z \in X)(\mu(x-z) \ge \min\{\mu((x-y)-z), \mu(y)\}).$

Then we have

$$(3.1) \qquad (\forall a, x \in X)(x \le a \Rightarrow \mu(x) \ge \mu(a)).$$

Theorem 3.4 ([7]). If μ is a fuzzy ideal of X, then

$$(3.2) \qquad (\forall \alpha \in [0,1])(U(\mu;\alpha) \neq \emptyset \Rightarrow U(\mu;\alpha) \triangleleft X),$$

where $U(\mu; \alpha) := \{x \in X \mid \mu(x) \ge \alpha\}$ which is called the level set of μ .

Lee and Park posed the following questions.

Question. 1. Does any fuzzy ideal of a subtraction algebra satisfy condition (c3)?

2. Does any fuzzy ideal of a subtraction algebra satisfy condition (c5)?

3. Does the converse of Theorem 3.4 hold?

We provide affirmative answers to these questions. We first answer to the third question.

Theorem 3.5. Let μ be a fuzzy set in X for which (3.2) is valid. Then μ is a fuzzy ideal of X.

Proof. If there are $a, b \in X$ such that $\mu(a-b) < \mu(a)$, then $\mu(a-b) < t_a \leq a$ $\mu(a)$ for some $t_a \in (0,1]$. Thus $a \in U(\mu;t_a)$, but $a - b \notin U(\mu;t_a)$. This is a contradiction, and so $\mu(x-y) \ge \mu(x)$ for all $x, y \in X$. Assume that there exist $a, b \in X$ such that $a \lor b$ exists and $\mu(a \lor b) < \min\{\mu(a), \mu(b)\}$. Then $\mu(a \lor b) < \mu(a \lor b) < \mu(a \lor b) < \mu(a \lor b)$ $t_0 \leq \min\{\mu(a), \mu(b)\}$ for some $t_0 \in (0, 1]$. It follows that $a, b \in U(\mu; t_0)$ and $a \lor b \notin U(\mu; t_0)$ which is a contradiction. Therefore (c2) is valid. Hence μ is a fuzzy ideal of X.

Now we answer to the second question.

Theorem 3.6. Every fuzzy ideal μ of X satisfies the inequality (c5).

Proof. If we put x = x - z in (a3), then ((x - z) - y) - (x - z) = 0, i.e., $(x - z) - y \le 0$ x-z. If we put x = y and y = x-z in (a4), then $y - (y - (x-z)) \le x-z$. Hence x - z is an upper bound for (x - z) - y and y - (y - (x - z)). It follows from Proposition 2.2, (S2), (S3) and (a2) that

$$\begin{aligned} &((x-y)-z)\lor y\\ &=((x-y)-z)\lor (y-0)\\ &=((x-y)-z)\lor (y-(y-y))\\ &=((x-y)-z)\lor (y-(y-(x-z)))\\ &=((x-z)-y)\lor (y-(y-(x-z)))\\ &=(x-z)-((((x-z)-(y-(y-(x-z))))-((x-z)-y))\end{aligned}$$

MIN SU KANG

$$= (x - z) - (((x - z) - ((x - z) - y)) - (y - (y - (x - z)))))$$

= (x - z) - ((y - (y - (x - z))) - (y - (y - (x - z))))
= (x - z) - 0 = x - z

so from (c2) that

$$\mu(x-z) = \mu(((x-y)-z) \lor y) \ge \min\{\mu((x-y)-z), \mu(y)\}$$

for all $x, y \in X$.

We finally answer to the first question.

Theorem 3.7. Every fuzzy ideal μ of X satisfies the inequality (c3).

Proof. Suppose that μ is a fuzzy ideal of X. Then the nonempty level set $U(\mu; t)$ of μ is an ideal of X for all $t \in (0, 1]$. Let $\theta_{U(\mu; t)}$ be a relation on X defined by

$$(\forall x, y \in X) \ ((x, y) \in \theta_{U(\mu;t)} \Leftrightarrow x - y \in U(\mu;t), \ y - x \in U(\mu;t)).$$

Then $\theta_{U(\mu;t)}$ is a congruence relation on X. For any $a, b \in U(\mu;t)$ and $x \in X$, we have $(x, x) \in \theta_{U(\mu;t)}$, $(a, 0) \in \theta_{U(\mu;t)}$ and $(b, 0) \in \theta_{U(\mu;t)}$. Hence

 $(x - ((x - a) - b), 0) = (x - ((x - a) - b), x - ((x - 0) - 0)) \in \theta_{U(\mu;t)},$

and so $x - ((x - a) - b) \in U(\mu; t)$. It follows that

$$\mu(x - ((x - a) - b)) \ge \min\{\mu(a), \mu(b)\}\$$

for all $a, b, x \in X$ because if there exist $a_0, b_0 \in X$ such that

$$\mu(x - ((x - a_0) - b_0)) < \min\{\mu(a_0), \mu(b_0)\},\$$

then $\mu(x - ((x - a_0) - b_0)) < t_0 \le \min\{\mu(a_0), \mu(b_0)\}\$ for some $t_0 \in (0, 1]$. Thus $a_0 \in U(\mu; t_0)$ and $b_0 \in U(\mu; t_0)$, but $x - ((x - a_0) - b_0) \notin U(\mu; t_0)$. This is a contradiction.

4. Characterizations of fuzzy ideals

Using [7] and the previous section, we have the following characterizations of fuzzy ideals.

Theorem 4.1. For a fuzzy set μ in X, the following assertions are equivalent:

- (1) μ is a fuzzy ideal of X.
- (2) μ satisfies the condition (3.2).
- (3) μ satisfies the condition (c3).
- (4) μ satisfies the conditions (c4) and (c5).

Theorem 4.2. A fuzzy set μ in X is a fuzzy ideal of X if and only if it satisfies the condition (c4) and

(4.1)
$$(\forall x, y \in X) \ (\mu(x) \ge \min\{\mu(x-y), \mu(y)\}).$$

4

Proof. Assume that μ is a fuzzy ideal of X. Then the condition (c4) is valid by [7, Proposition 3.4]. The condition (4.1) is by taking z = 0 in (c5) and using (a2).

Conversely, let μ satisfy (c4) and (4.1). Note that

$$(x - ((x - a) - b)) - b = (x - b) - ((x - a) - b) \le x - (x - a) \le a,$$

that is, ((x - ((x - a) - b)) - b) - a = 0 for all $x, a, b \in X$. It follows from (c4) and (4.1) that

$$\mu(x - ((x - a) - b))$$

$$\geq \min\{\mu((x - ((x - a) - b)) - b), \mu(b)\}$$

$$\geq \min\{\min\{\mu(((x - ((x - a) - b)) - b) - a), \mu(a)\}, \mu(b)\}$$

$$= \min\{\min\{\mu(0), \mu(a)\}, \mu(b)\}$$

for all $x, a, b \in X$. Therefore μ is a fuzzy ideal of X by Proposition 3.2.

Theorem 4.3. For fixed elements $a, b \in X$, let μ_a^b be a fuzzy set in X defined by

$$\mu_a^b(x) = \begin{cases} t_1 & \text{if } (x-a) - b = 0, \\ t_2 & \text{otherwise} \end{cases}$$

for all $x \in X$ and $t_1, t_2 \in (0, 1]$ with $t_1 > t_2$. Then μ_a^b is a fuzzy ideal of X.

Proof. Since (0-a) - b = 0, we have $\mu_a^b(0) = t_1 \ge \mu_a^b(x)$ for all $x \in X$. Let $x, y \in X$. If (x-a) - b = 0, then $\mu_a^b(x) = t_1 \ge \min\{\mu_a^b(x-y), \mu_a^b(y)\}$. Suppose that $(x-a) - b \ne 0$. If (y-a) - b = 0 and ((x-y) - a) - b = 0, then

$$(x-a) - b = ((x-a) - b) - 0$$

= $((x-a) - b) - ((y-a) - b)$
= $((x-a) - (y-a)) - b$
= $((x-y) - a) - b = 0$,

a contradiction. Hence $(y-a) - b \neq 0$ or $((x-y) - a) - b \neq 0$, and thus $\mu_a^b(y) = t_2$ or $\mu_a^b(x-y) = t_2$. It follows that

$$\mu_a^b(x) = t_2 = \min\{\mu_a^b(x-y), \mu_a^b(y)\}.$$

Hence, by Theorem 4.2, μ_a^b is a fuzzy ideal of X.

Theorem 4.4. A fuzzy set μ is a fuzzy ideal of X if and only if it satisfies:

 $(4.2) \qquad (\forall a, b, x \in X) \ (x - a \le b \implies \mu(x) \ge \min\{\mu(a), \mu(b)\}).$

Proof. Assume that μ is a fuzzy ideal of X. Let $a, b, x \in X$ be such that $x - a \leq b$. Then (x - a) - b = 0, and so

$$\mu(x) \ge \min\{\mu(x-a), \mu(a)\} \\\ge \min\{\min\{\mu((x-a)-b), \mu(b)\}, \mu(a)\} \\= \min\{\min\{\mu(0), \mu(b)\}, \mu(a)\} \\= \min\{\mu(a), \mu(b)\}$$

by (4.1) and (c4).

Conversely, let μ be satisfy the condition (4.2). Since $0-x \leq x$ for all $x \in X$, it follows from (4.2) that

$$\mu(0) \ge \min\{\mu(x), \mu(x)\} = \mu(x)$$

for all $x \in X$. Note that $x - (x - y) \le y$ for all $x, y \in X$. Using (4.2), we have $\mu(x) \ge \min\{\mu(x - y), \mu(y)\}$ for all $x, y \in X$. Hence μ is a fuzzy ideal of X by Theorem 4.2.

References

- [1] J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston 1969.
- [2] Y. B. Jun and H. S. Kim, On ideals in subtraction algebras, Sci. Math. Jpn. 65 (2007), no. 1, 129–134.
- [3] Y. B. Jun, H. S. Kim, and E. H. Roh, Ideal theory of subtraction algebras, Sci. Math. Jpn. 61 (2005), no. 3, 459–464, :e-2004, 397–402.
- [4] Y. B. Jun, Y. H. Kim, and K. A. Oh, Subtraction algebras with additional conditions, Commun. Korean Math. Soc. 22 (2007), no. 1, 1–7.
- [5] Y. B. Jun, C. H. Park, and E. H. Roh, Order systems, ideals and right fixed maps of subtraction algebras, Commun. Korean Math. Soc. 23 (2008), no. 1, 1–10.
- [6] K. J. Lee, Y. B. Jun, and Y. H. Kim, Weak forms of subtraction algebras, Bull. Korean Math. Soc. 45 (2008), no. 3, 437–444.
- [7] K. J. Lee and C. H. Park, Some questions on fuzzifications of ideals in subtraction algebras, Commun. Korean Math. Soc. 22 (2007), no. 3, 359–363.
- [8] B. M. Schein, Difference semigroups, Comm. Algebra 20 (1992), no. 8, 2153-2169.
- [9] B. Zelinka, Subtraction Semigroups, Math. Bohemica 120 (1995), no. 4, 445–447.

DEPARTMENT OF MATHEMATICS HANYANG UNIVERSITY SEOUL 133-791, KOREA *E-mail address*: sinchangmyun@hanmail.net