
Bull. Korean Math. Soc. 49 (2012), No. 1, pp. 205–211

http://dx.doi.org/10.4134/BKMS.2012.49.1.205

ON GRADED KRULL OVERRINGS OF

A GRADED NOETHERIAN DOMAIN

Eun Kyung Lee and Mi Hee Park

Abstract. Let R be a graded Noetherian domain and A a graded Krull
overring of R. We show that if h-dimR ≤ 2, then A is a graded Noetherian
domain with h-dimA ≤ 2. This is a generalization of the well-known

theorem that a Krull overring of a Noetherian domain with dimension
≤ 2 is also a Noetherian domain with dimension ≤ 2.

Let R = ⊕γ∈ΓRγ be a commutative ring with identity graded by an arbitrary
torsionless grading monoid Γ. That is, Γ is a commutative cancellative additive
monoid with torsion-free quotient group G = ⟨Γ⟩. A torsionless grading monoid
can be given a total order compatible with the monoid operation [2, Corollary
3.4]. This is used in many referenced materials.

This paper continues the study of graded Noetherian rings begun in [7, 8].
In particular, we will show that, if R is a graded Noetherian domain with
h-dimR ≤ 2, then each graded Krull overring of R is graded Noetherian with
h-dimension ≤ 2. This is a graded version of the following Heinzer Theorem
[3, Theorem 9]: If D is a Noetherian domain with dimD ≤ 2, then each Krull
overring of D is again Noetherian with dimension ≤ 2.

The graded ring R is called a graded Noetherian ring if R satisfies the as-
cending chain condition on homogeneous ideals, or equivalently, if each ho-
mogeneous (prime) ideal of R is finitely generated. The h-height of a homo-
geneous prime ideal P (denoted by h-htP ) is defined to be the supremum
of the lengths of chains of homogeneous prime ideals descending from P and
the h-dimension of R (denoted by h-dimR) is defined to be sup {h-htP |
P is a homogeneous prime ideal of R}.

If R is a Γ-graded integral domain, then the set S of nonzero homoge-
neous elements of R is a multiplicatively closed set. The quotient ring RS =⊕

γ∈G(RS)γ is a G-graded ring, where (RS)γ = {a
b | a ∈ Rα, b ∈ Rβ \

{0}, and α−β = γ} for each γ ∈ G. It is called the homogeneous quotient field
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of R since each nonzero homogeneous element of RS is a unit. An overring
A of R contained in RS is called a homogeneous overring if A is a G-graded
ring with each Aγ = A ∩ (RS)γ . Let {Rλ}λ∈Λ be a family of homogeneous
overrings of R such that R =

∩
Rλ. The intersection R =

∩
Rλ is said to be

homogeneously locally finite if each nonzero homogeneous element of R is a unit
in all Rλ but a finite number of the Rλ.

A graded domain R is called a graded DVR if R has the unique nonzero
homogeneous prime ideal and it is principal. R is called a graded Krull domain
if it is completely integrally closed and satisfies the ascending chain condition
on homogeneous divisorial ideals, or equivalently, if R =

∩
Vλ, where the inter-

section is homogeneously locally finite and each Vλ is a homogeneous overring
of R which is a graded DVR.

Undefined terms and terminology are standard as in [2, 4, 5].

Theorem 1. Let R be a graded Noetherian ring and let R[X] be a graded
polynomial extension ring of R in which X is a homogeneous element. Then
R[X] is also a graded Noetherian ring.

Proof. Let J be a nonzero homogeneous ideal of R[X] and let In be the ideal
of R generated by the leading coefficients of homogeneous polynomials in J
of degree n in X. Since R[X] is a graded extension ring of R and X is a
homogeneous element, each leading coefficient of a homogeneous polynomial in
R[X] is homogeneous. Therefore, In is a homogeneous ideal of R.

Let r be the leading coefficient of a homogeneous polynomial f ∈ J of degree
n in X. Then r is the leading coefficient of Xf and Xf is a homogeneous
polynomial in J of degree n + 1 in X. Hence I0 ⊆ I1 ⊆ I2 ⊆ · · · . Since R
is a graded Noetherian ring, there exists an integer t such that In = It for all
n ≥ t. Furthermore, each In is finitely generated, say In = (rn1, rn2, . . . , rnin),
where each rnj is the leading coefficient of a homogeneous polynomial fnj in J
of degree n. Observe that f0j = r0j ∈ R.

We claim that J = ({fnj | 0 ≤ n ≤ t, 1 ≤ j ≤ in}).
Let J ′ = ({fnj | 0 ≤ n ≤ t, 1 ≤ j ≤ in}). Clearly J ′ ⊆ J . For the opposite

inclusion, let f be a nonzero homogeneous polynomial in J of degree k in X.
Use induction on k. If k = 0, then f ∈ J ∩ R = I0 ⊆ J ′. Assume that k ≥ 1
and that every homogeneous polynomial in J of degree less than k is in J ′. Let
r be the leading coefficient of f .

If k ≤ t, then r ∈ Ik and hence r = s1rk1+s2rk2+· · ·+sikrkik , where each sj
is a homogeneous element of R and each sjrkj belongs to the same homogeneous

component of R. Therefore, the polynomial
∑ik

j=1 sjfkj is a homogeneous

polynomial in J ′. Note that f and
∑ik

j=1 sjfkj belong to the same homogeneous

component of R[X] and that they have the same leading coefficient r and the

same degree k inX. Consequently, f−
∑ik

j=1 sjfkj is a homogeneous polynomial

in J of degree less than k. By the induction hypothesis, f −
∑ik

j=1 sjfkj ∈ J ′,

whence f ∈ J ′.
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If k > t, then r ∈ Ik = It and r =
∑it

j=1 sjrtj , where each sj is a homoge-
neous element of R and each sjrtj belongs to the same homogeneous component

of R. Note that (
∑it

j=1 sjftj)X
k−t is a homogeneous polynomial in J ′ of degree

k and that it has leading coefficient r. Thus f −
∑it

j=1 sjX
k−tftj is a homo-

geneous polynomial in J of degree less than k. By the induction hypothesis,

f −
∑it

j=1 sjX
k−tftj ∈ J ′. Consequently, f ∈ J ′.

Therefore, J = J ′. Thus since each homogeneous ideal of R[X] is finitely
generated, R[X] is a graded Noetherian ring. □

Remark 2. Let k be a field, let X,Y be indeterminates over k, and let R =
k[Y ] = ⊕i≥0 kY

i. Then R is an N0-graded Noetherian ring. Consider the poly-
nomial extension ring R[X] over R. It can be made into an N2

0-graded ring
by defining R[X](i,j) = kY iXj for each (i, j) ∈ N2

0, i.e., R[X] = k[Y,X] =

⊕(i,j)∈N2
0
kY iXj . It also can be made into an N0-graded ring by defining

R[X]m = ⊕i+j=m kY iXj for each m ≥ 0, i.e.,

R[X] = k[Y,X] = ⊕m≥0(⊕i+j=m kY iXj).

Both graded rings are graded extension rings of R in which X is a homogeneous
element. Note that X + Y is not a homogeneous element in the first grading,
while it is a homogeneous element in the second grading. Thus R[X] has
many distinct gradings which extend the grading of R and in which X is a
homogeneous element.

A graded integral domain R is called a graded PID if each homogeneous
ideal of R is principal (generated by a homogeneous element).

Lemma 3 ([8, Theorem 3.5]). Let x be a nonunit homogeneous element in a
graded Noetherian ring and let P be a prime ideal minimal over (x). Then
h-htP ≤ 1.

Theorem 4. Let R be a graded integral domain in which each nonzero homo-
geneous element is unit, and let R[X] be a graded polynomial extension ring
of R in which X is a homogeneous element. Then R[X] is a graded PID and
h-dimR[X] = 1.

Proof. Let I be a nonzero homogeneous ideal of R[X]. Choose a nonzero homo-
geneous polynomial g in I of minimal degree in X. Since its leading coefficient
is a nonzero homogeneous element of R, it is a unit element. Therefore, we
may assume that g is a monic polynomial. We claim that I = (g). Let f be
a nonzero homogeneous polynomial in I. By division algorithm, there exist
q, r ∈ R[X] such that f = gq + r, where r = 0 or the degree of r in X is less
than the degree of g in X. Note that q and r are homogeneous polynomials.
Since r = f − gq ∈ I, by choice of g, r must be zero. Thus f = gq ∈ (g).

Thus R[X] is a graded PID. It follows from Lemma 3 that h-dimR[X] =
1. □
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Corollary 5. Let R be a graded ring and let R[X] be a graded polynomial
extension ring of R in which X is a homogeneous element. Then there does
not exist in R[X] a chain of three distinct homogeneous prime ideals with the
same contraction in R.

Proof. There are two easy observations: If Q is a homogeneous prime ideal of
R[X], then Q∩R is a homogeneous prime ideal of R and Q ⊇ (Q∩R)R[X]; If
R is a graded integral domain with homogeneous quotient field RS , then there
is a one-to-one correspondence between the homogeneous prime ideals of R[X]
that contract to (0) in R and the homogeneous prime ideals of RS [X].

Together with the above theorem, these two statements prove the corollary.
□

Corollary 6. Let R be a graded Krull domain and let R[X] be a graded poly-
nomial extension ring of R in which X is a homogeneous element. Then R[X]
is also a graded Krull domain.

Proof. Let S be the set of nonzero homogeneous elements of R. By Theorem 4,
RS [X] is a graded PID. Then, obviously, RS [X] is graded Noetherian and hence
satisfies the ascending chain condition on homogeneous (divisorial) ideals. Also,
since each nonzero homogeneous ideal I of RS [X] is principal, we have (I : I) =
RS [X], and hence by [1, Proposition 5.2], RS [X] is completely integrally closed.
Thus it follows that RS [X] is a graded Krull domain.

Let V be a graded DVR with a single nonzero homogeneous principal prime
ideal M and let V [X] be a graded polynomial extension ring of V in which X
is a homogeneous element. Then, by Theorem 1, V ∗ := V [X]T\M [X], where T
is the set of nonzero homogeneous elements of V [X], is a graded Noetherian
domain with the unique maximal homogeneous ideal MV ∗. Since MV ∗ is
principal, h-htMV ∗ = 1 and hence MV ∗ is the unique nonzero homogeneous
prime ideal of V ∗. Moreover, it is principal. Therefore, V ∗ is a graded DVR.

Since R is a graded Krull domain, by [1, Theorem 5.15] we can write R =∩
Vα, where the intersection is homogeneously locally finite and each Vα is a

homogeneous overring of R which is a graded DVR. Then R[X] =
∩

Vα[X] =∩
(V ∗

α ∩RS [X]) = (
∩

V ∗
α )∩RS [X]. Since each V ∗

α and RS [X] are graded Krull
domains, by [1, Theorem 5.15] again, it suffices to show that the intersection
R[X] = (

∩
V ∗
α ) ∩RS [X] is homogeneously locally finite.

Consider a nonzero homogeneous element f = a0+a1X+· · ·+anX
n of R[X].

We may assume that each ai is a homogeneous element of R. If ai ̸= 0, then
ai is a nonunit in only finitely many Vα’s, say V1, V2, . . . , Vm. Then for each
α ̸= 1, 2, . . . ,m, f is a unit in V ∗

α . Thus the intersection R[X] = (
∩

V ∗
α )∩RS [X]

is homogeneously locally finite. □
Lemma 7. Let R be a graded Noetherian domain and let R[X] be a graded
polynomial extension ring of R in which X is a homogeneous element. If P
is a nonzero minimal homogeneous prime ideal of R, then P [X] is a nonzero
minimal homogeneous prime ideal of R[X].
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Proof. Let a be a nonzero homogeneous element of P . Then P is minimal over
aR. We claim that P [X] is minimal over aR[X]. Suppose that there exists
a homogeneous prime ideal Q of R[X] such that aR[X] ⊆ Q ⊆ P [X]. Then
a ∈ Q ∩ R ⊆ P . Therefore, Q ∩ R = P and Q ⊇ P [X], whence Q = P [X].
Thus P [X] is minimal over the principal homogeneous ideal aR[X], and hence
by Theorem 1 and Lemma 3, h-htP [X] = 1. □

Theorem 8. Let R be a graded Noetherian ring and let R[X] be a graded
polynomial extension ring of R in which X is a homogeneous element. Let P
be a homogeneous prime ideal of R with h-htP = n and let Q be a homogeneous
prime ideal of R[X] such that Q∩R = P and Q ⊋ P [X]. Then h-htP [X] = n
and h-htQ = n+ 1.

Proof. It is obvious that h-htP [X] ≥ n and h-htQ ≥ n + 1. So we only need
to prove the inequalities h-htP [X] ≤ n, h-htQ ≤ n+ 1. We will use induction
on n.

For n = 0, let Q′ be a homogeneous prime ideal of R[X] contained in P [X].
Then Q′ ∩ R ⊆ P . By minimality of P , Q′ ∩ R = P and Q′ ⊇ P [X]. Thus
we have Q′ = P [X], i.e., P [X] is a minimal homogeneous prime ideal of R[X].
The statement h-htQ = 1 follows from Corollary 5.

Let n ≥ 1. Suppose that h-htP [X] > n. Then there exists a chain of
homogeneous prime ideals Q0 ⊊ Q1 ⊊ Q2 ⊊ · · · ⊊ Qn+1 = P [X]. Let P ′ =
Qn ∩ R. Then P ′ is a homogeneous prime ideal of R properly contained in P
and hence h-htP ′ ≤ n− 1. By the induction hypothesis, h-htP ′[X] = h-htP ′

and h-htQn ≤ h-htP ′ + 1 ≤ n. But since h-htQn ≥ n, we have h-htQn = n
and h-htP ′ = n − 1. Therefore, P ′[X] ⊊ Qn ⊊ Qn+1 = P [X]. This implies
that, in the graded Noetherian domain (R/P ′)[X], h-ht (P/P ′)[X] ≥ 2. But
since P/P ′ is a nonzero minimal homogeneous prime ideal of R/P ′, (P/P ′)[X]
is also a nonzero minimal homogeneous prime ideal of (R/P ′)[X] by the above
lemma. This contradiction proves that h-htP [X] ≤ n.

Now we will prove h-htQ ≤ n+ 1. Let Q′ be a homogeneous prime ideal of
R[X] properly contained in Q. If Q′∩R = P , then by Corollary 5, we must have
Q′ = P [X] and hence h-htQ′ ≤ n. If Q′ ∩R ⊊ P , then h-ht (Q′ ∩R) ≤ n− 1.
By the induction hypothesis, h-htQ′ ≤ n. Therefore, h-htQ ≤ n+ 1. □

Corollary 9. Let R be a graded Noetherian ring and let R[X] be a graded
polynomial extension ring of R in which X is a homogeneous element. Then
h-dimR[X] = h-dimR+ 1.

Proof. By the above theorem, it suffices to show that for each homogeneous
prime ideal P of R, there exists a homogeneous prime ideal Q of R[X] such
that Q∩R = P , Q ⊋ P [X]. Note that P +XR[X] is our desired homogeneous
prime ideal of R[X]. □
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Lemma 10 ([8, Theorem 4.2]). Let R ⊆ A be graded integral domains with
homogeneous quotient fields K ⊆ L, respectively. Assume that R is graded Noe-
therian with h-dimR = 1 and L is finite over K. Then A is graded Noetherian
with h-dimA ≤ 1. Moreover, if J is a nonzero homogeneous ideal of A, then
A/J is a finitely generated R-module.

Theorem 11. Let R be a graded Noetherian domain with h-dimR ≤ 2 and
let A be a graded extension ring of R which is a graded Krull domain. If the
homogeneous quotient field of A is a module finite over that of R, then A is a
graded Noetherian domain with h-dimA ≤ 2.

Proof. By [8, Theorem 6.7], it suffices to show that, for every homogeneous
prime ideal Q of A of height 1, A/Q is a graded Noetherian domain with
h-dim(A/Q) ≤ 1.

Let Q be a homogeneous prime ideal of A with htQ = 1. If Q is a maximal
homogeneous ideal, then there is nothing to prove. Assume that Q is not a
maximal homogeneous ideal and let Q′ be a homogeneous prime ideal of A such
that Q′ ⊋ Q. Take a homogeneous element x ∈ Q′ \Q.

Make the polynomial ring R[X] into a graded extension ring of R by defining
the degree of X to be the degree of x in the graded ring A. Consider the
map φ : R[X] → R[x] given by f(X) 7→ f(x). Then φ is a graded ring
epimorphism and hence R[X]/Kerφ ∼= R[x] as graded rings. Therefore, R[x]
is a graded Noetherian domain. Since the (homogeneous) quotient field of A
is finite over the (homogeneous) quotient field of R, x is algebraic over R and
hence Kerφ ̸= (0). Therefore, h-dimR[x] ≤ 2.

Thus by replacing R with R[x], we may assume that x ∈ R. Then Q′ ∩R ⊋
P := Q ∩R ⊋ (0). Therefore, h-htP = 1.

Let S, T be the sets of nonzero homogeneous elements of R, A, respectively.
Then RS\P is a graded Noetherian domain with h-dimRS\P = h-htP = 1,
AT\Q is a graded extension ring of RS\P , and the homogeneous quotient field
AT of AT\Q is finite over the homogeneous quotient field RS of RS\P (by
assumption). Therefore, by the above lemma, AT\Q/QAT\Q is finite over
RS\P /PRS\P . Note that AT\Q/QAT\Q, RS\P /PRS\P are the homogeneous
quotient fields of A/Q, R/P , respectively. Since A/Q is a graded extension ring
of R/P and R/P is a graded Noetherian domain with h-dim (R/P ) = 1, by the
above lemma again, A/Q is a graded Noetherian domain with h-dim (A/Q) ≤
1. □

Finally, as a corollary, a graded version of the Heinzer Theorem can be
obtained.

Corollary 12. Let R be a graded Noetherian domain with h-dimR ≤ 2 and
let A be a graded Krull overring of R. Then A is a graded Noetherian domain
with h-dimA ≤ 2.

As another corollary, the graded version [8, Theorem 6.8] of the Nagata
Theorem [6] can be recovered.
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Corollary 13. Let R be a graded Noetherian domain with h-dimR ≤ 2. Then
the integral closure R′ of R is also a graded Noetherian domain with h-dimR′ ≤
2.

Proof. By [7, Theorem 2.10] or [8, Theorem 5.3], R′ is a graded Krull domain.
Hence it follows from Corollary 12 that R′ is a graded Noetherian domain with
h-dimR′ ≤ 2. □
Remark 14. There exists an example of a graded Noetherian domain R such
that h-dimR = 2, dimR > 2, but R is not Noetherian. For instance, let k be
a field, let Γ be the additive monoid Q⊕ N0 ⊕ N0, and let R be the Γ-monoid
ring k[Γ]. Then R ∼= k[Q][Y, Z] =

⊕
(i,j)∈N2

0
k[Q]Y iZj , where Y, Z are indeter-

minates over k[Q]. Since the Q-group ring k[Q] is equal to its homogeneous
quotient field, it is a graded Noetherian domain with h-dim k[Q] = 0. By The-
orem 1 and Corollary 9, R is a graded Noetherian domain with h-dimR = 2.
Meanwhile, since Q is not a finitely generated abelian group, k[Q] is not
Noetherian ([9, Theorem 2.2]) and hence R is not Noetherian, either. Since
k[Q] is integral over k[Z], k[Q][Y, Z] is integral over k[Z][Y,Z]. Therefore,
dimR = dim k[Q][Y,Z] = dim k[Z][Y,Z] = dim k[X,X−1][Y, Z] = 3.
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