Bull. Korean Math. Soc. 49 (2012), No. 1, pp. 205-211
http://dx.doi.org/10.4134/BKMS.2012.49.1.205

ON GRADED KRULL OVERRINGS OF
A GRADED NOETHERIAN DOMAIN

EuN KYUNG LEE AND M1 HEE PARK

ABSTRACT. Let R be a graded Noetherian domain and A a graded Krull
overring of R. We show that if h-dim R < 2, then A is a graded Noetherian
domain with h-dim A < 2. This is a generalization of the well-known
theorem that a Krull overring of a Noetherian domain with dimension
< 2 is also a Noetherian domain with dimension < 2.

Let R = ®,er Ry be a commutative ring with identity graded by an arbitrary
torsionless grading monoid I'. That is, I' is a commutative cancellative additive
monoid with torsion-free quotient group G = (I'). A torsionless grading monoid
can be given a total order compatible with the monoid operation [2, Corollary
3.4]. This is used in many referenced materials.

This paper continues the study of graded Noetherian rings begun in [7, §].
In particular, we will show that, if R is a graded Noetherian domain with
h-dim R < 2, then each graded Krull overring of R is graded Noetherian with
h-dimension < 2. This is a graded version of the following Heinzer Theorem
[3, Theorem 9]: If D is a Noetherian domain with dim D < 2, then each Krull
overring of D is again Noetherian with dimension < 2.

The graded ring R is called a graded Noetherian ring if R satisfies the as-
cending chain condition on homogeneous ideals, or equivalently, if each ho-
mogeneous (prime) ideal of R is finitely generated. The h-height of a homo-
geneous prime ideal P (denoted by h-ht P) is defined to be the supremum
of the lengths of chains of homogeneous prime ideals descending from P and
the h-dimension of R (denoted by h-dim R) is defined to be sup { h-ht P |
P is a homogeneous prime ideal of R}.

If R is a I'-graded integral domain, then the set S of nonzero homoge-
neous elements of R is a multiplicatively closed set. The quotient ring Rg =
D, cc(Rs)y is a G-graded ring, where (Rs)y, = {3 [ @ € Ra, b € Rg \
{0}, and ao— 8 = v} for each v € G. Tt is called the homogeneous quotient field
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of R since each nonzero homogeneous element of Rg is a unit. An overring
A of R contained in Rg is called a homogeneous overring if A is a G-graded
ring with each A, = AN (Rg)y. Let {Rx}rca be a family of homogeneous
overrings of R such that R = [ Ry. The intersection R = (| R, is said to be
homogeneously locally finite if each nonzero homogeneous element of R is a unit
in all Ry but a finite number of the Rj.

A graded domain R is called a graded DVR if R has the unique nonzero
homogeneous prime ideal and it is principal. R is called a graded Krull domain
if it is completely integrally closed and satisfies the ascending chain condition
on homogeneous divisorial ideals, or equivalently, if R = [ V), where the inter-
section is homogeneously locally finite and each V) is a homogeneous overring
of R which is a graded DVR.

Undefined terms and terminology are standard as in [2, 4, 5].

Theorem 1. Let R be a graded Noetherian ring and let R[X] be a graded
polynomial extension ring of R in which X is a homogeneous element. Then
R[X] is also a graded Noetherian ring.

Proof. Let J be a nonzero homogeneous ideal of R[X] and let I,, be the ideal
of R generated by the leading coefficients of homogeneous polynomials in .J
of degree n in X. Since R[X] is a graded extension ring of R and X is a
homogeneous element, each leading coefficient of a homogeneous polynomial in
R[X] is homogeneous. Therefore, I,, is a homogeneous ideal of R.

Let 7 be the leading coefficient of a homogeneous polynomial f € J of degree
n in X. Then r is the leading coefficient of X f and X f is a homogeneous

polynomial in J of degree n + 1 in X. Hence Ip C I; C I, C ---. Since R
is a graded Noetherian ring, there exists an integer ¢ such that I,, = I; for all
n > t. Furthermore, each I, is finitely generated, say I, = (Tn1,7n2, - ni,, )s

where each 7,; is the leading coefficient of a homogeneous polynomial f,; in J
of degree n. Observe that fy; =r9; € R.

We claim that J = ({fn; |0 <n <t, 1 <5 <i,}).

Let J' = ({fn; |0 <n <t, 1<j<iy}). Clearly J' C J. For the opposite
inclusion, let f be a nonzero homogeneous polynomial in J of degree k in X.
Use induction on k. If k = 0, then f € JNR = Iy C J'. Assume that k > 1
and that every homogeneous polynomial in J of degree less than k is in J'. Let
r be the leading coefficient of f.

If kK <t, then r € I}, and hence r = s1741+ 27,2+ - -+ 54, Thi,, , Where each s;
is a homogeneous element of R and each s;ry; belongs to the same homogeneous
component of R. Therefore, the polynomial Z;’; 155 fr; is a homogeneous
polynomial in J’. Note that f and Z;’”: 1 5jfrj belong to the same homogeneous
component of R[X] and that they have the same leading coefficient r and the
same degree k in X. Consequently, f —Z;": 1 5jfrj is a homogeneous polynomial
in J of degree less than k. By the induction hypothesis, f — E;’;l sifu; € J,
whence f € J'.
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If k >t thenr € I, = I; and r = Z;‘:l 5474, where each s; is a homoge-
neous element of R and each s;7;; belongs to the same homogeneous component
of R. Note that (Z;t:l s; ftj)Xk_t is a homogeneous polynomial in J' of degree
k and that it has leading coefficient . Thus f — 23;1 s; X*=1f,; is a homo-
geneous polynomial in J of degree less than k. By the induction hypothesis,
f=35 s; Xk=tf,. € J'. Consequently, f € J'.

Therefore, J = J'. Thus since each homogeneous ideal of R[X] is finitely
generated, R[X] is a graded Noetherian ring. O

Remark 2. Let k be a field, let X,Y be indeterminates over k, and let R =
kY] = @®;>0 kY. Then R is an Np-graded Noetherian ring. Consider the poly-
nomial extension ring R[X] over R. It can be made into an NZ-graded ring
by defining R[X](; ;) = kY*X7 for each (i,j) € Nj, i.e., R[X] = k[Y,X] =
B (i j)enz EY?X7. Tt also can be made into an Ny-graded ring by defining
R[X]m = ®itjem kY X7 for each m >0, i.e.,

R[X] = k[Y, X] = @pz0(Bitjmm kY X7).

Both graded rings are graded extension rings of R in which X is a homogeneous
element. Note that X 4+ Y is not a homogeneous element in the first grading,
while it is a homogeneous element in the second grading. Thus R[X] has
many distinct gradings which extend the grading of R and in which X is a
homogeneous element.

A graded integral domain R is called a graded PID if each homogeneous
ideal of R is principal (generated by a homogeneous element).

Lemma 3 ([8, Theorem 3.5]). Let x be a nonunit homogeneous element in a
graded Noetherian ring and let P be a prime ideal minimal over (z). Then
h-ht P < 1.

Theorem 4. Let R be a graded integral domain in which each nonzero homo-
geneous element is unit, and let R[X] be a graded polynomial extension ring
of R in which X is a homogeneous element. Then R[X] is a graded PID and
h-dim R[X] = 1.

Proof. Let I be a nonzero homogeneous ideal of R[X]. Choose a nonzero homo-
geneous polynomial g in I of minimal degree in X. Since its leading coefficient
is a nonzero homogeneous element of R, it is a unit element. Therefore, we
may assume that g is a monic polynomial. We claim that I = (g). Let f be
a nonzero homogeneous polynomial in I. By division algorithm, there exist
q,7 € R[X] such that f = gq+ r, where r = 0 or the degree of r in X is less
than the degree of g in X. Note that ¢ and r are homogeneous polynomials.
Since r = f — gq € I, by choice of g, r must be zero. Thus f = gq € (g).

Thus R[X] is a graded PID. It follows from Lemma 3 that h-dim R[X]
1.

Ol
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Corollary 5. Let R be a graded ring and let R[X] be a graded polynomial
extension ring of R in which X is a homogeneous element. Then there does
not exist in R[X] a chain of three distinct homogeneous prime ideals with the
same contraction in R.

Proof. There are two easy observations: If Q) is a homogeneous prime ideal of

R[X], then @ N R is a homogeneous prime ideal of R and @ 2 (Q N R)R[X]; If

R is a graded integral domain with homogeneous quotient field Rg, then there

is a one-to-one correspondence between the homogeneous prime ideals of R[X]
that contract to (0) in R and the homogeneous prime ideals of Rg[X].

Together with the above theorem, these two statements prove the corollary.

O

Corollary 6. Let R be a graded Krull domain and let R[X] be a graded poly-
nomial extension ring of R in which X is a homogeneous element. Then R[X]
is also a graded Krull domain.

Proof. Let S be the set of nonzero homogeneous elements of R. By Theorem 4,
Rs[X] is a graded PID. Then, obviously, Rg[X] is graded Noetherian and hence
satisfies the ascending chain condition on homogeneous (divisorial) ideals. Also,
since each nonzero homogeneous ideal I of Rg[X] is principal, we have (I : I) =
Rgs[X], and hence by [1, Proposition 5.2], Rg[X] is completely integrally closed.
Thus it follows that Rg[X] is a graded Krull domain.

Let V be a graded DVR with a single nonzero homogeneous principal prime
ideal M and let V[X] be a graded polynomial extension ring of V' in which X
is a homogeneous element. Then, by Theorem 1, V* := V[X|p\ ps(x], where T
is the set of nonzero homogeneous elements of V[X], is a graded Noetherian
domain with the unique maximal homogeneous ideal MV™*. Since MV™* is
principal, h-ht MV* = 1 and hence MV* is the unique nonzero homogeneous
prime ideal of V*. Moreover, it is principal. Therefore, V* is a graded DVR.

Since R is a graded Krull domain, by [1, Theorem 5.15] we can write R =
() Va, where the intersection is homogeneously locally finite and each V, is a
homogeneous overring of R which is a graded DVR. Then R[X] =] Vo[X] =
N (VENRs[X]) = (N V)N Rs[X]. Since each V. and Rg[X] are graded Krull
domains, by [1, Theorem 5.15] again, it suffices to show that the intersection
R[X] = (N V)N Rg[X] is homogeneously locally finite.

Consider a nonzero homogeneous element f = ap+a; X+ - -+a, X" of R[X].
We may assume that each a; is a homogeneous element of R. If a; # 0, then
a; is a nonunit in only finitely many V,’s, say V1, Va,...,V,,. Then for each
a#1,2,...,m, fisaunit in V. Thus the intersection R[X] = ([ VZ)NRs[X]
is homogeneously locally finite. O

Lemma 7. Let R be a graded Noetherian domain and let R[X] be a graded
polynomial extension ring of R in which X is a homogeneous element. If P
is a nonzero minimal homogeneous prime ideal of R, then P[X] is a nonzero
minimal homogeneous prime ideal of R[X].
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Proof. Let a be a nonzero homogeneous element of P. Then P is minimal over
aR. We claim that P[X] is minimal over aR[X]. Suppose that there exists
a homogeneous prime ideal @ of R[X] such that aR[X] C @ C P[X]. Then
a € QN R C P. Therefore, QN R = P and @Q 2 P[X], whence Q@ = P[X].
Thus P[X] is minimal over the principal homogeneous ideal aR[X], and hence
by Theorem 1 and Lemma 3, h-ht P[X] = 1. O

Theorem 8. Let R be a graded Noetherian ring and let R[X] be a graded
polynomial extension Ting of R in which X is a homogeneous element. Let P
be a homogeneous prime ideal of R with h-ht P = n and let QQ be a homogeneous
prime ideal of R[X] such that QN R = P and Q 2 P[X]. Then h-ht P[X] =n
and h-ht Q =n + 1.

Proof. Tt is obvious that h-ht P[X] > n and h-ht Q@ > n + 1. So we only need
to prove the inequalities h-ht P[X] < n, h-ht @ < n 4+ 1. We will use induction
on n.

For n = 0, let Q" be a homogeneous prime ideal of R[X] contained in P[X].
Then @' N R C P. By minimality of P, @ "R = P and Q' 2 P[X]. Thus
we have Q' = P[X], i.e., P[X] is a minimal homogeneous prime ideal of R[X].
The statement h-ht @ = 1 follows from Corollary 5.

Let n > 1. Suppose that h-ht P[X] > n. Then there exists a chain of
homogeneous prime ideals Qo € Q1 € Q2 € -+ € Qn+1 = P[X]. Let P/ =
Q. N R. Then P’ is a homogeneous prime ideal of R properly contained in P
and hence h-ht P’ < n — 1. By the induction hypothesis, h-ht P'[X]| = h-ht P’
and h-ht Q,, < h-ht P’ + 1 < n. But since h-ht Q,, > n, we have h-ht Q,, = n
and h-ht P" = n — 1. Therefore, P'[X] C @, € Qnt+1 = P[X]. This implies
that, in the graded Noetherian domain (R/P’)[X], h-ht (P/P’)[X] > 2. But
since P/P’ is a nonzero minimal homogeneous prime ideal of R/P’, (P/P’)[X]
is also a nonzero minimal homogeneous prime ideal of (R/P’)[X] by the above
lemma. This contradiction proves that h-ht P[X] < n.

Now we will prove h-ht Q < n + 1. Let ' be a homogeneous prime ideal of
R[X] properly contained in Q. If @'NR = P, then by Corollary 5, we must have
Q' = P[X] and hence h-ht Q' < n. If Q' "R C P, then h-ht (' "N R) <n — 1.
By the induction hypothesis, h-ht Q" < n. Therefore, h-ht Q < n + 1. O

Corollary 9. Let R be a graded Noetherian ring and let R[X] be a graded
polynomial extension ring of R in which X is a homogeneous element. Then
h-dim R[X] = h-dim R + 1.

Proof. By the above theorem, it suffices to show that for each homogeneous
prime ideal P of R, there exists a homogeneous prime ideal @) of R[X] such
that QN R = P, @ D P[X]. Note that P+ X R[X] is our desired homogeneous
prime ideal of R[X]. O
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Lemma 10 ([8, Theorem 4.2]). Let R C A be graded integral domains with
homogeneous quotient fields K C L, respectively. Assume that R is graded Noe-
therian with h-dim R = 1 and L is finite over K. Then A is graded Noetherian
with h-dim A < 1. Moreover, if J is a nonzero homogeneous ideal of A, then
A/J is a finitely generated R-module.

Theorem 11. Let R be a graded Noetherian domain with h-dim R < 2 and
let A be a graded extension ring of R which is a graded Krull domain. If the
homogeneous quotient field of A is a module finite over that of R, then A is a
graded Noetherian domain with h-dim A < 2.

Proof. By [8, Theorem 6.7], it suffices to show that, for every homogeneous
prime ideal @ of A of height 1, A/Q is a graded Noetherian domain with
h-dim(A/Q) < 1.

Let @Q be a homogeneous prime ideal of A with ht Q = 1. If @ is a maximal
homogeneous ideal, then there is nothing to prove. Assume that @ is not a
maximal homogeneous ideal and let ' be a homogeneous prime ideal of A such
that @' 2 Q. Take a homogeneous element x € Q' \ Q.

Make the polynomial ring R[X] into a graded extension ring of R by defining
the degree of X to be the degree of x in the graded ring A. Consider the
map ¢ : R[X] — Rz] given by f(X) — f(z). Then ¢ is a graded ring
epimorphism and hence R[X]/Kery = R[z] as graded rings. Therefore, R[x]
is a graded Noetherian domain. Since the (homogeneous) quotient field of A
is finite over the (homogeneous) quotient field of R, x is algebraic over R and
hence Ker ¢ # (0). Therefore, h-dim R[z] < 2.

Thus by replacing R with R[z], we may assume that z € R. Then Q'NR 2
P:=QnNR2D(0). Therefore, h-ht P = 1.

Let S, T be the sets of nonzero homogeneous elements of R, A, respectively.
Then Rg\p is a graded Noetherian domain with h-dim Rg\p = h-ht P = 1,
Ap\q is a graded extension ring of Rg\ p, and the homogeneous quotient field
Ar of Ap\q is finite over the homogeneous quotient field Rs of Rg\p (by
assumption). Therefore, by the above lemma, A\ q/QAp\q is finite over
Rg\p/PRg\p. Note that Ap\g/QAr\q, Rs\p/PRg\p are the homogeneous
quotient fields of A/Q, R/ P, respectively. Since A/Q is a graded extension ring
of R/P and R/P is a graded Noetherian domain with h-dim (R/P) = 1, by the
above lemma again, A/Q is a graded Noetherian domain with h-dim (4/Q) <
1. O

Finally, as a corollary, a graded version of the Heinzer Theorem can be
obtained.

Corollary 12. Let R be a graded Noetherian domain with h-dim R < 2 and
let A be a graded Krull overring of R. Then A is a graded Noetherian domain
with h-dim A < 2.

As another corollary, the graded version [8, Theorem 6.8] of the Nagata
Theorem [6] can be recovered.
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Corollary 13. Let R be a graded Noetherian domain with h-dim R < 2. Then
the integral closure R’ of R is also a graded Noetherian domain with h-dim R’ <
2.

Proof. By [7, Theorem 2.10] or [8, Theorem 5.3], R’ is a graded Krull domain.
Hence it follows from Corollary 12 that R’ is a graded Noetherian domain with
h-dim R’ < 2. Il

Remark 14. There exists an example of a graded Noetherian domain R such
that h-dim R = 2, dim R > 2, but R is not Noetherian. For instance, let k be
a field, let I" be the additive monoid Q & Ny & Ny, and let R be the I'-monoid
ring k[[']. Then R = k[Q][Y, Z] = ®(i,j)eNg k[Q]Y?Z7, where Y, Z are indeter-
minates over k[Q]. Since the Q-group ring k[Q] is equal to its homogeneous
quotient field, it is a graded Noetherian domain with h-dim £[Q] = 0. By The-
orem 1 and Corollary 9, R is a graded Noetherian domain with h-dim R = 2.
Meanwhile, since Q is not a finitely generated abelian group, k[Q] is not
Noetherian ([9, Theorem 2.2]) and hence R is not Noetherian, either. Since
k[Q] is integral over k[Z], k[Q][Y, Z] is integral over k[Z][Y,Z]. Therefore,
dim R = dim k[Q][Y, Z] = dim k[Z][Y, Z] = dim k[X, X1][Y, Z] = 3.
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