DOI QR코드

DOI QR Code

A Study on the Bioavailability of Organic Ca in Growing Rats

성장기 흰쥐에서 유기태 칼슘의 체내 이용성 연구

  • Park, Mi-Na (Dept. of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Cho, Su-Jung (Dept. of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Kim, Hee-Kyong (R&D Center, Maeil Dairies Co. Ltd.) ;
  • Kim, Jae-Hong (R&D Center, Maeil Dairies Co. Ltd.) ;
  • Kim, Min-Ho (R&D Center, Maeil Dairies Co. Ltd.) ;
  • Kim, Wan-Sik (R&D Center, Maeil Dairies Co. Ltd.) ;
  • Lee, Yeon-Sook (Dept. of Food and Nutrition, Research Institute of Human Ecology, Seoul National University)
  • 박미나 (서울대학교 식품영양학과/생활과학연구소) ;
  • 조수정 (서울대학교 식품영양학과/생활과학연구소) ;
  • 김희경 (매일유업(주)중앙연구소) ;
  • 김재홍 (매일유업(주)중앙연구소) ;
  • 김민호 (매일유업(주)중앙연구소) ;
  • 김완식 (매일유업(주)중앙연구소) ;
  • 이연숙 (서울대학교 식품영양학과/생활과학연구소)
  • Received : 2011.10.07
  • Accepted : 2011.11.24
  • Published : 2012.01.31

Abstract

We evaluated the bioavailability of a novel organic Ca supplement chelated with milk protein (CaMP) in growing rats and compared it with those of Ca carbonate and Ca citrate. Four-week-old male rats were divided into six groups (n=6/group) and fed AIN-93G-based experimental diets containing three Ca sources, Ca carbonate, Ca citrate, and CaMP at two levels, normal (0.5%, w/w) and high (1.5%, w/w), for 6 weeks. Growth, mineral contents of serum, Ca content and breaking force of femur, and Ca absorption were measured. There were no significant differences in weight gain or food intake, but food efficiency ratio (FER) of CaMP in the high Ca group was higher than those of other groups. Ca and P concentrations in serum were within normal range in all experimental rats. There was no difference in Ca content of the femur among all of the groups. Although there was no statistical significance in bone breaking force of the femur among the groups, the CaMP groups had a higher breaking force compared to other groups. Further, Ca absorption rate significantly increased in the CaMP groups (p<0.05). These results demonstrate that the CaMP supplement did not exhibit any negative effect on growth or Ca metabolism of the rats. Therefore, CaMP can be recommended as a good Ca supplement with regard to bone metabolism and Ca bioavailability.

본 연구는 유청 단백질과 칼슘이 킬레이트된 새로운 유기태 칼슘을 탄산칼슘 및 구연산칼슘과 비교하여 새로운 칼슘의 급원으로서 그 효능을 평가하고자 수행되었다. 실험은 4주령 된 수컷 흰쥐(Sprague-Dawley) 36마리를 6개의 실험군(n=6/group)으로 설정하고, 칼슘의 섭취 수준에 따라 정상칼슘(0.5%) 및 고칼슘 수준(1.5%)으로 나누고, 칼슘의 급원을 탄산칼슘, 구연산 칼슘, 유기태 칼슘으로 하여 6주간 실험식이를 급여 후 희생시켰다. 실험동물의 성장, 혈청의 칼슘과 인의 농도, ALP 활성, 간기능 지표(GOT, GPT, T-bilirubin)와 신기능 지표(creatinine, uric acid), 간과 신장의 칼슘 및 인의 함량, 대퇴골의 무게, 길이, 파단력, 회분량, 칼슘 및 인의 함량, 칼슘의 체내 이용성 등을 측정하였다. 그 결과 유기태 칼슘의 수준별 섭취는 대조군과 비교하여 체중 증가와 식이섭취량에서 유의적인 차이를 보이지 않았으나, 식이효율은 고칼슘 수준에서 유기태 칼슘군이 다른 군에 비해 좋은 결과를 나타냈다. 유기태 칼슘군의 혈청 칼슘 및 인의 농도는 대조군과 마찬가지로 성장기 정상 범위에 속하였으며, 혈청 ALP의 활성은 유기태 칼슘군이 대조군에 비해 유의적으로 감소하여(p<0.05) 성장기 흰쥐의 골격 대사에 긍정적인 영향을 준 것으로 보였다. 혈액의 간기능 지표인 GOT와 GPT의 활성은 정상 및 고칼슘 수준에서 유기태 칼슘군이 탄산칼슘군보다 감소되었고, T-bilirubin의 농도는 유기태 고칼슘군에서 유의적으로 낮아졌다(p<0.05). 신기능 지표인 creatinine과 uric acid의 농도는 모두 정상 범위 내에 있었다. 간과 신장의 칼슘 함량은 정상 및 고칼슘 수준에서 유기태 칼슘군이 탄산칼슘군보다 낮아서 조직 내 칼슘의 침착정도가 낮았다. 대퇴골의 무게는 정상 칼슘 수준에서 각 군별 유의적인 차이가 없었으나, 고칼슘수준에서 유기태 칼슘군이 구연산 칼슘군에 비해 유의적으로 증가하였다(p<0.05). 체중 당 대퇴골의 무게, 길이 및 파단력은 칼슘의 급원에 따라 유의적인 차이가 없었다. 하지만 유기태 칼슘군은 대조군 보다 칼슘의 흡수율이 증가하여 체내 이용률이 높았다. 본 연구에 사용한 유기태 칼슘은 성장, 혈액 지표에 있어서 탄산칼슘과 대등한 효과를 보였으며, ALP 활성 및 칼슘의 생체 이용률 측면에서 더 우수한 결과를 나타냈다. 따라서 유기태 칼슘은 새로운 칼슘 보충제로서의 그 이용 가능성이 매우 클 것으로 사료된다.

Keywords

References

  1. Korean Health Industry Development Institute/Ministry of Health an Welfare. 2010. 2009 national health and nutrition survey report. p 261-269.
  2. Louie DS. 1996. Calcium and phosphorus in health and disease: intestinal bioavailability and absorption of calcium. CRC Press, Boca Raton, FL, USA. p 45.
  3. Allen LH. 1982. Calcium bioavailability and absorption: a review. Am J Clin Nutr 35: 783-808. https://doi.org/10.1093/ajcn/35.4.783
  4. Ebra D, Ciappellano S, Testolin G, 2002. Effect of the ratio of casein phosphopeptides to calcium (w/w) on passive calcium transport in the distal small intestine of rats. Nutrition 18: 743-746. https://doi.org/10.1016/S0899-9007(02)00829-8
  5. Kitt DD, Yuan YV. 1992. Casein phosphopeptides and calcium bioavailability. Trends in Food Sci Technol 3: 31-35. https://doi.org/10.1016/0924-2244(92)90113-B
  6. Ashmead HD. 1991. Comparative intestinal absorption and subsequent metabolism of metal amino acid chelates and inorganic metal salts. ACS symposium Series 45: 306-319.
  7. Ken K, Yasuhiro T, Hiroaki M, Junichi Y, Yashuhiro M, Hirosi K, Akira I, Masayoshi K, Seiichiro A, Yukihiro T. 2000. Milk basic protein enhances the bone strength in ovariectomized rats. J Food Biochem 24: 467-476. https://doi.org/10.1111/j.1745-4514.2000.tb00716.x
  8. Cho SJ, Park MN, Kim HK, Kim JH, Kim MH, Kim WS, Lee YS. 2011. Effects of organic Ca supplements on Ca bioavailability and physiological functions in ovariectomized osteoporotic model rats. J Korean Soc Food Sci Nutr 40: 665-672. https://doi.org/10.3746/jkfn.2011.40.5.665
  9. Person P, Gagnemo R, Hakanson R. 1993. The effect of high dietary calcium on bone and calcium homeostasis in young male rats. Calif Tissue 52: 460-464. https://doi.org/10.1007/BF00571337
  10. Kochanowski BA. 1990. Effect of calcium citrate-malate on skeletal development in young growing rats. J Nutr 120: 876-881. https://doi.org/10.1093/jn/120.8.876
  11. Sun X, Zemel MB. 2004. Calcium and dairy products inhibit weight and fat regain during ad libitum consumption following energy restriction in Ap2-agouti transgenic mice. J Nutr 134: 3054-3060. https://doi.org/10.1093/jn/134.11.3054
  12. Mitruka BM, Rawnsley HM. 1981. Clinical biochemical and hematological reference values in normal experimental animals and normal humans. 2nd ed. Masson Publishing Inc, New York, NY, USA. p 160-166.
  13. Lecerf JM, Lamotte C, Boukandoura B, Cayzeele A, Libersa C, Delannoy C, Borgie B. 2008. Effects of two marine dietary supplements with high calcium content on calcium metabolism and biochemical marker of bone resorption. European J Clin Nutr 62: 879-884. https://doi.org/10.1038/sj.ejcn.1602797
  14. Bruce L. 1996. Calcium and phosphorus in health and disease . John JBA, Sanford CG, eds. CRC Press, Boca Raton, FL, USA. p 32-37.
  15. Hamalainen MM. 1994. Bone repair in calcium deficient rats: comparison of xylitol+calcium carbonate with calcium carbonate, calcium lactate and calcium citrate on the repletion of calcium. J Nutr 124: 874-881. https://doi.org/10.1093/jn/124.6.874
  16. Kim EM, Park MN, Lee YS. 1997. Effect of dietary calcium levels on peak bone mass formation in growing female rats. J Korean Soc Food Sci Nutr 26: 480-487.
  17. Tsugawa N, Okano T, Higashino R, Kimura T, Oshio Y, Teraoka Y, Igarashi C, Ezawa I, Kobayashi T. 1995. Bioavailability of calcium from calcium carbonate, DL-calcium, lactate, L-calcium lactate and powdered oyster shell calcium in vitamin D deficient or replete rats. Biol Pharm Bull 18: 677-682. https://doi.org/10.1248/bpb.18.677
  18. Kang BH, Son HY, Ha CS, Lee HS. 1995. References values of hematology and serum chemistry in Ktc: Sprague-Dawley rats. Korean J Lab Sci 11: 141-145.
  19. Moon JY, Jang SJ, Lee YS. 2005. Bioavailability of starfish calcium as a novel calcium source. Kor J Comm Liv Sci 16: 135-148.
  20. Rodriguez PN, Friedman SM, Boyer P, Portela ML. 1998. Influence of dietary calcium concentration on body size and bone composition in rats during recovery from malnutrition. J Am Coll Nutr 17: 86-91. https://doi.org/10.1080/07315724.1998.10720461
  21. Pointillart A, Coxam V, Seve B, Colin C, Lacroix CH, Gugeuen L. 2000. Availability of calcium from skim milk, calcium sulfate and calcium carbonate for bone mineralization in pigs. Reprod Nutr Dev 40: 49-61. https://doi.org/10.1051/rnd:2000119
  22. Kim YM, Yoon GA, Hwang HJ, Chi GY, Son BY, Baw SY, Kim IY, Chung JY. 2004. Effect of bluefin tuna bone on calcium metabolism of the rat. J Korean Soc Food Sci Nutr 33: 101-106. https://doi.org/10.3746/jkfn.2004.33.1.101
  23. Jung WK, Lee BJ, Kim SK. 2006. Fish-bone peptide increases calcium solubility and bioavailability in ovariectomized rats. Br J Nutr 95: 124-128. https://doi.org/10.1079/BJN20051615
  24. Jang HJ, Jung EB, Seong KS, Han CK, Jo JH. 2006. Effect of anchovy treated with ethanol, citric acid and dietary calcium supplements on calcium metabolism in rats. J Korean Soc Food Sci Nutr 35: 860-865. https://doi.org/10.3746/jkfn.2006.35.7.860
  25. Heaney RP, Recker CM. 1990. Absorbability of calcium sources: the limited role of solubility. Calcif Tissue 46: 300-304. https://doi.org/10.1007/BF02563819
  26. Weaver CM. 2002. Absorption of calcium fumarate salts is equivalent to other calcium salts when measured sections of rat tibial diaphysis. J Histochem Cytochem 17: 799-806.
  27. Recker RR. 1985. Calcium absorption and achlorhydria. N Engl Med 313: 70-73. https://doi.org/10.1056/NEJM198507113130202

Cited by

  1. Effect of Calcium Extracted from Salted Anchovy (Engraulis japonicus) on Calcium Metabolism of the Rat vol.42, pp.2, 2013, https://doi.org/10.3746/jkfn.2013.42.2.182