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APPLICATIONS OF HILBERT SPACE DISSIPATIVE NORM

Carlos S. Kubrusly and Nhan Levan

Abstract. The concept of Hilbert space dissipative norm was introduced
in [8] to obtain necessary and sufficient conditions for exponential stabil-

ity of contraction semigroups. In the present paper we show that the
same concept can also be used to derive further properties of contraction
semigroups, as well as to characterize strongly stable semigroups that are

not exponentially stable.

1. Introduction

Strong stability of continuous and discrete operator semigroups on Banach
and Hilbert spaces have been extensively studied in current literature. We refer
to [2] for a recent and comprehensive discussion. The present paper is a sequel
to our effort to go after strong stability of continuous and discrete Hilbert space
contraction semigroups [1, 7, 8, 9, 10].

Necessary and sufficient conditions for e-stability (i.e., exponential stability)
and s-stability (i.e., strong stability) of Hilbert space contraction semigroups
were recently obtained in [8] in terms of an inequality involving the Hilbert
space norm and the dissipative norm. This note is a sequel to [8]. Here we
show several applications of dissipative norm to Hilbert space contraction semi-
groups.

In the following [T (t)] = {T (t) ; t ≥ 0} will always denote a C0-semigroup
(i.e., a strongly continuous semigroup) of contraction operators over a complex
Hilbert space H, with inner product ⟨· ; ·⟩ and norm ∥ · ∥. It is said to be
exponentially stable (or e-stable) if there exist real constants α > 0 and M ≥ 1
such that

∥T (t)∥ ≤ Me−αt for every t ≥ 0

(equivalently, if ∥T (t)x∥ ≤ Me−αt∥x∥ for every x ∈ H and every t ≥ 0). It
is said to be plain-e-stable if it is e-stable with M = 1. Recall that [T (t)] is
uniformly stable (i.e., limt→∞ ∥T (t)∥ = 0) if and only if it is exponentially stable
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[4]. A semigroup [T (t)] is strongly stable (or s-stable) if

lim
t→∞

∥T (t)x∥ = 0 for every x ∈ H.

The generator A : D → H of [T (t)] is a closed linear transformation on a dense
linear manifold D = D(A) of H. Moreover, A is maximal dissipative; that is,

Re⟨Ax ;x⟩ ≤ 0 for every x ∈ D,

and maximal because it does not admit any dissipative extension in H [5, 6].
The generator A is called strictly dissipative if

Re⟨Ax ;x⟩ < 0 for every 0 ̸= x ∈ D.

It is readily verified that if the generator A is strictly dissipative, then the
functional (−2Re⟨A· ; ·⟩) 1

2 : D → R defines a norm on the linear manifold D.
Such a norm on D is called a dissipative norm [8] and is denoted by ∥ · ∥d; that
is,

∥x∥d = (−2Re⟨Ax ;x⟩) 1
2 for every x ∈ D.

Expressions for ∥·∥d in terms of the generator A as well as of the cogenerator
S that will be needed throughout the paper are considered in Section 2, and
then we obtain some inequalities involving both norms ∥ · ∥ and ∥ · ∥d that will
be required for deriving further properties of the generator and cogenerator of
[T (t)]. The main results appear in Section 3. They deal with strongly and
exponentially stable semigroups. Exponential and strong stability are com-
pared, leading to a characterization of strongly stable semigroups that are not
exponentially stable.

2. Preliminaries

Let A be the generator of the semigroup [T (t)]. Recall that

(2.1) ∥(A± I)x∥2 = ∥Ax∥2 + ∥x∥2 ± 2Re⟨Ax ;x⟩
for every x ∈ D, and that A is dissipative. If, in addition, A is strictly dissipa-
tive, then the dissipative norm

(2.2) ∥x∥2d = −2Re⟨Ax ;x⟩
is expressed as

(2.3) ∥x∥2d = 1
2

(
∥(A− I)x∥2 − ∥(A+ I)x∥2

)
for every x ∈ D. The cogenerator S = (A+ I)(A− I)−1 of [T (t)] is the Cayley
transform of the generator A. Since A is dissipative, it follows by (2.1) that
∥x∥ ≤ ∥(A− I)x∥ for every x ∈ D, and so A− I is injective. Actually, in this
case, A− I has a bounded inverse on its range. Therefore [5, 6],

(2.4) S = (A+ I)(A− I)−1 = I + 2(A− I)−1 = −I + 2A(A− I)−1.

Moreover, 1 /∈ σP (S), with σP (S) standing for the point spectrum of S (i.e.,
S − I is injective), and the domain of S − I (and so the domain of S) coincides
with the range of A− I (i.e., D(S − I) = R(A− I)) which is all of H (i.e.,
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(A− I)D = H because A is densely defined) [5, 6]. Conversely, the generator
A can be expressed in terms of the cogenerator S as follows [5, 6].

(2.5) A = (S + I)(S − I)−1 = I + 2(S − I)−1 = −I + 2S(S − I)−1.

Recall that the range of S − I coincides with the domain of A (i.e., R(S− I) =
D).

The following expressions of ∥ · ∥d in terms of S can be readily verified by
using the previous identities from (2.1) to (2.5).

Lemma 1. Let [T (t)] be a contraction semigroup with a strictly dissipative
generator A and cogenerator S. Then, for every x ∈ D,

∥x∥2d = 2
(
∥(S − I)−1x∥2 − ∥S(S − I)−1x∥2

)
.(2.6)

Moreover, if x = (S − I)y ∈ D for some y ∈ H,

∥x∥2d = 2
(
∥y∥2 − ∥Sy∥2

)
(2.7)

= 2∥Dy∥2(2.8)

= 2∥D(S − I)−1x∥2 = 1
2∥D(A− I)x∥2,(2.9)

where

(2.10) D = (I − S∗S)
1
2

is the defect operator of the contraction S [11].

Note that, under the assumption of Lemma 1, the cogenerator S is, in fact,
a proper contraction, that is,

(2.11) ∥Sy∥ < ∥y∥ for every 0 ̸= y ∈ H,

because the left side of (2.7) is positive (Recall that D(S) = D(S − I) = H).
Since ∥x∥2d = −2Re⟨Ax ;x⟩ for every x ∈ D (cf. (2.2)), it is also easy to see
from (2.1) and (2.3) that the following inequalities hold.

Lemma 2. Consider the assumptions of the previous lemma. Then, for x ∈ D,

∥x∥2 ≤ ∥(A− I)x∥2,(2.12)

∥x∥2d ≤ 1
2∥(A− I)x∥2,(2.13)

∥x∥2 ≤ ∥x∥2d + ∥(A+ I)x∥2 ≤ ∥x∥2d + ∥(A− I)x∥2,(2.14)

∥x∥2d ≤ ∥Ax∥2 + ∥x∥2,(2.15)

∥Ax∥2 ≤ ∥x∥2d + ∥(A+ I)x∥2 ≤ ∥x∥2d + ∥(A− I)x∥2.(2.16)

In general, neither ∥ · ∥ nor ∥ · ∥d dominates the other. However, if [T (t)] is
e-stable or s-stable, then the situation becomes clearer, as we shall see in the
sequel.
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3. Exponential and strong stabilities

We begin this section on the characterization of strong and exponential
stabilities by recalling the following results from [8].

Lemma 3. If [T (t)] is a contraction semigroup with a strictly dissipative gen-
erator A, then, for every x ∈ D,

(i)

∫ ∞

0

∥T (t)x∥2d dt ≤ ∥x∥2,

(ii) [T (t)] is plain-e-stable if and only if there exists a constant α > 0 such
that

α∥x∥ ≤ ∥x∥d,
(iii) [T (t)] is s-stable if and only if∫ ∞

0

∥T (t)x∥2d dt = ∥x∥2.

Proof. See Lemma 1, Theorem 2, and Remark 1 in [8]; see also [1] for part
(iii). □

Our first theorem presents further properties of the cogenerator S as a con-
sequence of the equivalent condition for e-stability in Lemma 3(ii).

Theorem 1. Let [T (t)] be a contraction semigroup with a strictly dissipative
generator A and cogenerator S. Then the following propositions hold.

(i) The defect operator D of S is a contraction.
(ii) Suppose [T (t)] is plain-e-stable. Then there exists an α > 0 such that

(ii.a) α∥(S − I)y∥2 ≤ ∥y∥2 − ∥Sy∥2,

and so

(ii.b) α
(
∥y∥ − ∥Sy∥

)2 ≤ α∥(S − I)y∥2 ≤ ∥y∥2 − ∥Sy∥2

for every y ∈ H. For such an α it follows that: S − I is a contraction if α ≥ 1,
S is boundedly invertible if α > 1, and A is boundedly invertible if α > 1

2 .

Proof. First recall that, under the above assumptions, S is a proper contraction.
(i) From (2.4), (2.8), (2.9) and (2.13), for every x = (S − I)y ∈ D and y ∈ H,

2∥Dy∥2 = ∥x∥2d ≤ 1
2∥(A− I)x∥2 = 1

2∥(A− I)(S − I)y∥2

= 1
2∥(A− I) 2 (A− I)−1y∥2,

and therefore, for every y ∈ H,

∥Dy∥ ≤ ∥y∥.

(ii) Under the additional e-stability assumption, Lemma 3(ii) ensures the
existence of an α > 0 such that, for every x ∈ D,

2α∥x∥2 ≤ ∥x∥2d.
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Consider this α > 0. Thus (ii.a) follows from (2.7) by setting x = (S − I)y ∈ D.
Moreover, it is plain (by the triangle inequality) that, for every y ∈ H,∣∣∥Sy∥ − ∥y∥

∣∣ ≤ ∥(S − I)y∥.

This and (ii.a) lead to (ii.b). Furthermore, we also have from (ii.a) that

α∥(S − I)y∥2 ≤ ∥y∥2

for every y ∈ H. Hence S − I is a contraction if α ≥ 1. Moreover, from (ii.b),

α
(
∥y∥ − ∥Sy∥

)2 ≤ ∥y∥2 + ∥Sy∥2,

or
α−1
α+1 ∥y∥

2 ≤ ∥Sy∥2

for every y ∈ H. Therefore, if α > 1, then S is boundedly invertible (i.e., S has
a bounded inverse). Finally, from (2.15),

2α∥x∥2 ≤ ∥x∥2d ≤ ∥Ax∥2 + ∥x∥2,

so that

(2α− 1)∥x∥2 ≤ ∥Ax∥2

for every x ∈ D. Hence A is boundedly invertible if that α is such that α > 1
2 .
□

If a contraction semigroup [T (t)] is only s-stable but not e-stable, then its
generator A is injective but it may not be boundedly invertible. In fact, it is
injective since, for any 0 ̸= x ∈ D, if Ax = 0, then T (t)x = x for every t ≥ 0,
thus implying that T (t)x → x as t → ∞, which is a contradiction. Hence, if
[T (t)] is s-stable, then N (A) = {0} (i.e., A is injective), where N (A) denotes
the kernel of A.

The above facts and Theorem 1(ii) may hint on the difference which sepa-
rates s-stability via e-stability (i.e., e-stability, which clearly implies s-stability)
for contraction semigroups and stand-alone s-stability (i.e., s-stability for non-
e-stable contraction semigroups).

Corollary 1. Let A be a strictly dissipative generator of a contraction semi-
group [T (t)]. If A is boundedly invertible, and if there exists a constant γ ≥ 1
such that

∥(A+ I)x∥ ≤ γ∥x∥d
for every x ∈ D, then

∥(A+ I)x∥ ≤
√
2 γ
2 ∥(A− I)x∥

for every x ∈ D, and [T (t)] is plain-e-stable.
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Proof. If the generator A has a bounded inverse, then there exists a constant
β > 0 such that

β∥x∥2 ≤ ∥Ax∥2

for every x ∈ D. Hence, by (2.1) with ∥x∥2d = −2Re⟨Ax ;x⟩,

β∥x∥2 ≤ ∥Ax∥2 = ∥(A+ I)x∥2 − ∥x∥2 + ∥x∥2d,

and therefore

(3.1) (β + 1)∥x∥2 ≤ ∥x∥2d + ∥(A+ I)x∥2

for every x ∈ D. Now suppose that there exists a constant γ > 0 such that

∥(A+ I)x∥ ≤ γ∥x∥d
for every x ∈ D. This and (2.13) imply that

∥(A+ I)x∥2 ≤ γ2∥x∥2d ≤ γ2

2 ∥(A− I)x∥2,

and so

∥(A+ I)x∥ ≤
√
2 γ
2 ∥(A− I)x∥

for every x ∈ D; and also that, from (3.1),

(β + 1)∥x∥2 ≤ (γ2 + 1)∥x∥2d
for every x ∈ D, which ensures that [T (t)] is plain-e-stable by Lemma 3(ii). □

The next result exhibits further necessary and sufficient conditions for e-
stability that, as far as we can tell, have not been discussed before.

Theorem 2. Let [T (t)] be a contraction semigroup with a strictly dissipative
generator A. The following assertions are pairwise equivalent.

(i) [T (t)] is e-stable.

(ii)

∫ ∞

0

∥T (t)(A− I)x∥2dt < ∞ for every x ∈ D.

(iii)

∫ ∞

0

∥T (t)(A+ I)x∥2dt < ∞ for every x ∈ D.

Proof. If A is strictly dissipative, then we have from (2.14) that

∥T (t)x∥2 ≤ ∥T (t)x∥2d + ∥T (t)(A− I)x∥2

for every x ∈ D and every t ≥ 0, since T (t)x ∈ D for every x ∈ D and T (t) and
A commute on D. Integrating the above expression on [0, t] we get∫ t

0

∥T (τ)x∥2dτ ≤
∫ t

0

∥T (τ)x∥2d dτ +

∫ t

0

∥T (τ)(A− I)x∥2dτ
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for every x ∈ D and every t ≥ 0. Thus it follows by Lemma 3(i) and assertion
(ii) that ∫ ∞

0

∥T (t)x∥2dt < ∞ for every x ∈ D,

which, when extended by continuity (of the integral functional) over all H
leads to Datko’s equivalent condition for e-stability [3]. Conversely, if [T (t)] is
e-stable, then Datko’s equivalent condition for e-stability [3], namely,

(3.2)

∫ ∞

0

∥T (t)z∥2dt < ∞ for every z ∈ H,

holds. In particular, for z = (A− I)x in R(A− I) = H this implies that asser-
tion (ii) holds true for every x ∈ D. A similar argument (now with z = (A+ I)x
in R(A+ I) ⊆ H) applies to assertion (iii). □

Note that the conditions of Theorem 2 are milder than that of Datko’s in
(3.2).

We now turn to s-stability of contraction semigroups.

Lemma 4. Let [T (t)] be a contraction semigroup with a strictly dissipative
generator A. If, for every x ∈ D,

lim
t→∞

∥T (t)(A− I)x∥ = 0,

then [T (t)] is s-stable and also limt→∞ ∥T (t)x∥d = 0 for every x ∈ D.

Proof. Suppose A is strictly dissipative and consider Lemma 2. Recall that
[T (t)] and A commute. From (2.13) we get, for every x ∈ D and every t ≥ 0,

∥T (t)x∥2d ≤ 1
2 ∥T (t)(A− I)x∥2.

Moreover, from (2.14), for every x ∈ D and every t ≥ 0,

∥T (t)x∥2 ≤ ∥T (t)x∥2d + ∥T (t)(A− I)x∥2.
Therefore, if

lim
t→∞

∥T (t)(A− I)x∥ = 0

for every x ∈ D, then

lim
t→∞

∥T (t)x∥ = lim
t→∞

∥T (t)x∥d = 0

for every x ∈ D. Furthermore, limt→∞ ∥T (t)x∥ = 0 extends naturally by con-
tinuity (of the norm) from the dense D to the whole space H, since D is
T (t)-invariant. □

Note that the norms ∥ · ∥ and ∥ · ∥d are not necessarily commensurable on
D (i.e., none dominates the other) because A, although closed and densely
defined, is generally unbounded (e.g., see the inequalities in Lemma 2) even
under the assumption of s-stability. However, these norms are commensurable
on D under the assumption of plain-e-stability by Lemma 3(ii).
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Contraction semigroups that are strong but not exponentially stable are
characterized in the following corollary, where it is given a full account of
stand-alone s-stable contraction semigroups.

Corollary 2. Let [T (t)] be a contraction semigroup with a strictly dissipative
generator A. [T (t)] is s-stable but not plain-e-stable if and only if

∥x∥2 =

∫ ∞

0

∥T (t)x∥2d dt

for every x ∈ D, and for every α > 0 there exists an xα ∈ D such that

α∥xα∥2d < ∥xα∥2 =

∫ ∞

0

∥T (t)xα∥2d dt.

Proof. Recall that e-stability clearly implies s-stability. The result is a straight-
forward consequence of Lemma 3(ii), (iii). In fact, Lemma 3(ii) ensures that
[T (t)] is not plain-e-stable if and only if for every β > 0 there exists an xβ ∈ D
such that

∥xβ∥d < β∥xβ∥. □
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