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Abstract
We propose some properties for a fuzzy correlation test by reduced-spread fuzzy variance for sample fuzzy

data. First, we define the condition of fuzzy data for repeatedly observed data or that which includes error term
data. By using the average of spreads for fuzzy numbers, we reduce the spread of fuzzy variance and define the
agreement index for the degree of acceptance and rejection. Given a non-normal random fuzzy sample, we have
bivariate normal distribution by apply Box-Cox power fuzzy transformation and test the fuzzy correlation for
independence between the variables provided by the agreement index.

Keywords: Reduced-spread fuzzy variance, degree of acceptance and rejection, fuzzy signifi-
cance probability, agreement index, Box-Cox power fuzzy transformation.

1. Introduction

In many real situations, uncertainty data comes from randomness and fuzziness. Randomness models
the stochastic variability of all possible outcomes for an experiment and fuzziness that describes the
vagueness of a given outcome.

For the uncertainty data, a fuzzy hypothesis testing method that is related to the fuzzy expected
value (combined with other fuzzifications) have shown to be very useful inferences on distributions
of real-valued random variables by Gizegorzewski (2000).

Watanabe and Imaizumi (1993) considered the fuzzy hypothesis by a constructed set {(H0(ψ),
H1(ψ)) |ψ ∈ Θ} but we have the fuzzy negation of the assertion is taken to be the fuzzy null hypothesis
H f 0 and the fuzzy assertion itself is taken to be the fuzzy alternative hypothesis H f 1.

Kang and Seo (2009) defined the fuzzy hypotheses membership function. They consider the fuzzy
hypothesis as

H f 0 : mθ = mθ0 or H f 0 : mθ < mθ0 , θ ∈ Ω,

where Ω is parameter space. Kang et al. (2003) defined an agreement index by area ratio by a fuzzy
hypotheses membership function with respect to membership function of the fuzzy critical region, and
obtained the results by the grade for the judgement of acceptance or rejection for the fuzzy hypotheses.

We suggest some properties for a fuzzy hypothesis test using fuzzy significance probability by an
agreement index with a reduced-spread fuzzy variance and covariance by an average of fuzzy number
center and spreads.

This paper is organized as follows. First, we define the class of fuzzy sets and the condition of
fuzzy data for repeatedly observed data or that which includes error term data in a random experi-
ment. In Section 3, we suggest a reduce-spread fuzzy variance and covariance by the average of the
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fuzzy number center and spreads. In Section 4, we suggest an agreement index by the area ratio for
the acceptance or rejection degree of fuzzy hypotheses. In Section 5, we show a power-normal distri-
bution by Box-Cox power fuzzy transformation and fuzzy t-test statistics to test the independence of
bivariate normal distribution. Finally, in Section 6, we illustrate the fuzzy hypothesis test with a fuzzy
significance probability by an agreement index for a non-normal data of blood pressure samples and
infer a conclusion.

2. Preliminaries

Let Kc(ℜp) be the class of the non-empty compact convex subsets ofℜp. We will consider the class
of fuzzy sets

Fc(ℜp) =
{
U : ℜp → [0, 1] | Uδ ∈ Kc(ℜp) for all δ ∈ [0, 1]

}
, (2.1)

where Uδ stands for the δ-level of U (i.e. Uδ = {x ∈ ℜp |U(x) ≥ δ}) for all δ ∈ (0, 1], δ is the precision
of data in statistical concept and U0 is the closure of the support of U by Colubi (2009).

An example of fuzzy set on Fc(ℜ) is considered as the called triangular fuzzy number A =
[Al, Ac, Ar] with the center Ac ∈ ℜ and the “spreads” Al, Ar ∈ ℜ. We have fuzzy number so called
LR(Left, Right)-fuzzy numbers A := [l, c, r]LR with modal value c ∈ ℜ, left and right spreads l, r ∈ ℜ
decreasing left and right shape functions.

Thus, we have fuzzy membership function A as

mA(x) =


x − l
c − l

, if x ≤ c,

− x − r
r − l

, if x > c.
(2.2)

To satisfy the statistical fuzzy data, a fuzzy number A in ℜ is said to be convex if for any real
numbers x, y, z ∈ ℜ with x ≤ y ≤ z,

mA(y) ≥ mA(x) ∧ mA(z) (2.3)

with ∧ standing for minimum.
In addition, statistical fuzzy data A is called normal if the following holds∨

x

mA(x) = 1. (2.4)

A δ-level set of a fuzzy number data A is a set of [A]δ and defined by

[A](δ) = {x |mA(x) ≥ δ, 0 ≤ δ ≤ 1} . (2.5)

A δ-level set of fuzzy number data A is a convex fuzzy set, which is a closed and bounded interval
denoted by [A](δ) = [Al, Ac, Ar](δ).

The space Fc(ℜp) can be endowed with the sum and the product a scalar based on Zadeh’s ex-
tension principle. Let A and B be fuzzy numbers data inℜ and let ⊙ be a binary operation defined in
ℜ. Then the operation ⊙ can be extended to the fuzzy numbers A and B by defining the relation of
extension principle as; given A, B, ∀x, y, z ∈ ℜ;

mA⊙B(z) =
∨

z=x⊙ y

(mA(x) ∧ mB(y)). (2.6)
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3. Reduced-Spread of Fuzzy Variance

Let (Ω, A, P) be the probability space. A random fuzzy variable(RFV) is a mapping χ : Ω→ Fc(ℜp)
so that the δ-level functions χ(δ) : Ω → Kc(ℜp), defined so that χ(δ)(θ) = (χ(θ))(δ) for all θ ∈ Ω, are
the random sets.

Definition 1. If χ : Ω→ Fc(ℜp) is a RFV such that E(supx∈χ0
||x||) < ∞ with |χ0|(ω) = sup{|x| |x ∈ χ0}

for all ω ∈ Ω, then the expected fuzzy value (or mean) of χ is the unique, that is,(
Ẽ(χ)

)(δ)
=

{
E(X|P)|X : Ω→ℜp, X ∈ L1(Ω, A, P), X ∈ χ(δ) a.s. [P]

}
, (3.1)

where L1 is a metrics for left, center and right spreads form origin “0” of fuzzy number data, respec-
tively.

Definition 2. Given a probability space (Ω, A, P), if RFV have χ then E(|χ|) < ∞ fuzzy variance of χ
is defined as

σ2
χ = Var(χ) = E

([
DA

(
χ, Ẽ(χ)

)]2
)
, (3.2)

where D2
A are (c2 +min{l2, r2})/2, c2 and (c2 +max{l2, r2})/2 for χ⊖ Ẽ(χ) = [l, c, r] by Equation (2.6).

As a precise sample (x1x1x1, x2x2x2)′ of n precise realizations x1i, x2i ∈ ℜ may be regarded as vector
in ℜn, each random sample x1i, x2i have a sample (x1x1x1, x2x2x2)′ of n fuzzy realizations χ1i, χ2i ∈ F(ℜ),
i = 1, 2, . . . , n, may be regarded as a fuzzy vector by Equation (2.1). A modeling the fuzziness of data
were described the fuzziness of a fuzzy sample χχχ = (χ1χ1χ1, χ2χ2χ2)′ = {(χ11, χ21)′, (χ12, χ22)′, . . . , (χ1n, χ2n)′}.

If we observe an object at three times by minimum, median and maximum or including error term
data, then we organize a fuzzy number to χki = [χminki , χmedki , χmaxki ], k = 1, 2, i = 1, 2, . . . , n.

Thus, we have the fuzzy sample mean as

[
χχχk

](δ)
=

1
n

n∑
i=1

χki

(δ)

=

1
n

n∑
i=1

χminki ,
1
n

n∑
i=1

χmedki ,
1
n

n∑
i=1

χmaxki

(δ)

=
[
xkl, xkc, xkr

](δ) , (3.3)

by Definition 1 for δ-level, k = 1, 2.
For δ = 0, if we have S 2(δ=0)

k = S 2
k then we make clear that the variation of an RFV around its

variance value will be considered as

S 2
k =

1
n − 1

n∑
i=1

(χki ⊖ χk)2
=

1
n − 1

n∑
i=1

([xkli, xkci, xkri] ⊖ [xkl, xkc, xkr])2

,
1

n − 1

n∑
i=1

χ2
ki ⊖

n
n − 1

χk
2
=

1
n − 1

 n∑
i=1

[
x2

kli, x
2
kci, x

2
kri

]
⊖ n

[
xkl

2, xkc
2, xkr

2
] (3.4)

k = 1, 2 by fuzzy operation of Equation (2.6).
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The above spread of S 2
χk

has too wide spread or negative value. Our opinion, S 2
χk

is unsuitable
fuzzy variance by Equation (3.4). If we let [lki, lki, lki] < χki ⊖ χk < [rki, rki, rki] for [lki, cki, rki] then[

min
{
l2ki, r

2
ki

}
,min

{
l2ki, r

2
ki

}
,min

{
l2ki, r

2
ki

}]
< (χki ⊖ χk)2

<
[
max

{
l2ki, r

2
ki

}
,max

{
l2ki, r

2
ki

}
,max

{
l2ki, r

2
ki

}]
,

k = 1, 2, i = 1, . . . , n.
However, in case of overlapping χki by χk, we have

[0, 0, 0] < (χki ⊖ χk)2 <
[
max

{
l2ki, r

2
ki

}
,max

{
l2ki, r

2
ki

}
,max

{
l2ki, r

2
ki

}]
, k = 1, 2, i = 1, . . . , n.

In order to reduce the spreads of fuzzy numbers for sample fuzzy variance, we have reduced-
spread fuzzy variance in this paper as

S̃ 2
k �

1
n − 1

n∑
i=1


c2

ki +min
{
l2ki, r

2
ki

}
2

, c2
ki,

c2
ki +max

{
l2ki, r

2
ki

}
2

 , for lki > 0 or rki < 0,

0 + c2
ki

2
, c2

ki,
c2

ki +max
{
l2ki, r

2
ki

}
2

 , for lki ≤ 0 and rki > 0


=

[
S 2

kl, S
2
kc, S

2
kr

]
, k = 1, 2, (3.5)

where � is analogously equal by Definition 2.
In case of fuzzy covariance, for δ = 0, we also make clear that

Cov(χ1χ1χ1, χ2χ2χ2)

=
1

n − 1

n∑
i=1

(χ1i ⊖ χ1) · (χ2i ⊖ χ2)

=
1

n − 1

n∑
i=1

(
[x1li, x1ci, x1ri] ⊖

[
x1l, x1c, x1r

]) ⊗ (
[x2li, x2ci, x2ri] ⊖

[
x2l, x2c, x2r

])
,

1
n − 1

 n∑
i=1

[x1li, x1ci, x1ri] [x2li, x2ci, x2ri] ⊖ n

1
n

n∑
i=1

[x1li, x1ci, x1ri]

 1
n

n∑
i=1

[x2li, x2ci, x2ri]


 (3.6)

by fuzzy operation of Equation (2.6).
However, the spreads of fuzzy numbers for sample fuzzy covariance were very wide, and therefore

we reduced the spreads for sample fuzzy covariance as;

˜Cov(χ1χ1χ1, χ2χ2χ2)

=
1

n − 1

n∑
i=1

([x1li, x1ci, x1ri] ⊖ [x1l, x1c, x1r]) ⊗ ([x2li, x2ci, x2ri] ⊖ [x2l, x2c, x2r])

�
1

n − 1

n∑
i=1

([
min {l1il2i, l1ir2i, l2ir1i, r1ir2i} + c1ic2i

2
, c1ic2i,

max {l1il2i, l1ir2i, l2ir1i, r1ir2i} + c1ic2i

2

])
=

[
Covl(χ1, χ2),Covc(χ1, χ2),Covr(χ1, χ2)

]
(3.7)
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Figure 1: Acceptance and rejection region

by Definition 2.
Form the reduced variance and covariance, we have fuzzy correlation as;

R̃χ1,χ2 =
˜Cov(χ1, χ2) ⊘

(√
S̃ 2
χ1
⊗

√
S̃ 2
χ2

)
= [Rl,Rc,Rr], (3.8)

where
√

S̃ 2
k =

[√
S̃ 2

il,

√
S̃ 2

ic,

√
S̃ 2

ir

]
, k = 1, 2 for Rl ≥ −1 or Rr ≤ 1.

If Rl < −1 or Rr > 1 then we have [R′l ,Rc,R′r] from R′l = (−1 + Rc)/2 or R′r = (1 + Rc)/2.

4. Acceptance or Rejection Degree

Let a test statistic T by fuzzy random sample from sample space Ω. Let {Pθ, θ ∈ Ω} be a family of
fuzzy probability distribution, where θ is a parameter vector of Ω. Choose a membership function
mT (x) of T whose value is likely to best reflect the plausibility of the fuzzy hypothesis being tested.
Let us consider membership function mC(x) of critical region C, which we will call the agreement
index of mT (x) which regard to mC(x).

Definition 3. Let a fuzzy membership function mT (x), x ∈ ℜ, we consider another membership func-
tion mC(x), x ∈ ℜ, which call the agreement index, the ratio being defined in the following way by
Kang et al. (2003)

mAG(x) =
area(mT (x) ∩ mC(x))

area(mC(x))
∈ [0, 1]. (4.1)

Definition 4. We define real-valued function ℑ(δ) by supermum grade of membership function for
rejection or acceptance degree by an agreement index of δ-level by Kang et al. (2003) as

ℑ(δ)(0) = sup
δ

{
area(mT (δ) (θ) ∩ mC(δ) (θ))

area(mC(δ) (θ))

}
, (4.2)

ℑ(δ)(1) = 1 − ℑ(δ)(0) (4.3)

for the fuzzy hypothesis testing, respectively.

We show the acceptance region and rejection region for the fuzzy critical region C as Figure 1.
For various kinds of T , we can reject the hypotheses by Definition 4 as Figure 2.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Various type of mC by mT

For example in (a) or (f) of Figure 2, we can clearly reject the hypothesis as degree ℑ(δ)(0) = 0 or
ℑ(δ)(0) = 1, respectively.

For (b) of Figure 2, we have

ℑ(δ)(0) =
area(s1) + area(s2)

area(s1) + area(s2) + area(s3)
× 1

2
(4.4)

for left hand side of triangular fuzzy critical region mC by fuzzy the statistics mT where 1/2 is a
weighted value for −1 ≤ ℑ(δ)(0),ℑ(δ)(1) ≤ 1.

In case (d) of Figure 2, we have

ℑ(δ)(0) =
area(s1) + area(s2)
area(s1) + area(s2)

× 1
2
= 0.5, (4.5)

it maintains an uncertain attitude for decision in the hypotheses.
In addition, we have

ℑ(δ)(0) =
area(s1) + area(s2)
area(s1) + area(s2)

× 1
2
+

area(s4) + area(s5)
area(s4) + area(s5) + area(s6)

× 1
2

(4.6)

in (e) of Figure 2.
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5. Power-Normal Fuzzy Distribution

From non-normal random fuzzy sample o(χχχ) by δ = 0, if we apply an inverse transformation by
the Box-Cox power transformation then we have a normal random fuzzy variable χχχ by Goto and
Hamasaki (2002) as;

χχχ =

 (λ · o(χχχ) + 1)
1
λ , for λ , 0,

exp (o(χχχ)) , for λ = 0.
(5.1)

The Equation (5.1) have a power-normal fuzzy distribution(PN) as PN(λ, µ̃, σ̃2). Since χχχ ∼
PN(λ, µ̃, σ̃2), for the power-normal random fuzzy variable χχχ, the probability distribution function
by Freeman and Modarres (2001)

f
(
χχχ|λ, µ̃, σ̃2

)
=

1
K

1
√

2π σ̃
χχχλ−1 exp

−1
2

(
pλ(χχχ) − µ̃

σ̃

)2 (5.2)

is power-normal fuzzy distribution, where χχχλ−1 is Jacobian.
We consider some properties of fuzzy t-test statistics for testing independence of bivariate non-

normal distribution obtained from the random fuzzy samples.
Since

√
n − 2ρ/

√
1 − ρ2 has t-distribution with n − 2 degree of freedom in Anderson (1971).

Against alternatives Rχ1,χ2 ≤ C0, we reject H f 0 : ρ ≤ θ0 if

Rχ1,χ2√(
1 − R2

χ1,χ2

)
/(n − 2)

> tn−2(α). (5.3)

For testing the independence of bivariate normal fuzzy distribution, we have sample fuzzy correla-

tion by transformed power normal distribution between χ1 and χ2 as R̃χ1,χ2 =
˜Cov(χ1,χ2)/

(√
S̃ 2
χ1

√
S̃ 2
χ2

)
from Equation (3.8).

The fuzzy hypothesis H f 0 : mρ ≤ mθ0 is a equivalent to mRχ1 ,χ2
≤ mc0 where ρ is population

correlation and θ0 is a parameter.
It follows from the bivariate normal distribution for fuzzy testing fuzzy hypothesis H f 0 and we

reject when

R̃χ1,χ2 > C̃0 (5.4)

or equivalently when

R̃χ1,χ2√(
1 − R̃2

χ1,χ2

)
/(n − 2)

> K̃0, (5.5)

where C̃0 and K̃0 are a fuzzy number by fuzzy significance levels for δ = 0.
The fuzzy test of the fuzzy hypothesis H f 0 : mρ = 0̃ against the alternatives not ρ is near to ,

therefore rejects when ∣∣∣∣R̃χ1,χ2

∣∣∣∣√(
1 − R̃2

χ1,χ2

)
/(n − 2)

> K̃1 (5.6)

for any fuzzy number K̃1 by fuzzy significance levels.
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Table 1: Blood pressure sample
o(X) (systolic) o(Y) (diastolic)

[ 114, 116, 120 ] [ 68, 70, 73 ]
[ 91, 94, 98 ] [ 67, 68, 72 ]

[ 114, 120, 127 ] [ 82, 86, 90 ]
[ 124, 130, 138 ] [ 74, 80, 88 ]
[ 123, 134, 139 ] [ 76, 82, 86 ]
[ 113, 119, 124 ] [ 76, 79, 84 ]
[ 123, 128, 135 ] [ 76, 82, 85 ]
[ 104, 112, 117 ] [ 74, 80, 83 ]
[ 102, 110, 122 ] [ 78, 81, 84 ]
[ 98, 103, 109 ] [ 77, 85, 89 ]

[ 123, 134, 137 ] [ 82, 87, 92 ]
[ 102, 110, 122 ] [ 82, 84, 87 ]
[ 135, 141, 145 ] [ 75, 82, 85 ]
[ 114, 120, 125 ] [ 68, 73, 75 ]
[ 109, 112, 116 ] [ 72, 76, 80 ]

6. Illustration

Since
√

n − 2RX,Y/
√

1 − R2
X,Y has the t-distribution with n − 2 degree of freedom when ρ = 0, the

constants K0 and K1 in the above tests are given by∫ ∞

K0

tn−2(x) dx = α,
∫ ∞

K1

tn−2(x) dx =
α

2
(6.1)

by significance level α.
The distribution RX,Y depends only on the correlation coefficient ρ, also it is true of the power of

these tests.
From a bivariate probability distribution of blood pressures sample by Table 1, we induce fuzzy

variance and covariance by transformed power-normal data for λ = 1/2 and δ = 0 from Equation
(5.1), (3.4) and (3.5) as R̃X,Y = [−0.33, 0.43, 0.72].

From Equation (3.8), we have t-statistics for δ = 0 as;∣∣∣R̃X,Y

∣∣∣√(
1 − R̃2

X,Y

)
/(n − 2)

= [1.26, 1.73, 3.70]. (6.2)

For H f 0 : mρ = 0̃, if we have fuzzy significance level α̃ = [0.025, 0.05, 0.75] and d. f . = 13 then
K̃1 = [1.94, 2.16, 2.53] by Equation (5.7).

Since [1.26, 1.73, 3.70] > K̃1, the degree of acceptance for the hypothesis is ℑ(δ=0)(1) = 0.92 by
Equation (3.2) and Equation (4.6) as Figure 3.

7. Remarks and Conclusion

We would like to show the reduced-spread fuzzy variance and covariance for them average with
respect to the spreads by a fuzzy number center and agreement index by area ratio for acceptance or
the rejection degree of the fuzzy hypotheses.

We tested the independence of bivariate normal distribution by Box-Cox power fuzzy transforma-
tion for non-normal data blood pressure samples by an agreement index.
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Figure 3: Fuzzy critical region mC by test statistics mT

For crisp data by δ = 1, we accept the hypothesis H0 : ρ = 0 with acceptance degree ℑ(δ=1)(0) =
1.0 by

R̃χ1,χ2√(
1 − R̃2

χ1,χ2

)
/(n − 2)

= [1.73, 1.73, 1.73] < t15−2

(
0̃.025

)
= [2.16, 2.16, 2.16].

For δ = 1, we accept the hypothesis H f 0 : mρ = 0̃ by acceptance degree ℑ(δ=0)(0) = 0.92
within the range of possibility; however, we will accept the alternative hypothesis by rejection degree
ℑ(δ=0)(1) = 0.08.

Thus we have very useful and flexible testing hypotheses concerning the fuzzy distributions for
uncertainty data.
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