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WHICH K3 SURFACES WITH PICARD NUMBER 19 COVER

AN ENRIQUES SURFACE

Kwangwoo Lee

Abstract. We determine which K3 surface with Picard number 19 is a
K3 cover of an Enriques surface.

1. Introduction

Let X be a K3 surface with Picard number, ρ(X), 19 over the field C. TX

can be denoted by the following intersection matrix

(1) TX =

 2a d e
d 2b f
e f 2c


with respect to a basis {x, y, z}. Since the transcendental lattice TX of X has
signature (2, 1), without loss of generality, we may assume that z2 = 2c < 0.
Let U and E8 denote the even unimodular lattices of signature (1, 1) and (0, 8)
respectively. Keum showed that every algebraic Kummer surface is the K3
cover of some Enriques surface in [3] with the following criterion.

Theorem 1.1 (Keum, [3]). (Criterion for a K3 surface to cover an Enriques
surface) Let X be an algebraic K3 surface. Assume that l(TX) + 2 ≤ ρ(X),
where l(TX) is the length of TX (This is true if ρ(X) ≥ 12). Then, the following
are equivalent.

(i) X admits a fixed-point-free involution.
(ii) There exists a primitive embedding of TX into Λ− = U ⊕ U(2) ⊕ E8(2)

such that the orthogonal complement of TX in Λ− contains no vectors of self-
intersection −2.

Following the work of Keum, Alı̇ Sı̇nan Sertöz determined the necessary
and sufficient conditions for a singular K3 surface (ρ(X) = 20) to cover an
Enriques surface, [5]. He used the following lemma to show that a given lattice
embedding is a primitive.

Received October 20, 2010; Revised March 19, 2011.
2010 Mathematics Subject Classification. 14J28.
Key words and phrases. K3 surface, Picard number, lattice embedding.

c⃝2012 The Korean Mathematical Society

213



214 KWANGWOO LEE

Lemma 1.2 ([5]). A lattice embedding is primitive if and only if the greatest
common divisor of the maximal minors of the embedding matrix with respect to
any choice of basis is 1.

In this paper we will use these for the case ρ(X) = 19. For the definitions
and basic facts about K3 surfaces we refer to [1].

Our purpose is to show following theorems:

Theorem 1.3. If X is a K3 surface with a transcendental lattice given as in
(1), then the K3 surface satisfying one of the following conditions is a K3 cover
of an Enriques surface.

1. a, b, c, and def are even.

2. a is odd; b and c are even

 (i) def is odd.
(ii) f is even and d is odd
or f is even and e is odd.

3. b is odd; a and c are even

 (i) e is even and d is odd
or e is even and f is odd.
(ii) def is odd.

4. c is odd; a and b are even

{
(i) d is even and e or f is odd.
(ii) def is odd.

5. Only a and f are even.
6. Only b and e are even.
7. Only c and d are even.

Theorem 1.4. If X is a K3 surface with a transcendental lattice given as in
(1), then the K3 surface satisfying one of the following conditions is not a K3
cover of any Enriques surface.

1. a, b, and c are even; def is odd.
2. af is odd; b, c, and de are even.
3. be is odd; a, c, and df are even.
4. cd is odd; a, b, and ef are even.

5. a is even and bc is odd

{
(i) f is odd.
(ii) f is even and d+ e is odd.

6. b is even and ac is odd

{
(i) e is odd.
(ii) e is even and d+ f are odd.

7. c is even and ab is odd

{
(i) d is odd.
(ii) d is even and e+ f is odd.

8. abc is odd; d, e, or f is odd.

Remark 1.5. The remaining cases are as follows:
1. Only a is odd.
2. Only b is odd.
3. Only c is odd.
4. Only a and b are odd.
5. Only b and c are odd.
6. Only a and c are odd.
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7. Only a, b, and c are odd.

However, since we will show that these are all equivalent, it is sufficient to
consider only one of these.

Before we proceed to the proof of the theorems we will also need the following

lemma. We recall that for A ∈ SL3(Z), T ′
X = ATXAtr=

(
2a′ d′ e′

d′ 2b′ f ′

e′ f ′ 2c′

)
is Z-

equivalent to TX .

Lemma 1.6. Let TX be a lattice given as in (1) with c < 0. Then, TX is
Z-equivalent to T ′

X with b′, c′ < 0 and a′ = a.

Proof. Assume that b ≥ 0 (If b < 0, there is nothing to prove). Let A=
(

1 0 0
0 1 α
0 0 1

)
,

where α ∈ Z. Since A ∈ SL3(Z), the matrix ATXAtr is Z-equivalent to TX .

Now T ′
X = ATXAtr=

(
2a′ d′ e′

d′ 2b′ f ′

e′ f ′ 2c′

)
, where a′ = a, b′ = b + α2c + αf , c′ = c,

d′ = d+ αe, e′ = e, f ′ = 2αc+ f .
Case 1. f ̸= 0.
Let α = −nf , where n ∈ Z+. Then b′ = b+(−nf)2c+(−n)f2 < 0 for some n.
Case 2. f = 0.
We can take α = n ∈ Z such that b′ < 0, where b′ = b+ n2c.
Case 3. b = 0.
If f ≤ 0, let α = 1. Then b′ = c + f < 0. If f > 0, let α = −1. Then
b′ = c− f < 0. □

From now on, we assume that b and c in TX of (1) are negative.

Theorem 1.7 (Nikulin, [4]). A primitive embedding of an even non-degenerate
lattice L of signature (s+, s−) into an even unimodular lattice M of signature
(t+, t−) exists provided that

s+ ≤ t+, s− ≤ t−, and l(L) + 1 ≤ rank(M)− rank(L),

where l(L) is the length of L. Furthermore, if the three inequalities are all
strict, then the primitive embedding is unique.

The following corollary will be used later.

Corollary 1.8. There is a primitive embedding of ⟨−2m⟩ into E8 for any
positive integer m.

2. Proof of Theorem 1.3

Let {x, y, z} be a basis of the transcendental lattice TX and let {u1, u2} and
{v1, v2} be the standard bases of U and U(2), respectively. We prove Theorem
1.3 by showing the existence of primitive embedding of TX into Λ− such that
the orthogonal complement of Imϕ contains no (−2)-vectors.
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1-i) a, b, c, and e are even.
Consider the mapping ϕ : TX −→ Λ− defined as

ϕ(x) = du2 + v1 +
a

2
v2,

ϕ(y) = u1 + bu2,

ϕ(z) = fu2 +
e

2
v2 + w,

where by Corollary 1.8 we can choose a primitive element w of E8(2) with
w2 = 2c, c < 0. Then ϕ is an embedding and by Lemma 1.2, ϕ is a primitive
embedding. Assume that s = x1u1 + x2u2 + x3v1 + x4v2 +w′ is an element of
orthogonal complement of the Imϕ. Then s · ϕ(y) = 0 induces bx1 + x2 = 0.
Since b is even, x2 is even. Thus s · s = 2x1x2 + 4x3x4 + w′2 ≡ 0 (mod 4) and
hence cannot be −2.

1-ii) a, b, c, and f are even.
Consider the mapping ϕ : TX −→ Λ− defined as

ϕ(x) = u1 + au2,

ϕ(y) = du2 + v1 +
b

2
v2,

ϕ(z) = eu2 +
f

2
v2 + w,

where by Corollary 1.8 we can choose a primitive element w of E8(2) with
w2 = 2c, c < 0. This is an embedding and by Lemma 1.2, it is primitive.
Assume that s = x1u1 + x2u2 + x3v1 + x4v2 + w′ is an element of orthogonal
complement of the Imϕ. Then s · ϕ(x) = 0 induces ax1 + x2 = 0. Since a is
even, x2 is even. Thus s · s ≡ 0 (mod 4) and hence cannot be −2.

1-iii) a, b, c, and d are even (ef is odd, otherwise 1-i) or 1-ii)).

We use the base change by
(

1 1 0
0 1 0
0 0 1

)
, where a′ = a + b + d, b′ = b, c′ = c,

d′ = 2b+ d, e′ = e+ f , and f ′ = f . Then a′, b′, c′, and e′ are even. Thus this
case is reduced to Case 1-i).

2-i) Only b and c are even.

We use the base change by
(

1 1 0
0 1 0
0 0 1

)
, where a′ = a + b + d, b′ = b, c′ = c,

d′ = 2b+ d, e′ = e+ f , and f ′ = f . Then a′, b′, c′, and e′ are even. Thus this
case is reduced to Case 1.

2-ii) b, c, and f are even, a is odd, and either d or e is odd.

If d is odd, then we use the base change by
(

1 1 0
0 1 0
0 0 1

)
, where a′ = a + b + d,

b′ = b, c′ = c, d′ = 2b + d, e′ = e + f , and f ′ = f . Then a′, b′, c′, and f ′ are
even. Thus this case is reduced to Case 1.

If e is odd, then we use the base change by
(

1 0 1
0 1 0
0 0 1

)
, where a′ = a + c + e,

b′ = b, c′ = c, d′ = d + f , e′ = 2c + e, and f ′ = f . Then a′, b′, c′, and f ′ are
even. Thus this case is reduced to Case 1.
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3-i) a, c, and e are even, b is odd, and either d or f is odd.
Consider the mapping ϕ : TX −→ Λ− defined as

ϕ(x) = du2 + v1 +
a

2
v2,

ϕ(y) = u1 + bu2,

ϕ(z) = fu2 +
e

2
v2 + w,

where by Corollary 1.8 we can choose a primitive element w of E8(2) with w2 =
2c, c < 0. This is an embedding and by Lemma 1.2, it is primitive. Assume
that s = x1u1+x2u2+x3v1+x4v2+w′ is an element of orthogonal complement
of the Imϕ. Then s ·ϕ(x) = dx1+ax3+2x4 = 0, s ·ϕ(z) = fx1+ex3+ww′ = 0.
Since d or f is odd, x1 is even. Thus s · s ≡ 0 (mod 4) and hence cannot be
−2.

3-ii) Only a and c are even.

We use the base change by
(

1 1 1
0 1 0
0 0 1

)
, where a′ = a + b + c + d + e + f , b′ = b,

c′ = c, d′ = 2b+ d+ f , e′ = 2c+ e+ f , and f ′ = f . Then this case is reduced
to Case 3-i).

4-i) a, b, and d are even, c is odd, and either e or f is odd.
Consider the mapping ϕ : TX −→ Λ− defined as

ϕ(x) = eu2 + v1 +
a

2
v2,

ϕ(y) = fu2 +
d

2
v2 + w,

ϕ(z) = u1 + cu2,

where by Corollary 1.8 we can choose a primitive element w of E8(2) with w2 =
2b, b < 0. This is an embedding and by Lemma 1.2, it is primitive. Assume
that s = x1u1+x2u2+x3v1+x4v2+w′ is an element of orthogonal complement
of the Imϕ. Then s ·ϕ(x) = ex1+ax3+2x4 = 0, s ·ϕ(y) = fx1+dx3+ww′ = 0.
Since e or f is odd, x1 is even. Thus s ·s ≡ 0 (mod 4) and hence cannot be −2.

4-ii) Only a and b are even.

We use the base change by
(

1 0 1
0 1 0
0 0 1

)
, where a′ = a + c + e, b′ = b, c′ = c,

d′ = d+ f , e′ = 2c+ e, and f ′ = f . Then this case is reduced to Case 4-i).
5) Only a and f are even.

Since we assume that b, c < 0, we split into two cases.
i) f ≥ 0.

We use the base change by
(

1 0 0
0 1 −1
0 0 1

)
, where a′ = a, b′ = b + c − f , c′ = c,

d′ = d− e, e′ = e, and f ′ = −2c+ f . Then this case is reduced to Case 4-i).
ii) f < 0.

We use the base change by
(

1 0 0
0 1 1
0 0 1

)
, where a′ = a, b′ = b + c + f , c′ = c,

d′ = d+ e, e′ = e, and f ′ = 2c+ f . Then this case is reduced to Case 4-i).
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6) Only b and e are even.

We use the base change by
(

1 1 0
0 1 0
0 0 1

)
, where a′ = a + b + d, b′ = b, c′ = c,

d′ = 2b+ d, e′ = e+ f , and f ′ = f . Then this case is reduced to Case 4-ii).
7) Only c and d are even.

Since we assume that b, c < 0, we split into two cases.
i) f ≥ 0.

We use the base change by
(

1 0 1
0 1 −1
0 0 1

)
, where a′ = a + c + e, b′ = b + c − f ,

c′ = c, d′ = −2c+ d− e+ f , e′ = 2c+ e, and f ′ = −2c+ f . Then a′, b′, c′, and
d′ are even. Thus this case is reduced to Case 1.

ii) f < 0.

We use the base change by
(

1 0 1
0 1 1
0 0 1

)
, where a′ = a+ c+ e, b′ = b+ c+ f , c′ = c,

d′ = 2c+d+ e+ f , e′ = 2c+ e, and f ′ = 2c+ f . Then a′, b′, c′, and d′ are even.
Thus this case is reduced to Case 1. □

3. Proof of Theorem 1.4

Let {x, y, z} be a basis of the transcendental lattice TX and let {u1, u2}
and {v1, v2} be the standard bases of U and U(2), respectively. We derive a
contradiction if an embedding of TX into Λ− exists.

1) a, b, and c are even; def is odd.
Consider the mapping ϕ : TX −→ Λ− defined generically as

(2)

 ϕ(x) = a1u1 + a2u2 + a3v1 + a4v2 + w1,
ϕ(y) = b1u1 + b2u2 + b3v1 + b4v2 + w2,
ϕ(z) = c1u1 + c2u2 + c3v1 + c4v2 + w3,

where the ai’s, bi’s, and ci’s are integers, wi ∈ E8(2). Assume that ϕ is an
embedding, i.e.,

(3)



ϕ(x) · ϕ(x) = 2a1a2 + 4a3a4 + w2
1 = 2a,

ϕ(y) · ϕ(y) = 2b1b2 + 4b3b4 + w2
2 = 2b,

ϕ(z) · ϕ(z) = 2c1c2 + 4c3c4 + w2
3 = 2c,

ϕ(x) · ϕ(y) = a1b2 + a2b1 + 2a3b4 + 2a4b3 + w1w2 = d,
ϕ(x) · ϕ(z) = a1c2 + a2c1 + 2a3c4 + 2a4c3 + w1w3 = e,
ϕ(y) · ϕ(z) = b1c2 + b2c1 + 2b3c4 + 2b4c3 + w2w3 = f.

Since a is even and d is odd, either a1 or a2 is even; similarly for b1, b2 and
c1, c2. Without loss of generality, we may assume that a1 is even. Then since
d and e are odd a2, b1, and c1 are odd. Hence b2 and c2 are even. Then f is
even which is a contradiction, so TX has no embedding into Λ−.

2) af is odd; b, c, and de are even.
Consider the mapping ϕ : TX −→ Λ− defined generically as in (2). Assume
that ϕ is an embedding. Since a is odd and b, c are even, from (3) a1, a2 are odd,

b1 or b2 is even, and c1 or c2 is even. Also, since f is odd,
(
b1 and c2 are even
b2 and c1 are odd

)
or
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b2 and c1 are even
b1 and c2 are odd

)
. Since d or e is even, b1, b2 are even or c1, c2 are even. So f

is even. Hence, TX has no embedding into Λ−.
3) be is odd; a, c, and df are even.

Consider the mapping ϕ : TX −→ Λ− defined generically as in (2). Assume
that ϕ is an embedding. Since b and e are odd, from (3) b1, b2, a1c2 + a2c1 are

odd. Also, since a, c are even,
(
a1 and c2 are even
a2 and c1 are odd

)
or

(
a2 and c1 are even
a1 and c2 are odd

)
. Then,

both d and f are odd. Hence, TX has no embedding into Λ−.
4) cd is odd; a, b, and ef are even.

Consider the mapping ϕ : TX −→ Λ− defined generically as in (2). Assume
that ϕ is an embedding. Since c and d are odd, from (3) c1, c2, a1b2 + a2b1 are

odd. Also, since a, b are even,
(
a1 and b2 are even
a2 and b1 are odd

)
or

(
a2 and b1 are even
a1 and b2 are odd

)
. Then,

both e and f are odd. Hence, TX has no embedding into Λ−.
5-i) a is even and bcf is odd.

Consider the mapping ϕ : TX −→ Λ− defined generically as in (2). Assume
that ϕ is an embedding. Since b and c are odd, from (3) b1, b2, c1, c2 are odd.
Then, f is even. Hence, TX has no embedding into Λ−.

5-ii) a and f are even; b, c, and d+ e are odd.
Consider the mapping ϕ : TX −→ Λ− defined generically as in (2). Assume
that ϕ is an embedding. Without loss of generality, we may assume that d is
odd. Then, either a1 or a2 is even. Since b1, b2, c1, and c2 are odd, e is also
odd. That is, d and e have the same sign. Hence, TX has no embedding into
Λ−.

6-i) b is even and ace is odd.
Consider the mapping ϕ : TX −→ Λ− defined generically as in (2). Assume
that ϕ is an embedding. Since a and c are odd, from (3) a1, a2, c1, and c2 are
odd. Then, e is even. Hence, TX has no embedding into Λ−.

6-ii) b and e are even; a, c, and d+ f are odd.
Consider the mapping ϕ : TX −→ Λ− defined generically as in (2). Assume
that ϕ is an embedding. Without loss of generality, we may assume that d is
odd. Then, either b1 or b2 is even. Since a1, a2, c1, and c2 are odd, f is also
odd. That is, d and f have the same parity. Hence, TX has no embedding into
Λ−.

7-i) c is even and abd is odd.
Consider the mapping ϕ : TX −→ Λ− defined generically as in (2). Assume
that ϕ is an embedding. Since a and b are odd, from (3) a1, a2, b1, and b2 are
odd. Then, d is even. Hence, TX has no embedding into Λ−.

7-ii) c and d are even; a, b, and e+ f are odd.
Consider the mapping ϕ : TX −→ Λ− defined generically as in (2). Assume
that ϕ is an embedding. Without loss of generality, we may assume that e is
odd. Then, either c1 or c2 is even. Since a1, a2, b1, and b2 are odd, f is also
odd. That is, e and f have the same parity. Hence, TX has no embedding into
Λ−.
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8) a, b, and c are odd; d, e, or f is odd.
Consider the mapping ϕ : TX −→ Λ− defined generically as in (2). Assume
that ϕ is an embedding. Since a, b, and c are odd, from (3) a1, a2, b1, b2, c1,
and c2 are odd. Then, d, e, and f are even. Hence, TX has no embedding into
Λ−. □

4. Remaining cases

The remaining cases are as follows:
1. Only a is odd.
2. Only b is odd.
3. Only c is odd.
4. Only a and b are odd.
5. Only b and c are odd.
6. Only a and c are odd.
7. Only a, b, and c are odd.
However, these are all equivalent. First, we show that Cases 4 and 7 are

equivalent to Case 2 and that Cases 5 and 6 are equivalent to Case 3.

Lemma 4.1. The case in which only a and b are odd is equivalent to the case
in which only b is odd.

Proof. We use the base change by
(

1 1 1
0 1 0
0 0 1

)
, where a′ = a + b + c + d + e + f ,

b′ = b, c′ = c, d′ = 2b + d + f , e′ = 2c + e + f , and f ′ = f . Then this case is
reduced to the case in which only b is odd. □

Lemma 4.2. The case in which only a, b, and c are odd is equivalent to the
case in which only b is odd.

Proof. Since we assume that b, c < 0, we split into two cases.
i) f ≥ 0.

We use the base change by
(

1 2 1
0 1 0
0 −1 1

)
, where a′ = a+4b+c+2d+e+2f , b′ = b,

c′ = b + c − f , d′ = 4b + d + f , e′ = −4b + 2c − d + e + f , and f ′ = −2b + f .
Then this case is reduced to the case in which only b is odd.

ii) f < 0.

We use the base change by
(

1 2 1
0 1 0
0 1 1

)
, where a′ = a+4b+ c+2d+ e+2f , b′ = b,

c′ = b+ c+ f , d′ = 4b+ d+ f , e′ = 4b+2c+ d+ e+3f , and f ′ = 2b+ f . Then
this case is reduced to the case in which only b is odd. □

Lemma 4.3. The case in which only b and c are odd is equivalent to the case
in which only c is odd.

Proof. Since we assume that b, c < 0, we split into two cases.
i) f ≥ 0.

We use the base change by
(

1 0 0
0 1 −1
0 0 1

)
, where a′ = a, b′ = b + c − f , c′ = c,
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d′ = d− e, e′ = e, and f ′ = −2c+ f . Then this case is reduced to the case in
which only c is odd.

ii) f < 0.

We use the base change by
(

1 0 0
0 1 1
0 0 1

)
, where a′ = a, b′ = b + c + f , c′ = c,

d′ = d + e, e′ = e, and f ′ = 2c + f . Then this case is reduced to the case in
which only c is odd. □

Lemma 4.4. The case in which only a and c are odd is equivalent to the case
in which only c is odd.

Proof. We use the base change by
(

1 0 1
0 1 0
0 0 1

)
, where a′ = a+ c+ e, b′ = b, c′ = c,

d′ = d + f , e′ = 2c + e, and f ′ = f . Then this case is reduced to the case in
which only c is odd. □

Now in order to show that Cases 1, 2, and 3 are equivalent we prove the
following lemma.

Lemma 4.5. Let TX be a lattice given as (1) with b, c < 0. Then TX is
Z-equivalent to T ′

X with a′, b′, c′ < 0.

Proof. Assume that a ≥ 0 (If a < 0, there is nothing to prove). Let A=
(

0 0 1
1 0 0
0 1 0

)
.

Since A ∈ SL3(Z), the matrix ATXAtr is Z-equivalent to TX . Now T ′′
X =

ATXAtr=

(
2a′′ d′′ e′′

d′′ 2b′′ f ′′

e′′ f ′′ 2c′′

)
, where a′′ = c, b′′ = a, c′′ = b, d′′ = e, e′′ = f ,

f ′′ = d. Then c′′ < 0. By Lemma 1.6, T ′′
X is Z-equivalent to T ′

X with b′, c′ < 0
and a′′ = a′. That is, TX is Z-equivalent to T ′

X with a′, b′, c′ < 0. □

Now we can assume that a, b, c of Cases 1, 2, and 3 are negative.

Consider the base change by
(

0 1 0
0 0 1
1 0 0

)
, where a′ = b, b′ = c, c′ = a, d′ = f ,

e′ = d, and f ′ = e. Then Case 2 is reduced to Case 1. Also the base change

by
(

0 0 1
1 0 0
0 1 0

)
, where a′ = c, b′ = a, c′ = b, d′ = e, e′ = f , f ′ = d, forces Case 3

to be Case 1.

Remark 4.6. Whether a K3 surface covers an Enriques surface or not certainly
does not depend on the choice of a basis for the transcendental lattice. For
some choice of such a basis, if the parities of the integers in TX satisfy one of
the conditions in Theorem 1.3, then the parities of TX with respect to any other
basis will again satisfy one of the, possibly different, conditions of Theorem 1.3.
And the same holding for TX satisfying the conditions of Theorem 1.4.

Now we only consider the case in which only a is odd. In this case we do not
exactly know whether the K3 surface cover an Enriques surface. However, there
is a partial solution using the spinor genus of an indefinite ternary quadratic
form.
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Theorem 4.7 (Eichler, [2]). For indefinite forms of dimension of at least 3, a
spinor genus contains exactly one integral equivalence class of forms.

Thus if the spinor genus of the remaining case is the same as one case of
Theorem 1.3 and Theorem 1.4, then we know whether the K3 surface is a K3
cover of some Enriques surface.
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