DOI QR코드

DOI QR Code

RECONSTRUCTION THEOREM FOR STATIONARY MONOTONE QUANTUM MARKOV PROCESSES

  • Heo, Jae-Seong (Department of Mathematics Research Institute for Natural Sciences Hanyang University) ;
  • Belavkin, Viacheslav P. (Mathematics Department University of Nottingham University Park) ;
  • Ji, Un Cig (Department of Mathematics Research Institute of Mathematical Finance Chungbuk National University)
  • Received : 2010.04.30
  • Published : 2012.01.31

Abstract

Based on the Hilbert $C^*$-module structure we study the reconstruction theorem for stationary monotone quantum Markov processes from quantum dynamical semigroups. We prove that the quantum stochastic monotone process constructed from a covariant quantum dynamical semigroup is again covariant in the strong sense.

Keywords

References

  1. L. Accardi, A. Frigerio, and J. T. Lewis, Quantum stochastic processes, Publ. Res. Inst. Math. Sci. 18 (1982), no. 1, 97-133. https://doi.org/10.2977/prims/1195184017
  2. V. P. Belavkin, A reconstruction theorem for a quantum random field, Uspekhi Mat. Nauk 39 (1984), no. 2, 137-138.
  3. V. P. Belavkin, Reconstruction theorem for a quantum stochastic process, Theor. Math. Phys. 62 (1985), 275-289. https://doi.org/10.1007/BF01018269
  4. B. V. Bhat and K. R. Parthasarathy, Markov dilations of nonconservative dynamical semigroups and a quantum boundary theory, Ann. Inst. H. Poincare Probab. Statist. 31(1995), no. 4, 601-651.
  5. B. V. Bhat and M. Skeide, Tensor product systems of Hilbert modules and dilations of completely positive semigroups, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (2000), no. 4, 519-575. https://doi.org/10.1142/S0219025700000261
  6. P. S. Chakraborty, D. Goswami, and K. B. Sinha, A covariant quantum stochastic dilation theory, Stochastics in finite and infinite dimensions, 89-99, Trends Math., Birkhauser, Boston, 2001.
  7. E. Christensen and D. Evans, Cohomology of operator algebras and quantum dynamical semigroups, J. London Math. Soc. (2) 20 (1979), no. 2, 358-368. https://doi.org/10.1112/jlms/s2-20.2.358
  8. E. B. Davies, Quantum stochastic processes, Comm. Math. Phys. 15 (1969), 277-304. https://doi.org/10.1007/BF01645529
  9. E. B. Davies, Markovian master equations, Comm. Math. Phys. 39 (1974), 91-110. https://doi.org/10.1007/BF01608389
  10. D. Goswami and K. B. Sinha, Hilbert modules and stochastic dilation of a quantum dynamical semigroup on a von Neumann algebra, Comm. Math. Phys. 205 (1999), no. 2, 377-403. https://doi.org/10.1007/s002200050682
  11. J. Heo, Completely multi-positive linear maps and representations on Hilbert $C^{\ast}$- modules, J. Operator Theory 41 (1999), no. 1, 3-22.
  12. J. Heo, Hilbert $C^{\ast}$-module representation on Haagerup tensor products and group systems, Publ. Res. Inst. Math. Sci. 35 (1999), no. 5, 757-768. https://doi.org/10.2977/prims/1195143422
  13. J. Heo, V. P. Belavkin, and U. C. Ji, Monotone quantum stochastic processes and covariant dynamical hemigroups, J. Func. Anal. 261 (2011), 3345-3365. https://doi.org/10.1016/j.jfa.2011.08.004
  14. E. Lance, Hilbert $C^{\ast}$-modules, Cambridge University Press, 1995.
  15. G. Lindblad, On the generators of quantum dynamical semigroups, Comm. Math. Phys. 48 (1976), no. 2, 119-130. https://doi.org/10.1007/BF01608499
  16. G. Lindblad, Non-Markovian quantum stochastic processes and their entropy, Comm. Math. Phys. 65 (1979), no. 3, 281-294. https://doi.org/10.1007/BF01197883
  17. K. Parthasarathy, A continuous time version of Stinespring's theorem on completely positive maps, Quantum probability and applications, V (Heidelberg, 1988), 296-300, Lecture Notes in Math., 1442, Springer, Berlin, 1990.
  18. W. Paschke, Inner product modules over $B^{\ast}$-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468.

Cited by

  1. Stochastic Processes and Spectral Analysis for Hilbert $$C^*$$ C ∗ -Module-Valued Maps 2015, https://doi.org/10.1007/s40840-015-0270-6
  2. A Stinespring type theorem for completely positive multilinear maps on Hilbert -modules pp.1563-5139, 2017, https://doi.org/10.1080/03081087.2017.1411880