References
- L. Accardi, A. Frigerio, and J. T. Lewis, Quantum stochastic processes, Publ. Res. Inst. Math. Sci. 18 (1982), no. 1, 97-133. https://doi.org/10.2977/prims/1195184017
- V. P. Belavkin, A reconstruction theorem for a quantum random field, Uspekhi Mat. Nauk 39 (1984), no. 2, 137-138.
- V. P. Belavkin, Reconstruction theorem for a quantum stochastic process, Theor. Math. Phys. 62 (1985), 275-289. https://doi.org/10.1007/BF01018269
- B. V. Bhat and K. R. Parthasarathy, Markov dilations of nonconservative dynamical semigroups and a quantum boundary theory, Ann. Inst. H. Poincare Probab. Statist. 31(1995), no. 4, 601-651.
- B. V. Bhat and M. Skeide, Tensor product systems of Hilbert modules and dilations of completely positive semigroups, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (2000), no. 4, 519-575. https://doi.org/10.1142/S0219025700000261
- P. S. Chakraborty, D. Goswami, and K. B. Sinha, A covariant quantum stochastic dilation theory, Stochastics in finite and infinite dimensions, 89-99, Trends Math., Birkhauser, Boston, 2001.
- E. Christensen and D. Evans, Cohomology of operator algebras and quantum dynamical semigroups, J. London Math. Soc. (2) 20 (1979), no. 2, 358-368. https://doi.org/10.1112/jlms/s2-20.2.358
- E. B. Davies, Quantum stochastic processes, Comm. Math. Phys. 15 (1969), 277-304. https://doi.org/10.1007/BF01645529
- E. B. Davies, Markovian master equations, Comm. Math. Phys. 39 (1974), 91-110. https://doi.org/10.1007/BF01608389
- D. Goswami and K. B. Sinha, Hilbert modules and stochastic dilation of a quantum dynamical semigroup on a von Neumann algebra, Comm. Math. Phys. 205 (1999), no. 2, 377-403. https://doi.org/10.1007/s002200050682
-
J. Heo, Completely multi-positive linear maps and representations on Hilbert
$C^{\ast}$ - modules, J. Operator Theory 41 (1999), no. 1, 3-22. -
J. Heo, Hilbert
$C^{\ast}$ -module representation on Haagerup tensor products and group systems, Publ. Res. Inst. Math. Sci. 35 (1999), no. 5, 757-768. https://doi.org/10.2977/prims/1195143422 - J. Heo, V. P. Belavkin, and U. C. Ji, Monotone quantum stochastic processes and covariant dynamical hemigroups, J. Func. Anal. 261 (2011), 3345-3365. https://doi.org/10.1016/j.jfa.2011.08.004
-
E. Lance, Hilbert
$C^{\ast}$ -modules, Cambridge University Press, 1995. - G. Lindblad, On the generators of quantum dynamical semigroups, Comm. Math. Phys. 48 (1976), no. 2, 119-130. https://doi.org/10.1007/BF01608499
- G. Lindblad, Non-Markovian quantum stochastic processes and their entropy, Comm. Math. Phys. 65 (1979), no. 3, 281-294. https://doi.org/10.1007/BF01197883
- K. Parthasarathy, A continuous time version of Stinespring's theorem on completely positive maps, Quantum probability and applications, V (Heidelberg, 1988), 296-300, Lecture Notes in Math., 1442, Springer, Berlin, 1990.
-
W. Paschke, Inner product modules over
$B^{\ast}$ -algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468.
Cited by
- Stochastic Processes and Spectral Analysis for Hilbert $$C^*$$ C ∗ -Module-Valued Maps 2015, https://doi.org/10.1007/s40840-015-0270-6
- A Stinespring type theorem for completely positive multilinear maps on Hilbert -modules pp.1563-5139, 2017, https://doi.org/10.1080/03081087.2017.1411880