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ON THE TATE-SHAFAREVICH GROUP OF

ELLIPTIC CURVES OVER Q

Dohyeong Kim

Abstract. Let E be an elliptic curve over Q. Using Iwasawa theory,
we give what seems to be the first general upper bound for the order of
vanishing of the p-adic L-function at s = 0, and the Zp-corank of the

Tate-Shafarevich group for all sufficiently large good ordinary primes p.

1. Introduction

Let E be an elliptic curve defined overQ. We recall that the Tate-Shafarevich
group of E/Q is defined by

X(E/Q) = Ker

(
H1
(
Q, E(Q)

)
−→

∏
v

H1
(
Qv, E(Qv)

))
,

where v runs over all places of Q, and Qv is the completion of Q at v. Let p
be a prime number. It is well-known that the p-primary subgroup of X(E/Q)
has a finite Zp-corank, and we denote this corank by tp. It is conjectured that
tp = 0 for every prime p, but this is unknown when the complex L-function
has a zero of order at least 2 at s = 1. In principle, arguments from Galois
cohomology give an upper bound for tp, but the estimate is so bad that no
one has ever written it down. In this paper, we will use p-adic arguments
from Iwasawa main conjecture, combined with a theorem in [1] on the non-
vanishing of twisted complex L-functions, to give an upper bound for the order
of vanishing of p-adic L-function at at the Birch-Swinerton-Dyer point in the
p-adic plane, which we normalize to be the point s = 0. We prove:

Theorem 1. Let p be a prime of good ordinary reduction for E. Let h′
p be the

order of vanishing at s = 0 of the p-adic L-function of E. Then, h′
p ≤ Cp8,

where C > 0 is independent of p but dependent on E.

As a corollary, we prove:
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Corollary 1. Let C be the constant appearing in the above theorem. Then
tp ≤ Cp8 − gE for all good ordinary primes p.

Our proof uses some deep arithmetic results, which includes the modularity
of E, the non-vanishing theorem in [1], and Kato’s proof of a weak form of the
Iwasawa main conjecture for E over the cyclotomic Zp-extension Qcyc of Q [4].
We hope to prove an analogous result for supersingular primes in a subsequent
paper. In the special case in which E admits complex multiplication, the
stronger result is proven in [2] that tp ≤ (1/2 + ϵ)p for all sufficiently large
good ordinary primes p, but the proof is special to elliptic curves with complex
multiplication.

Acknowledgments. I would like to thank John Coates for introducing the
field of Iwasawa theory of elliptic curves and suggesting the problem to me.
Without the valuable discussions we had, this article would not have been
written. I wish to thank YoungJu Choie from whom I learned the analytic
theory of modular forms. Jeehoon Park is also acknowledged for carefully
reading the manuscript and giving me numerous suggestions. Finally, I would
like to thank David Rohrlich for pointing out the improved result on non-
vanishing proved in [1].

2. The complex and p-adic L-function

Let N be the conductor of E. By the modularity theorem, there exists a
primitive cusp form of weight 2 for Γ0(N)

f(τ) =
∞∑

n=1

ane
2πin

such that the complex L-function L(E, s) is equal to L(f, s) =
∑∞

n=1 ann
−s. In

particular, this deep result establishes the analytic continuation and functional
equation for L(E, s), and all its twists by Dirichlet characters. Unfortunately,
even though it is predicted by the conjecture of Birch and Swinnerton-Dyer no
way is known at present for showing that L(E, s) has a zero at s = 1 of order
greater than or equal to gE , the rank of E(Q). However, using Iwasawa theory,
one can show this holds for the p-adic analogue of the complex L-function.
Let p be a prime number not dividing N and let χ be a Dirichlet character of
conductor pr for some positive integer r. Write fχ (resp. L(f, χ, s)) for the
twist of f (resp. L(E, s)) by χ defined by fχ(τ) =

∑∞
n=1 anχ(n)e

2πin (resp.

L(E,χ, s) =
∑∞

n=1 anχ(n)n
−s). Let Q be an algebraic closure of Q and fix

embeddings of Q into C and Q into Cp. Further assume that E has good
ordinary reduction at p. It is well known that p is an ordinary prime for E
if and only if p does not divide ap. In this case, there is a unique root α of
X2 − apX + p, which is a p-adic unit. Let Ω+

E be the smallest positive real
period of a Néron differential on a global minimal equation for E over Q. If
χ is a dirichlet character, let χ be its complex conjugate and let τ(χ) be the
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associated Gauss sum. For s ∈ Zp, we have the p-adic L-function Lp(f, χ, s),
which has the following interpolation property (See §14 of [6]).

Theorem 2. Let p be any prime of good ordinary reduction. Then, if χ is a
nontrivial Dirichlet character of conductor pr > 1, we have

(1) Lp(f, χ, 0) =
prL(f, χ, 1)

Ω+
Eα

rτ(χ)
.

We need an interpretration of this p-adic L-function in terms of formal power
series with coefficients in Zp. Put Γ = Gal(Qcyc/Q) and pick a topological
generator γ for Γ. We identify the Iwasawa algebra Λ(Γ) with Zp[[T ]] by sending
γ to 1 + T . Fix an isomorphism Z×

p
∼= ∆ × Zp and identify Gal(Q(µp∞)/Q)

with Z×
p via the p-adic cyclotomic character. Now we can regard Dirichlet

characters of p-power conductor and p-power order as characters for Γ.
It is then well-known (See Theorem in §14 of [6]) that there exists an integer

cE and an element

(2) G(T ) ∈ c−1
E Zp[[T ]]

such that Lp(f, χ, 0) = G(χ(γ) − 1) for all Dirichlet characters χ of p-power
conductor and p-power order. Note that, by the Weierstrass preparation the-
orem, such a G(T ) is uniquely determined by the values G(χ(γ) − 1) for all
Dirichlet characters χ. We remark that cE is known to be 1 in most cases, but
it is not important for us.

3. Integrality of certain L-values

Define

ϕ(r) := 2πi

∫ r

∞
f(z)dz

for r in Q ∪ {∞}. Write Φ for the image of ϕ. Let Ω−
E be the least purely

imaginary period of the Néron differential. It is well-known that there is an
integer cE satisfying the equation (2) and such that cEΦ is contained in the
lattice generated by Ω±

E (See Thm 1.2. of [5]).

Proposition 1. Let χ be an even Dirichlet character of conductor pr. Then,
αrcELp(f, χ, 0) is an algebraic integer in Q(χ), the field generated by the values
of χ.

Proof. By Birch’s lemma, if χ is a Dirichlet character of conductor m, then we
have

fχ(z) =
1

τ(χ̄)

∑
a mod m

χ̄(a)f(z +
a

m
).

Applying it to the equation (1), we obtain

Lp(f, χ, 0) =
prL(f, χ, 1)

Ω+
Eα

rτ(χ)
=

1

Ω+
Eα

r

∑
a mod m

χ(a)ϕ(
a

m
).
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In the last line, we used the representation of the complex L-function by the
integral

(3) L(f, χ, 1) = 2πi

∫ 0

∞
fχ(z)dz

and the formula |τ(χ)|2 = pr. Multiplying both sides by cEα
r, we get the

result from the assumption that χ is an even character. □

4. p-adic L-function and the main conjecture

We recall the structure theory of finitely generated torsion Λ(Γ)-modules.
Let A be a finitely generated torsion Λ(Γ)-module. Then there is an exact
sequence

0 //⊕k
j=1 Λ(Γ)/FjΛ(Γ) // A // D // 0 ,

where D is finite and Fj ’s are nonzero elements in Λ(Γ). Let F be the product
of all Fj ’s. We call F a characteristic power series of A and it is well-defined
up to multiplication by a unit of Λ(Γ). If we have a short exact sequence of
torsion Λ(Γ)-modules

0 // A′ // A // A′′ // 0 ,

then F · Λ(Γ) = F ′F ′′ · Λ(Γ), where F , F ′ and F ′′ denote characteristic power
series of A, A′ and A′′ respectively. We recall that the (p-primary) Selmer
group is defined by

Sel(E/K) := Ker
(
H1(K,E[p∞]) −→

∏
v

H1(Kv, E)
)
,

where K is a finite extension of Q and E[p∞] denotes the Galois module of
p-power division points of E(Q). Put

Sel(E/Qcyc) = lim
−→

Sel(E/K),

where K runs over the finite extensions of Q contained in Qcyc, and the induc-
tive limit is taken with respect to the restriction maps on the Galois groups.
Define the Pontryagin dual of the Selmer group as

X(E/K) := Hom(Sel(E/K),Qp/Zp).

The following deep theorem (Theorem 17.4 in [4]), which says that one divisi-
bility of the Iwasawa main conjecture is true, is due to Kato.

Theorem 3. Let G(T ) be the power series from Section 2 corresponding to
Lp(f, χ, s). Then X(E/Qcyc) is a torsion Λ(Γ)-module and its characteristic
power series F (T ) divides pnG(T ) for some non-negative integer n.

Using the above theorem of Kato, we will prove the following theorem which
is one of the main ingredients for the proof of Theorem 1.
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Proposition 2. Let hp be the Zp-corank of Sel(E/Q). Then G(T )=ThpG0(T ),

where G0(T ) is an element of c−1
E Zp[[T ]]. In other words, hp ≤ h′

p, where h′
p

denotes the exact power of T dividing G(T ).

Proof. Let S be the set containing p and the primes where E has bad reduc-
tion. Denote by QS the maximal extension of Q unramified outside S and the
archimedean places. Consider following exact sequence

0 // Ker(α) // Sel(E/Q)
α // Sel(E/Qcyc) ,

where α is the restriction map. To simplify notation, let B′ be E[p∞] and B
be E[p∞](Qcyc). I claim that the image of α is contained in Sel(E/Qcyc)Γ.
Indeed, we have Sel(E/Q) ⊂ H1(GS , B

′) and Sel(E/Qcyc) ⊂ H1(Gcyc
S , B′),

where GS = Gal(QS/Q) and Gcyc
S = Gal(QS/Qcyc) (See Ch.X Cor4.4, [7]).

Then it follows from the inflation-restriction sequence that

0 // H1(Γ, B) // H1(GS , B
′)

α′
// H1(Gcyc

S , B′)Γ .

Since Gcyc
S = Gal(QS/Qcyc) and α is restriction of α′, Γ acts trivially on the

image of α. Now note that the group H1(Γ, B) sits inside the 4-term exact
sequence

0 // BΓ // B
1−γ // B // H1(Γ, B) // 0 .

Since BΓ = E[p∞](Q) is finite and the alternating sum of Zp-corank is 0 in
an exact sequence, it follows that Ker(α) is also finite. Taking the Pontryagin
dual of α, we have a map

X(E/Qcyc)Γ −→ X(E/Q) = Zhp
p × a finite group

with finite cokernel. Taking further quotient of the latter, we may assume that

X(E/Qcyc) maps surjectively onto Zhp
p . Composing the above map with the

natural surjection from X(E/Qcyc) to X(E/Qcyc)Γ, we obtain a Γ-equivariant
surjective homomorphism

β : X(E/Qcyc) −→ Zhp
p ,

where Γ acts trivially on Zhp
p . In other words, we have a Γ-equivariant short

exact sequence

0 // Ker(β) // X(E/Qcyc)
β // Zhp

p
// 0 .

Note that then a characteristic power series of Zhp
p as Λ(Γ)-module is Thp . If

we denote by F0(T ) a characteristic power series of ker(β), we have F (T ) =
ThpF0(T ) from the above short exact sequence. Now we apply Theorem 3 to
obtain

ThpF0(T )F1(T ) = pnG(T )

for some F1(T ) in Λ(Γ). Since Zp[[T ]] is a UFD, the assertion follows. □
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We remark that no analogue of this argument is known for the complex
L-function.

5. The proof of the main theorem

We need the following result (Theorem 3 in [1]) due to Chinta.

Theorem 4. Let E be an elliptic curve of level N . Let q be a power of an odd
prime number with (q,N) = 1, and χ a primitive Dirichlet character mod q.
Then

L(E,χ, 1) ̸= 0

provided that

σ1

(
φ(q)

ord(χ)

)
≤ qδ, δ < 1/8

and

(4) q ≫ϵ N
1/(1−8δ−ϵ).

The implied constant depends only on δ and ϵ, and σ1(m) is the sum of positive
divisors of m.

For our application, we fix δ and ϵ and, therefore, the right side of the
equation (4) is a constant independent of p. An immediate corollary is the
following.

Corollary 2. Under the same assumptions as above,

L(E,χ, 1) ̸= 0

for all primitive Dirichlet characters χ modulo pr of p-power order provided
that r ≥ 9 and p is sufficiently large.

Proof. If χ has conductor pr and p-power order, then φ(q) = ord(χ)(p − 1).
From elementary number theory, we have a bound σ1(m) = o(m1+ϵ) for any ϵ
(For the proof see Theorem 322 of [3]). Therefore, the conditions of Theorem 4
are satisfied if p is sufficiently large and r ≥ 9. □

Suppose now that χ is a Dirichlet character of conductor pr and order pr−1.
By class field theory, we can view such a χ as a character of the cyclotomic
Zp-extension of Q. Put x = αrcELp(f, χ, 0). For σ ∈ Gal(Q(χ)/Q), we write
xσ for the image of x under σ. We will apply the product formula to

∏
σ x

σ to
prove Theorem 1. From now assume that x is nonzero, which is guaranteed by
Theorem 4 when r ≥ 9 and p is sufficiently large. We first prove the following

estimations which will be used in the proof of Theorem 1. Recall that Th′
p is the

exact power of p dividing the formal power series G(T ), say G(T ) = Th′
pG1(T ).

Lemma 1. For all sufficiently large good ordinary primes p, we have |xσ|p ≤
p−h′

p/φ(pr−1).
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Proof. Without loss of generality, we assume that σ is the identity. If we put
ζ := χ(γ), then ζ is a primitive pr−1-th root of unity. By Proposition 2, we
have

Lp(f, χ, 0) = (ζ − 1)h
′
pG1(ζ − 1).

Applying Proposition 2, we obtain

|x|p = |αrcELp(f, χ, 0)|p
= |(ζ − 1)h

′
pG1(ζ − 1)|p

≤ p−h′
p/φ(pr−1). □

Lemma 2. Suppose χ is a Dirichlet character of conductor pr. Let χσ be
the Dirichlet character defined by χσ(n) = σ(χ(n)). We have |L(f, χσ, 1)| ≤
C1p

r/2.

Proof. Without loss of generality, we may assume σ is the identity. We use
Birch’s lemma. Recall that there are finitely many cusps and there is a bound
C1 which depends only on E such that C1 ≥ |ϕ(r)| for all r ∈ Q ∪ {∞}.

|L(fχ, 1)| =

∣∣∣∣2π ∫ ∞

0

fχ(it)dt

∣∣∣∣
=

∣∣∣∣∣2π
∫ ∞

0

1

τ(χ)

∑
a

χ(a)f(it+
a

pr
)dt

∣∣∣∣∣
≤ C1p

r/2.

In the last line we used the formula |τ(χ)| = pr/2 and the integral of one of the
pr terms in the summation is at most C1. □

To connect the estimations of p-adic absolute value and complex one, we
observe the following. For each place v of Q, let | |v be the corresponding
valuation. Then the product formula asserts that∏

v

|a|v = 1

for all non-zero a in Q. In particular, if a is a non-zero integer, this implies
that

|a|v ≥ |a|−1
∞

for every finite place v. Using this, we obtain the following inequality.

Proposition 3. We have

h′
p ≤ rφ(pr−1) + φ(pr−1) logp C2.

In particular, there is a constant C0 such that we have

(5) h′
p ≤ C0rp

r−1.
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Proof. We begin from the product formula;∣∣∣∏
σ

xσ
∣∣∣−1

p
≤
∣∣∣∏

σ

xσ
∣∣∣
∞
.

Here σ runs through Gal(Q(χ)/Q) which has φ(pr−1) elements. Applying
Lemma 1 to the left-hand-side, we obtain

(6) C
−φ(pr−1)
1 ph

′
p ≤

∣∣∣∏
σ

xσ
∣∣∣−1

p
.

To the right-hand-side, we apply Lemma 2 and Theorem 2 to obtain

(7)
∣∣∣∏

σ

xσ
∣∣∣
∞

≤
∣∣C1p

rcE/Ω
+
E

∣∣φ(pr−1)

∞ = C
φ(pr−1)
2 prφ(pr−1),

where C2 = cEC1/Ω
+
E only depends on E. Here we used |τ(χ)| = pr/2 and

Theorem 2. Combining the equations (6) and (7) and taking logarithms to the
base p, we obtain

h′
p ≤ φ(pr−1) logp C2 + rφ(pr−1). □

Now we can prove Theorem 1. Taking a Dirichlet character χ of conductor
p9 and order p8 with a sufficiently large prime p, x is nonzero by Corollary 2.
Then the equation (5) is now

(8) h′
p ≤ 9C0p

8.

By Theorem 2, we have hp ≤ h′
p and the proof of Theorem 1 is complete.

Now we prove Corollary 1. Consider the exact sequence

0 // E(Q)⊗Qp/Zp
// Sel(E/Q) // X(E/Q)[p∞] // 0 .

Since Zp-corank of E(Q)⊗Qp/Zp is gE and the Zp corank is additive in a short
exact sequence of abelian groups, we have gE + tp = hp. Therefore, we have
tp ≤ Cp8 − gE by Theorem 1.
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295 (2004), 117–290.

[5] J. I. Manin, Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk
SSSR Ser. Mat. 36 (1972), 19–66.

[6] B. Mazur, J. Tate, and J. Teitelbaum, On p-adic analogues of the conjectures of Birch
and Swinnerton-Dyer, Invent. Math. 84 (1986), no. 1, 1–48.

[7] J. Silverman, The Arithmetic of Elliptic Curves, 2nd edition, Graduate Texts in Mathe-
matics, vol. 106, Springer, 2008.



ON THE TATE-SHAFAREVICH GROUP OF ELLIPTIC CURVES OVER Q 163

Department of Mathematics
Pohang University of Science and Technology
Pohang 790-784, Korea
E-mail address: polygon0307@gmail.com


