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THE LOG-CONVEXITY OF ANOTHER CLASS OF

ONE-PARAMETER MEANS AND ITS APPLICATIONS

Zhen-Hang Yang

Abstract. In this paper, the log-convexity of another class one-para-
meter mean is investigated. As applications, some new upper and lower
bounds of logarithmic mean, new estimations for identric mean and new

inequalities for power-exponential mean and exponential-geometric mean
are first given.

1. Introduction and main results

Let p, q ∈ R and a, b ∈ R+− the positive semi-axis. For a ̸= b the Stolarsky
mean is defined as

(1.1) Sp,q(a, b) =



(
q

p

ap − bp

aq − bq

)1/(p−q)

, pq(p− q) ̸= 0,(
1

p

ap − bp

ln a− ln b

)1/p

, p ̸= 0, q = 0,(
1

q

aq − bq

ln a− ln b

)1/q

, q ̸= 0, p = 0,

exp

(
ap ln a− bp ln b

ap − bp
− 1

p

)
, p = q ̸= 0,

√
ab, p = q = 0,

and Sp,q(a, a) = a (see [33]). Another two-parameter family of means was
introduced by C. Gini in [13]. That is defined as

(1.2) Gp,q(a, b) =


(
ap + bp

aq + bq

)1/(p−q)

, p ̸= q,

exp

(
ap ln a+ bp ln b

ap + bp

)
, p = q.
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Recently, a more general two-parameter family has been established by the
author in [40], which is stated as follows.

Definition 1.1. Assume f : R+ × R+ → R+ ∪ {0} is n-order homogeneous,
continuous and has the first partial derivatives and (a, b) ∈ R+ × R+, (p, q) ∈
R× R.

If f(x, y) > 0 for (x, y) ∈ R+ × R+ with x ̸= y and f (x, x) = 0 for all
x ∈ R+, then we define that

Hf (p, q; a, b) =

(
f(ap, bp)

f(aq, bq)

)1(p−q)

(p ̸= q, pq ̸= 0),(1.3)

Hf (p, p; a, b) = lim
q→p

Hf (p, q; a, b) = Gf,p(a, b) (p = q ̸= 0),(1.4)

where
(1.5)

Gf,p(a, b) = G
1
p

f (a
p, bp), Gf (x, y) = exp

(
xfx(x, y) lnx+ yfy(x, y) ln y

f(x, y)

)
.

Here fx(x, y) and fy(x, y) denote the first-order partial derivative with respect
to the first and the second component of f(x, y), respectively.

If f(x, y) > 0 for all (x, y) ∈ R+ × R+, then we define further

Hf (p, 0; a, b) =

(
f(ap, bp)

f(1, 1)

)1/p

(p ̸= 0, q = 0),(1.6)

Hf (0, q; a, b) =

(
f(aq, bq)

f(1, 1)

)1/q

(p = 0, q ̸= 0),(1.7)

Hf (0, 0; a, b) = lim
p→0

Hf (p, 0; a, b) = a
fx(1,1)
f(1,1) b

fy(1,1)

f(1,1) (p = q = 0).(1.8)

Since f(x, y) is a homogeneous function, Hf (p, q; a, b) is also one and called a
homogeneous function with parameters p and q, and simply denoted byHf (p, q)
sometimes.

The monotonicity, convexity and compatibility of Stolarsky and Gini mean
have been completely solved (see [17, 18, 27, 25]). It was not until quite recently
that unified treatments of their monotonicity and log-convexity were given (see
[40, 41]).

Let q = p + 1 in the Stolarsky mean and Gini mean. Then Sp,p+1(a, b)
and Gp,p+1(a, b) become the so-called one-parameter mean and Lehmer mean,
respectively. Concerning the two one-parameter family of means there are
many useful and interesting results (see [4, 5, 6, 36, 37, 11]). As a general form,
the one-parameter homogeneous functions were also investigated by the author
(see [38]).

The one-parameter mean is relative to the two-parameter mean. In general,
Sp,q(a, b) and Gp,q(a, b) may be called a one-parameter family of means, re-
spectively, provided that there exist certain given functional relations between
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its parameters p and q. For example, let q = 2c − p with c ̸= 0 in Sp,q(a, b)
and Gp,q(a, b). Then Sp,2c−p(a, b) and Gp,2c−p(a, b) may be also called one-
parameter family of means, respectively. For avoiding confusion, Sp,p+1(a, b)
and Gp,p+1(a, b) are called the first one-parameter family of means, respec-
tively; while Sp,2c−p(a, b) and Gp,2c−p(a, b) are called the second ones, respec-
tively. Generally, Hf (p, p+ 1; a, b) is called the first one-parameter family and
Hf (p, 2c−p; a, b) is called the second one. However, as far as monotonicity and
convexity are concerned in parameter p, Hf (p, 2c−p; a, b) is actually equivalent
to Hf (p, 1− p; a, b) in view of H2c

f (p, 2c− p; a, b) = Hf (p/2c, 1− p/2c; a2c, b2c).
For this reason, in what follows we only consider the case of 2c = 1 and call
Hf (p, 1− p; a, b) the second one-parameter family.

Substituting logarithmic mean

(1.9) L(x, y) =
x− y

lnx− ln y
(x, y > 0, x ̸= y), L(x, x) = x

and arithmetic mean

(1.10) A(x, y) =
x+ y

2
(x, y > 0)

for f in Hf (p, 1 − p; a, b) yields Sp,1−p(a, b) and Gp,1−p(a, b). For the sake of
unification, we adopt our notations to denote them by HL(p, 1 − p; a, b) and
HA(p, 1− p; a, b), respectively. Their concrete expressions are as follows:

(1.11) HL(p, 1− p; a, b) =


(

(1−p)(ap−bp)
p(a1−p−b1−p)

)1/(2p−1)

, p ̸= 1/2,

I2(
√
a,
√
b), p = 1/2,

where

(1.12) I(x, y) = e−1(xx/yy)1/(x−y)(x, y > 0, x ̸= y), I(x, x) = x

is well-known identric mean (exponential mean).

(1.13) HA(p, 1− p; a, b) =


(

ap+bp

a1−p+b1−p

)1/(2p−1)

, p ̸= 1/2,

Z2(
√
a,
√
b), p = 1/2,

where

(1.14) Z(x, y) = xx/(x+y)yy/(x+y) (x, y > 0)

is called power-exponential mean.
In addition, we also consider other two the second one-parameter families.

Substituting identric mean I defined by (1.12) for f in Hf (p, 1− p; a, b) yields

(1.15) HI(p, 1− p; a, b) =


(

I(ap,bp)
I(a1−p,b1−p)

)1/(2p−1)

, p ̸= 1/2,

Y 2(
√
a,
√
b), p = 1/2,

where
(1.16)

Y (x, y) = I(x, y) exp
(
1−G2(x, y)/L2(x, y)

)
(x, y > 0, x ̸= y), Y (x, x) = x
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is called exponential-geometric mean.
Substituting D(x, y) = |x − y| (x, y > 0, x ̸= y) for f in Hf (p, 1 − p; a, b)

yields

(1.17) HD(p, 1− p; a, b) =

{
| ap−bp

a1−p−b1−p |
1/(2p−1)

, p ̸= 0, 1, 1/2,

e2I2(
√
a,
√
b), p = 1/2.

It should be noted that HD(p, 1− p; a, b) is not a mean of positive numbers a
and b, which has merely a form of means.

The monotonicity of Sp,1−p(a, b) or HL(p, 1 − p; a, b) was surveyed by E.
Leach and M. Sholander at the earliest [18], who gave such a result: For c > 0
and −∞ < p ≤ c, Sp,2c−p(a, b) increases from G to Ic, where Ic stands for
the identric mean of order c. Recently, the author proved more general result
involving the monotonicity of Hf (p, 1− p; a, b). It reads as follows.

Theorem 1.1 ([41, Corollary 1]). Let f : R+ × R+\{(x, x) : x ∈ R+} → R+

be a symmetric, homogenous and three-time differentiable function. If J =
(x−y)(xI)x < (>)0 where I = (ln f)xy, then Hf (p, 1−p) is strictly decreasing
(increasing) in p ∈ (0, 1/2) and increasing (decreasing) in p ∈ (1/2, 1).

Furthermore, if f(x, y) is defined on R+×R+ and symmetric with respect to
x and y, then Hf (p, 1− p) is strictly decreasing (increasing) in p ∈ (−∞, 1/2)
and increasing (decreasing) in p ∈ (1/2,+∞).

The main objective of this paper is to give a new proof of Theorem 1.1 and
investigate the log-convexity of the second one-parameter family. Our main
results are as follows:

Theorem 1.2. Let f : R+ × R+\{(x, x) : x ∈ R+} → R+ be a symmetric,
homogenous and three-time differentiable function. Then Hf (p, 1 − p) is log-
convex (log-concave) in p on (0, 1) if J = (x − y)(xI)x < (>)0, where I =
(ln f)xy.

Corollary 1.1. That HL(p, 1− p; a, b),HA(p, 1− p; a, b) and HI(p, 1− p; a, b)
all are strictly increasing in p ∈ (−∞, 1/2) and decreasing in p ∈ (1/2,∞), and
log-concave in p on [0, 1].

Corollary 1.2. That HD(p, 1−p; a, b) is strictly decreasing in p ∈ (0, 1/2) and
increasing in p ∈ (1/2, 1), and log-convex in p on (0, 1).

2. Properties and lemmas

Before formulating our main results, let us recall the properties of two-
parameter homogeneous functions.

Property 2.1. Hf (p, q) is symmetric with respect to p, q, i.e.,

(2.1) Hf (p, q) = Hf (q, p).
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Property 2.2. If f(x, y) is symmetric with respect to x and y, then

Hf (−p,−q; a, b) =
G2n

Hf (p, q; a, b)
,(2.2)

Hf (p,−p; a, b) = Gn,(2.3)

where G =
√
ab.

Property 2.3 ([41, (1.13)]). If Gf,t is continuous on [q, p] or [p, q], then

(2.4) lnHf (p, q) =
1

p− q

∫ p

q

lnGf,tdt,

where Gf,t is defined by (1.5).

It is worth mentioning that the following function

(2.5) T (t) := ln f(at, bt), t ̸= 0

is well-behaved, whose properties as useful lemmas are read as follows.

Lemma 2.1 ([41, (1.14), (1.15), (2.10), (2.11)]). Suppose that f : R+ ×
R+\{(x, x) : x ∈ R+} → R+ is a symmetric, n-order homogenous and three-
time differentiable function. Then

T (t)− T (−t) = 2nt lnG,(2.6)

T ′(t) + T ′(−t) = 2n lnG,(2.7)

T ′′(−t) = T ′′(t),(2.8)

T
′′′
(−t) = −T

′′′

(t),(2.9)

where G =
√
ab.

Remark 2.1. If f(1, 1) := limx→1 f(x, 1) > 0, then T (t) can be extended con-
tinuously by defining T (0) := limt→0 T (t) = ln f(1, 1). With the result that
T (t) is also three-time derivable at t = 0 and T ′(0) := n lnG. Thus (2.7) can
be written as

(2.10) T ′(t) + T ′(−t) = 2T ′(0).

Lemma 2.2 ([41, Lemma 3 and Lemma 4]). Suppose that f : R+×R+\{(x, x) :
x ∈ R+} → R+ is a homogenous and three-time differentiable function. Then

T ′(t) =
atfx(a

t, bt) ln a+ btfb(a
t, bt) ln b

f(at, bt)
,(2.11)

T ′′(t) = −xyI ln2(b/a), I = (ln f)xy,(2.12)

T ′′′(t) = −Ct−3J ,J = (x− y)(xI)x,C =
xy ln3(x/y)

x− y
> 0,(2.13)

where x = at, y = bt.
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Remark 2.2. Compared (1.5) with (2.10), it is easy to see that

T ′(t) = lnGf,t(a, b).

Thus (2.4) can be expressed in integral form as

(2.14) lnHf (p, q) =


1

p− q

∫ p

q
T ′(t)dt if p ̸= q

T ′(q) if p = q
=

∫ 1

0

T ′(tp+ (1− t)q)dt.

3. Proofs of main results

New proof of Theorem 1.1. 1) By (2.4) and (2.14), lnHf (p, 1 − p) can be ex-
pressed in integral form as

(3.1) lnHf (p, 1− p) =

∫ 1

0

T ′(t1(t))dt

for p ∈ (0, 1), where t1(t) = tp+ (1− t)(1−p). A direct partial derivative
calculation leads to

(3.2)
∂ lnHf (p, 1− p)

∂p
=

∫ 1

0

(2t− 1)T ′′(t1(t))dt,

which can be splitted into two parts:∫ 1/2

0

(2t− 1)T ′′(t1(t))dt+

∫ 1

1/2

(2t− 1)T ′′(t1(t))dt.

Substituting t = 1− v in the first integral above yields∫ 1/2

0

(2t− 1)T ′′(t1(t))dt = −
∫ 1

1/2

(2v − 1)T ′′(t2(v))dv,

where t2(t) = (1− t)p+ t(1−p). Hence

∂ lnHf (p, 1− p)

∂p
= −

∫ 1

1/2

(2v − 1)T ′′(t2(v))dv +

∫ 1

1/2

(2t− 1)T ′′(t1(t))dt

=

∫ 1

1/2

(2t− 1) (T ′′(t1(t))− T ′′(t2(t))) dt

=

∫ 1

1/2

(2t− 1)

(∫ t1(t)

t2(t)

T ′′′(s)ds

)
dt.(3.3)

Obviously, t1(t), t2(t)> 0 due to 0 < p < 1 and 1/2 ≤ t ≤ 1, hence

T ′′′(s)=−Cs−3J > (<)0 if J =(x− y)(xI)x < (>)0, where C=xy ln3(x/y)
x−y > 0,

x = as, y = bs, s lies between t1(t) and t2(t). It follows that
∂ lnHf (p,1−p)

∂p is

positive (negative) if t1(t) > t2(t) and negative (positive) if t1(t) < t2(t). While

t1(t)− t2(t) = (2t− 1)(2p− 1),
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hence
∂ lnHf (p, 1− p)

∂p

{
< (>)0 for p ∈ (0, 1/2)
> (<)0 for p ∈ (1/2, 1)

if J < (>)0.

2) If f(x, y) is defined on R+ × R+ and symmetric with respect to x and y
further, then T (t) is defined on R which is three-time derivable and T ′′(t) is
even by (2.8). Thus (3.1) holds for p ∈ R, and then from (3.3) we have

∂ lnHf (p, 1− p)

∂p
=

∫ 1

1/2

(2t− 1) (T ′′(t1(t))− T ′′(t2(t))) dt

=

∫ 1

1/2

(2t− 1) (T ′′(|t1(t)|)− T ′′(|t2(t))|) dt

=

∫ 1

1/2

(2t− 1)

(∫ |t1(t)|

|t2(t)|
T ′′′(s)ds

)
dt,

where t1(t) = tp+ (1− t)(1−p), t2(t) = (1− t)p+ t(1−p).
Clearly, T ′′′(s) = −Cs−3J > (<) 0 if J = (x− y)(xI)x < (>) 0, where

C =xy ln3(x/y)
x−y > 0, x = as, y = bs, s lies between |t1(t)| and t2(t)|. It fol-

lows that
∂ lnHf (p,1−p)

∂p is positive (negative) if |t1(t)| > |t2(t)| and negative

(positive) if |t1(t)| < |t2(t)|. However,
|t1(t)|2 − |t2(t)|2 = (2t− 1)(2p− 1),

hence
∂ lnHf (p, 1− p)

∂p

{
< (>)0 for p < 1/2,
> (<)0 for p > 1/2

if J < (>)0.

This completes the proof. □

Proof of Theorem 1.2. A partial derivative calculation for (3.2) leads to

∂2 lnHf (p, 1− p)

∂p2
=

∫ 1

0

(2t− 1)2T ′′′(t1)dt.

Obviously, t1(t) = tp+ (1− t)(1−p) > 0 due to 0 < p < 1 and 0 ≤ t ≤ 1, hence

T ′′′(t1)=−Ct−3
1 J > (<)0 if J =(x− y)(xI)x < (>)0, where C=xy ln3(x/y)

x−y > 0,

x = at1 , y = bt1 . It follows that

∂2 lnHf (p, 1− p)

∂p2
> (<)0 for p ∈ (0, 1) if J = (x− y)(xI)x < (>)0.

The proof is accomplished. □

Proof of Corollary 1.1. By Theorem 1.2, the monotonicity and log-convexity
of Hf (p, 1 − p) depend on the sign of J = (x − y)(xI)x. From Section 4
of [41, 4. Some conclusions concerning L,A,E and D] we see that J > 0
for f(x, y) = L(x, y), A(x, y), I(x, y). Using Theorems 1.1 and 1.2, we see
that Hf (p, 1 − p) is strictly increasing in p ∈ (−∞, 1/2) and decreasing in
p ∈ (1/2,∞), and log-concave in p on (0, 1).
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However, owing to

f(1, 1) : = lim
x→1

f(x, 1) = 1 for f = L,A, I,

then

Hf (0, 1) := lim
p→0

Hf (p, 1− p) =f(a, b) for f = L,A, I;

similarly, Hf (1, 0) is also equal to f(a, b). Hence the log-concave interval of
Hf (p, 1− p) can be extended to [0, 1].

This corollary follows. □

Proof of Corollary 1.2. By Theorem 1.2, the monotonicity and log-convexity
of Hf (p, 1 − p) depend on the sign of J = (x − y)(xI)x. From Section 4 of
[41] we see that J < 0 for f(x, y) = D(x, y). Using Theorems 1.1 and 1.2, we
see that HD(p, 1 − p; a, b) is strictly decreasing in p ∈ (0, 1/2) and increasing
in p ∈ (1/2, 1), and log-convex in p on (0, 1).

While

f(1, 1) : = lim
x→1

f(x, 1) = 0 for f = D,

hence Hf (0, 1) and Hf (1, 0) both do not exist. Consequently, the log-convex
interval of HD(p, 1− p) cannot be extended to [0, 1].

This corollary is proved. □

4. Some new inequalities for means

It is well-known that monotonicity can lead to many inequalities but the
convexity sometimes yields more refined ones. In this section we will apply
main results to present some new and inequalities for known means.

To begin with, let us note that the known fact: f(x) is concave (convex) on

Ω if and only if for x, y ∈ Ω with x ̸= y the function f(x)−f(y)
x−y is decreasing

(increasing) in either x or y. It follows from Theorem 1.2 that the function

lnHf (p, 1− p)− lnHf (q, 1− q)

p− q
= ln

(
Hf (p, 1− p)

Hf (q, 1− q)

)1/(p−q)

(p ̸= q)

is increasing (decreasing) in either p or q on (0, 1) if J = (x−y)(xI)x < (>)0.
In other words, the function R2f (p, q) defined by

(4.1) R2f (p, q) :=


(

Hf (p,1−p)
Hf (q,1−q)

)1/(p−q)

, p ̸= q, p, q ∈ (0, 1);(
Gf,pGf,1−p

H2
f (p,1−p)

)1/(2p−1)

, p = q ̸= 1/2, p, q ∈ (0, 1);

1, p = q = 1/2.

is increasing (decreasing) in either p or q on (0, 1) if J = (x−y)(xI)x < (>)0,
where Gf,p is defined by (1.5). It should be noted that

Rf (p, p) := lim
q→p

(
Hf (p, 1− p)

Hf (q, 1− q)

)1/(p−q)

,
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Rf (1/2, 1/2) := lim
p→1/2

Rf (p, p),

whose computation processes are omitted here.
Let a and b be positive numbers with a ̸= b. Define

Mp :=

{
M1/p(ap, bp) if p ̸= 0

G(a, b) if p = 0
, M = A,H,L, I, Z and Y,

where A,L, I, Z and Y stand for the arithmetic mean, logarithmic mean,
identric mean (exponential mean), power-exponential mean and exponential-
geometric mean, which are defined by (1.10), (1.9), (1.12), (1.14) and (1.16),

respectively; while Heronian mean is defined by He = (a+
√
ab+ b)/3.

4.1. Some new upper and lower bounds of logarithmic mean

For the logarithmic mean, since B. Ostle and H. L. Terwilliger [23] proved
the following inequalities

G < L < A,

many researchers like B. C. Carlson, T. P. Lin, B. C. Stolarsky, P. O. Pittinger,
E. B. Leach, Zs. Páles, J. Sándor, H. Alzer, E. Neuman, R. Yang, G. Jia and T.
Trif and others have presented various upper and lower bounds of logarithmic
mean and identric mean (exponential mean) (see [10, 19, 33, 7, 34, 26, 18, 1,
2, 24, 25, 29, 31, 32, 14, 15, 21, 20, 22, 35, 16]), some of which can be formed
as a chain of inequalities for means in turn:

G < A1/3G2/3 <
√
IG < L < He1/2 < A1/3(4.2)

<
A+ 2G

3
< He < A2/3 < I < Aln 2 < A.

Recently, the author [41] has proved again the following chain of inequalities
for means:

G < · · · < G2/3A1/3 <
√
GHe < G2/5A

1/5
1/3A

2/5
2/3(4.3)

< L < A
1/3
1/5A

2/3
2/5 < He1/2 < A1/3 < He22/5A

−1
1/5 < I1/2,

and established interesting inequalities involving L,He,A, I, Z, Y , that is:

(4.4) L2 < He < A2/3 < I < Z1/3 < Y1/2.

We now give some new upper and lower bound of logarithmic mean.

Theorem 4.1. The following inequalities

(4.5)
A1/3 > A2

1/3I
−1
1/2 >

√
I1/3I2/3 > He21/2A

−1
1/3 > He41/2A

−3
1/3 >√

I1/4I3/4 > L > (
√
IG)1/3He

2/3
1/2 > (

√
IG)2/5A

3/5
1/3 >

√
I1/2

√
IG

hold.
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Proof. By Corollary 1.1, we see that HL(p, 1−p) is log-concave on [0, 1]. There-
fore, R2L(p, q) is decreasing either p or q on [0, 1].

Firstly, the first inequality is equivalent to I1/2 > A1/3 given in [34].
Secondly, we prove the second and third inequalities. From R2L(2/3, 1/2) >

R2L(2/3, 2/3) > R2L(2/3, 3/4) we have(
A1/3

I1/2

)6

>

(
I1/3I2/3

A2
1/3

)3

>

(
He1/2

A1/3

)12

.

A simple transformation yields

(4.6) A2
1/3I

−1
1/2 >

√
I1/3I2/3 > He21/2A

−1
1/3.

Thirdly, the fourth inequality is obvious due to A1/3 > He1/2 (see [15, 22,
41]).

Fourthly, let us prove the fifth and sixth inequalities

(4.7) He41/2A
−3
1/3 >

√
I1/4I3/4 > L.

From R2L(3/4, 2/3) > R2L(3/4, 3/4) > R2L(3/4, 1) we get(
He1/2

A1/3

)12

>

(
I1/4I3/4

He21/2

)2

>

(
L

He1/2

)4

.

Taking fourth roots for all items of inequalities above and multiplying by He1/2
result in (4.7).

Finally, we prove the seventh, eighth and ninth inequalities

(4.8) L > (
√
IG)1/3He

2/3
1/2 > (

√
IG)2/5A

3/5
1/3 >

√
I1/2

√
IG.

From R2L(1, 1/2), R2L(1, 2/3), R2L(1, 3/4) > R2L(1, 1) we have

(4.9)

(
L

I1/2

)2

,

(
L

A1/3

)3

,

(
L

He1/2

)4

>
IG

L2
,

which are equivalent to

L >

√
I1/2

√
IG,(4.10)

L > (
√
IG)2/5A

3/5
1/3,(4.11)

L > (
√
IG)1/3He

2/3
1/2,(4.12)

respectively.
(4.12) is the first inequality of (4.8), it remains to be proved that the second

and third inequalities of (4.8). In fact,√
IG)1/3He

2/3
1/2√

IG)2/5A
3/5
1/3

15

=
He101/2A

−9
1/3√

IG
=

He121/2A
−9
1/3

He21/2
√
IG
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=

(
He41/2A

−3
1/3

)3
√
IGHe21/2

>
L3

√
IGHe21/2

> 1,

where the first inequality due to He41/2A
−3
1/3 >

√
I1/4I3/4 > L in (4.7) and the

second inequality due to (4.12). It follows that the second inequality of (4.8).
Likewise, (

√
IG)2/5A

3/5
1/3√

I1/2
√
IG

10

=
A10

1/3I
−5
1/2

A4
1/3

√
IG

=

(
A2

1/3I
−1
1/2

)5
A4

1/3

√
IG

>

(
He21/2A

−1
1/3

)5
A4

1/3

√
IG

=

(
He41/2A

−3
1/3

)3
He21/2

√
IG

>
L3

He21/2
√
IG

> 1,

where the first inequality due to A2
1/3I

−1
1/2 >

√
I1/3I2/3 > He21/2A

−1
1/3 in (4.6),

the second inequality due to He41/2A
−3
1/3 >

√
I1/4I3/4 > L in (4.7) and the third

inequality due to (4.12). It follows that the third inequality of (4.8).
Combined (4.7) with (4.8), inequalities (4.5) hold.
This proof ends. □

Remark 4.1. Inequalities (4.5) contain the following inequality

(4.13) L < He41/2A
−3
1/3.

It is superior to Lin’s [19] and Jia’s [15] inequalities since L < He1/2 < A1/3 <

I1/2. While L > (
√
IG)1/3He

2/3
1/2 is stronger than L >

√
IG > A1/3G2/3

because that

(
√
IG)1/3He

2/3
1/2 > (

√
IG)2/5A

3/5
1/3 >

√
I1/2

√
IG >

√
IG >

√
GHe > A1/3G2/3.

In addition, from the second and third inequality of (4.5) it follows that

(4.14) I1/2 < He−2
1/2A

3
1/3.

From (4.13) and (4.14) it follows that

LI1/2 < He21/2,(4.15)

LI21/2 < A3
1/3.(4.16)

4.2. Some new estimations for identric mean (exponential mean)

To estimate identric mean I by another mean is very interesting. In 1988,
H. Alzer [3] obtained that

2e−1A < I < A.

E. Neuman and J. Sándor [20] proved that

A+G

2
< I < 4e−1A+G

2
.
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The author [40] obtained more general results:

Sp1,1(a, b) < I(a, b) < e−1p
1/(p1−1)
1 Sp1,1(a, b), p1 ∈ (0, 1),

e−1p
1/(p2−1)
2 Sp2,1(a, b) < I(a, b) < Sp2,1(a, b), p2 ∈ (1,+∞),

where Sp,q(a, b) is the Stolarsky mean. In 2007 the author [41] presented more
precise estimations for I :

1 < I/A
1/3
2/5A

2/3
4/5 <

3
√
32/e ≈ 1.16794,

1 < I/He < 3/e ≈ 1.10364,

1 < I/A2/3 <
√
8/e ≈ 1.04052,

1 < I/He24/5A
−1
2/5 <

√
486/8e ≈ 1.01376.

As a general form of the four previous estimations, we have:

Theorem 4.2. For p1, p2 ∈ [1/2, 1) with p1 < p2, we have

(4.17) 1 <
HL(p1, 1− p1)

HL(p2, 1− p2)
< exp

(
1

L(p2, 1− p2)
− 1

L(p1, 1− p1)

)
.

In particular, for p ∈ (1/2, 1) the following inequalities

(4.18) 1 <
I1/2

HL(p, 1− p)
< exp

(
1

L(p, 1− p)
− 2

)
hold.

Proof. For p1, p2 ∈ [1/2, 1) with p1 < p2, by Corollary 1.1 we get

HL(p1, 1− p1) > HL(p2, 1− p2),

which implies the first inequality of (4.17).
By Corollary 1.2, we have

(4.19) HD(p1, 1− p1) < HD(p2, 1− p2).

Since

HD(p, 1− p) = (p/(1− p))
1/(2p−1) HL(p, 1− p) = e1/L(p,1−p)HL(p, 1− p),

then (4.19) can be written as

(4.20) e1/L(p1,1−p1)HL(p1, 1− p1) < e1/L(p2,1−p2)HL(p2, 1− p2),

which implies the second inequality of (4.17).
Substituting p1 = 1/2, p2 = p ∈ (1/2, 1) in (4.17) leads to (4.18).
The proof ends. □
Next, let us apply the log-convexity of HL(p, 1 − p) and HD(p, 1 − p) to

establish a new estimation for identric mean I.

Theorem 4.3. The following inequalities

(4.21) 16
√
2/9e < I/(A3

2/3He−2) < 1

are true.
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Proof. By Corollary 1.2, HD(p, 1 − p) is log-concave on (0, 1). Therefore,
R2D(p, q) is increasing either p or q on (0, 1).

From R2D(3/4, 1/2) < R2D(3/4, 2/3), i.e.,(
(a1/2 + 4

√
ab+ b1/2)2

e2I2(a1/2, b1/2)

)4

<

(
(a1/2 + 4

√
ab+ b1/2)2

(a1/3 + b1/3)3

)12

,

it follows that

I1/2 > e−2
(
83A3

1/3

)(
9−2He−2

1/2

)
.

Taking (4.14) into account yields

e−2839−2 < I1/2/(A
3
1/3He−2

1/2) < 1.

Applied with a1/2 → a, b1/2 → b and by a simple transformation, we obtain
that

0.924906836 ≈
√
e−2839−2 < I/(A3

2/3He−2) < 1.

This completes proof. □

4.3. Some new inequalities involving power-exponential and
exponential-geometric mean

It is worth noting that there are the corresponding relations of Gf,p, Gf,0 and
function values of Hf (p, 1 − p) when p = 1/2, 2/3, 3/4, 1 for f(x, y) = L(x, y),
A(x, y), I(x, y), D(x, y) (see Table 1). It should be pointed out that we have
used the identity for means of I(a2p, b2p)/I(ap, bp) = Z(ap, bp) given in [30, 39].

Table 1. Corresponding relations table of L, A, E and D

f Gf,p Gf,0 Hf (1/2, 1/2) Hf (2/3, 1/3) Hf (3/4, 1/4) H2f (1, 0)
L Ip G I1/2 A1/3 He1/2 L

A Zp G Z1/2 A2
2/3A

−1
1/3 A

3/2
3/4A

−1/2
1/4 A

I Yp G Y1/2 Z1/3 I
3/2
3/4I

−1/2
1/4 I

D e1/pIp doesn’t exist e2I1/2 8A1/3 9He1/2 doesn’t exist

Therefore, following these corresponding relations given in Table 1 and ap-
plying Corollary 1.1 and 1.2, we can get inequalities corresponding to (4.5),
(4.13) and (4.14). In this subsection, we only give some succinct inequalities
for power-exponential means and exponential-geometric means but leave their
proofs to readers.

Substituting Z1/4, Z3/4, A for I1/4, I3/4, L in the sixth inequality of (4.5)

and Z1/2, A
2
2/3A

−1
1/3, A

3/2
3/4A

−1/2
1/4 for I1/2, A1/3, He1/2 in (4.14), respectively, we

have:

Theorem 4.4. The following inequalities

A <
√
Z1/4Z3/4,(4.22)
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Z1/2 < A6
2/3A

−3
1/3A

−3
3/4A1/4(4.23)

hold.

Similarly, substituting Y1/4, Y3/4, I for I1/4, I3/4, L in the sixth inequality

of (4.5) and Z1/2, Z1/3, I
3/2
3/4I

−1/2
1/4 for I1/2, A1/3, He1/2 in (4.14), respectively,

we have

Theorem 4.5. The following inequalities

I <
√
Y1/4Y3/4,(4.24)

Y1/2 < Z3
1/3I

−3
3/4I1/4(4.25)

hold.
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