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Abstract
It is well known that the maximum likelihood estimator(MLE) in normal mixture models with unequal vari-

ances does not fall in the interior of the parameter space. Recently, a doubly smoothed maximum likelihood
estimator(DS-MLE) (Seo and Lindsay, 2010) was proposed as a general alternative to the ordinary maximum
likelihood estimator. Although this method gives a natural modification to the ordinary MLE, its computation
is cumbersome due to intractable integrations. In this paper, we derive an EM algorithm for the DS-MLE un-
der normal mixture models and propose a fast computational tool using a local quadratic approximation. The
accuracy and speed of the proposed method is then presented via some numerical studies.
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1. Introduction

Although normal mixture models play a central role in the mixture literature, it is well known that the
maximum likelihood approach fails to produce a consistent estimator due to an unbounded likelihood.
This type of failure is also common when we use a mixture of location-scale family of distributions. To
resolve this problem, a constrained maximum likelihood estimator(MLE) (Hathaway, 1985; Tanaka
and Takemura, 2006) uses a constraint on the scale parameters to compactify the parameter space.
A penalized MLE proposed by Ciuperca et al. (2003) and Chen et al. (2008) adds some penalty
functions to the ordinary likelihood so that the likelihood does not explode when one of the scale
parameters goes to zero. The penalized MLE can also be considered as a Bayesian estimator (Fraley
and Raftery, 2007) with an inverse Gamma or Wishart prior for scale parameters. The penalized
MLE and constrained MLE can be obtained using slight modification of the EM algorithm for normal
mixture models (Hathaway, 1986; Ingrassia and Rocci, 2007; Ciuperca et al., 2003; Chen et al., 2008).

As an alternative, Seo and Lindsay (2010) suggested the doubly-smoothed MLE(DS-MLE) which
uses smoothing techniques for both the model and data with a fixed kernel and bandwidth. In some
sense, the DS-MLE is considered a smoothed MLE because the DS-MLE tends to the ordinary MLE
as the bandwidth goes to zero. However, unlike other estimators based on smoothing techniques, the
DS-MLE is generally consistent even with a fixed bandwidth. Hence the choice of a bandwidth is
less sensitive to the quality of estimators than other smoothing based estimators. If we use the DS-
MLE to mixture models, the degeneracy problem is naturally removed, because the smoothed mixture
likelihood is bounded for any fixed positive bandwidth.
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Although the DS-MLE has many good theoretical properties, its computation requires several nu-
merical integrations. Seo and Lindsay (2010) proposed a simple computational strategy using the
Monte Carlo method and applied to the EM algorithm for normal mixtures. However, the EM algo-
rithm under their framework has not been studied thoroughly and their method could be inaccurate in
addition, it requires a large amount of computing effort.

In this paper, we derive an EM algorithm to obtain the DS-MLE in normal mixture models and give
a fast computing method using a quadratic approximation. Although we focus on the EM algorithm
of the DS-MLE for normal mixture models, our work can be easily extended to the DS-MLE for other
types of mixture models. This paper is organized as follows: In Section 2, we give a brief review
for the unbounded mixture likelihood and the DS-MLE. Then we derive an EM algorithm for the
DS-MLE in normal mixtures in Section 3, and propose a fast computing method in Section 4. Some
numerical examples to show the accuracy and the speed of the proposed method is given in Section 5.
We then give brief concluding remarks in Section 6.

2. Unbounded Likelihood and DS-MLE

In this section, we briefly review the unboundedness of the mixture likelihood and the DS-MLE for
normal mixture models. To explain the unboundedness of the mixture likelihood, let us consider the
J-component univariate normal mixture model

f (x; θ) =
J∑

j=1

p jN
(
x; µ j, σ

2
j

)
, (2.1)

where θ = (µ1, . . . , µJ , σ
2
1, . . . , σ

2
J , p1, . . . , pJ) ∈ RJ × R+J × R(0, 1)J with the constraint

∑J
j=1 p j = 1,

and N(x; µ, σ2) stands for the normal density with mean µ and variance σ2. Suppose Xi, . . . , Xn is a
random sample from (2.1), then it is easy to show that the likelihood of θ is unbounded (Kiefer and
Wolfowitz, 1956). For a simple example, let us consider the likelihood function for J = 2

L(θ) =
n∏

i=1

 p1√
2πσ2

1

exp
− (xi − µ1)2

2σ2
1

 + p2√
2πσ2

2

exp
− (xi − µ2)2

2σ2
2


 . (2.2)

In L(θ), if we fix µ1 = x1 (or any observation) and let σ2
1 go to zero, then (2.2) diverges regardless

of a given sample. Indeed, we can observe many infinite spikes at σ2
j = 0, j = 1, 2. Consequently,

the ordinary MLE always occurs on the boundary of the parameter space and this degenerate MLE is
neither meaningful nor consistent.

As a tool to regularize this likelihood, Seo and Lindsay (2010) proposed the doubly-smoothed(DS)
log likelihood that smooths both the model and data. They constructed two smoothed densities based
on a given model and data. The smoothed model density is given by

f ∗h (t; θ) =
∫

f (x; θ)Kh(x, t)dx, (2.3)

where Kh(x, t) is a kernel density with a bandwidth h. The smoothed empirical density is then con-
structed as

f̂ ∗h (t) =
1
n

n∑
i=1

Kh(xi, t), (2.4)
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which is known as a kernel density estimator based on a given sample X1, . . . , Xn. If we define a new
random variable T = X+ ϵ, then T has a density f ∗h (t; θ), where the densities of X and ϵ are f (x; θ) and
Kh(0, t), respectively. The smoothed empirical density f̂ ∗h (t) is then considered as a data dependent
smoothed density. Note that we use the same kernel and bandwidth in (2.3) and (2.4). This implies
that we view the model and data after we add a measurement error.

Now, the DS-MLE of θ is defined as the minimizer of the Kullback-Leibler divergence between
two smoothed densities f ∗h (t; θ) and f̂ ∗h (t)

θ̂∗ = arg min
θ

KL
(

f̂ ∗h (t), f ∗h (t; θ)
)
=

∫
log

 f̂ ∗h (t)
f ∗h (t; θ)

 f̂ ∗h (t)dt.

Equivalently, θ̂∗ is the maximizer of

l∗(θ) =
∫

log
(

f ∗h (t; θ)
)

f̂ ∗h (t)dt =
n∑

i=1

∫
log

(
f ∗h (t; θ)

)
Kh(xi, t)dt. (2.5)

We call l∗(θ) the DS log likelihood, because l∗(θ) approaches to the ordinary log likelihood l(θ) as
h → 0. The DS-MLE is consistent (Seo and Lindsay, 2011) for any kernel with any fixed bandwidth
h under very mild conditions. Some guidelines for the choice of the kernel and h are discussed in Seo
and Lindsay (2010).

For the normal mixture density f (x; θ) in (2.1), the smoothed model density f ∗h (t; θ) can be explic-
itly calculated as

∑J
j=1 p jN(t; µ j, σ

2
j + h) if Kh(x, t) is the normal density with mean t and variance h.

The DS log-likelihood is then

l∗(θ) =
n∑

i=1

∫
log

 J∑
j=1

p jN
(
t; µ j, σ

2
j + h

) Kh(xi, t)dt. (2.6)

Since there is no closed form for l∗(θ), maximizing l∗(θ) requires a numerical integration. For this
computational problem, Seo and Lindsay (2010) approximated l∗(θ) by

l∗MC(θ) =
1

nS

n∑
i=1

S∑
s=1

log

 J∑
j=1

p jN
(
ti j; µ j, σ

2
j + h

) , (2.7)

where {tis, s = 1, . . . , S } is a Monte-Carlo sample generated from Kh(xi, t) for each observed xi. With
this simple strategy, maximizing l∗MC(θ) is equivalent to finding the usual MLE with the smoothed
model f ∗(t; θ) and the augmented data {ti j : i = 1, . . . , n, s = 1, . . . , S }. Hence, if f ∗h (t; θ) has an
explicit form, one can easily find a Monte-Carlo version of the DS-MLE using standard optimization
techniques such as Newton methods and the EM algorithm.

One drawback of this computation is that it may require a large amount of computing time because
the program will run as if we have n × S data points instead of n. Thus, we may need significant
computing time when one needs a high accuracy of l∗MC(θ) or the original sample size is large. This
becomes even worse if a slow optimization technique such as the EM algorithm is applied.

3. EM Algorithm for DS-MLE

A popular computational tool for mixture models is the EM algorithm because it is a stable and easy
to program (though it is slow). In this section, we derive an EM algorithm to maximize l∗(θ) for
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finite normal mixture models. To derive the EM algorithm, we will consider the mixture model as
a component membership missing problem. Let us define a multinomial component membership
indicator vector yi = (yi1, . . . , yiJ) as

yi j =

{
1, if xi comes from N

(
µ j, σ

2
j

)
,

0, Otherwise.

Then the joint density of (xi, yi) is given by

f (xi, yi; θ) =
J∏

j=1

[
p jN

(
xi; µ j, σ

2
j

)]yi j

and the corresponding smoothed joint density is

f ∗h (t, yi; θ) =
∫

f (xi, yi; θ)Kh(t, xi)dxi.

If we choose the normal kernel for Kh, f ∗h (t, yi; θ) can be further simplified as

f ∗h (t, yi; θ) =
J∏

j=1

[
p jN

(
t; µ j, σ

2
j + h

)]yi j

and the corresponding DS log-likelihood function is

l∗(θ) =
n∑

i=1

∫
log

(
f ∗h (t, yi; θ)

)
Kh(t, xi)dt.

In the standard EM algorithm with the ordinary complete log likelihood, the objective function
Q(θ|θ(m)) is obtained by taking conditional expectation to l(θ) given (x1, . . . , xn) and a current estima-
tor θ(m). In this case, the E-step can be explicitly obtained as we have to only consider the conditional
expectation of yi j. However, for l∗(θ), this is not true anymore, because the complete DS log likeli-
hood l∗(θ) involves an intractable integral operator. To overcome this difficulty, we propose to take
conditional expectation only to log( f ∗h (t, yi; θ)) given t and a current parameter estimator θ(m) so that its
conditional expectation remains analytic. Note that the conditional distribution of (yi1, . . . , yiJ) given
t is simply the following multinomial distribution:

f ∗h (yi1, . . . , yiJ | t, θ) =
J∏

j=1

 p jN
(
t; µ j, σ

2
j + h

)
f ∗h (t; θ)


yi j

,

where f ∗h (t; θ) =
∑J

j=1 p jN(t; µ j, σ
2
j + h). Now we can derive the following E-step and M-step using

calculus similar to the standard EM for mixtures.

1. E-step: For a current estimator θ(m), we construct Q∗ as

Q∗
(
θ|θ(m)

)
=

n∑
i=1

∫
E

[
log f ∗h (t, yi; θ)|t; θ(m)

]
Kh(t − xi)dt

=

n∑
i=1

∫ J∑
j=1

[
E

(
yi j|t, θ(m)

)
log

(
p jN

(
t; µ j, σ

2
j + h

))]
Kh(t − xi)dt

=

n∑
i=1

J∑
j=1

∫
Îi j(t) log

(
p jN

(
t; µ j, σ

2
j + h

))
Kh(t − xi)dt, (3.1)
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where

Îi j(t) = E
[
yi j|t, θ(m)

]
=

p(m)
j N

(
t; µ(m)

j , σ2(m)
j + h

)
f ∗h

(
t; θ(m)

) .

2. M-step: The maximizer of the last displayed expression in (3.1) can be then calculated as

p(m+1)
j =

1
n

n∑
i=1

∫
Îi j(t)Kh(t − xi)dt,

µ(m+1)
j =

∑n
i=1

∫
tÎi j(t)Kh(t − xi)dt∑n

i=1

∫
Îi j(t)Kh(t − xi)dt

,

σ2(m+1)
j =

∑n
i=1

∫ (
t − µ(m+1)

j

)2
Îi j(t)Kh(t − xi)dt∑n

i=1

∫
Îi j(t)Kh(t − xi)dt

− h.

This can be obtained from the first derivative with respect to each parameter and these first deriva-
tives are given in Appendix.

Since E-step and M-step do not have closed forms due to integral operators, a numerical integration
is still required to compute the updated parameters in M-step. A simple way is to apply Monte-
Carlo integration as used in l∗MC(θ). If we use such a Monte-Carlo integration in E-step, the updated
parameters in M-step can be approximated by

p(m+1)
j ≈ 1

nS

n∑
i=1

S∑
s=1

Îi j(tis), (3.2)

µ(m+1)
j ≈ 1

np(m+1)
j

n∑
i=1

S∑
s=1

tis Îi j(tis), (3.3)

σ2(m+1)
j ≈ 1

np(m+1)
j

n∑
i=1

S∑
s=1

(
tis − µ(m+1)

j

)2
Îi j(tis) − h, (3.4)

where ti1, . . . , tiS is a random sample from Kh(xi, t) for each xi.
This gives the same answer as that from (2.7); therefore, the estimator is still simulation-dependent

and requires a large amount of computing time especially when one needs high accuracy of numerical
integrations. In the next section, we propose a method to significantly reduce the computing effort
with a minimal sacrifice of accuracy.

4. Local Quadratic Approximation

To avoid such time consuming simulation-based integration in M-step, we use the second-order Taylor
expansion of Îi j(t) at t = xi for each i:

Îi j(t) ≈ Îi j(xi) + Î′i j(xi)(xi − t) +
1
2

Î′′i j(xi)(xi − t)2, (4.1)

where Î′i j(t) and Î′′i j(t) are the first and second derivatives of Îi j(t) with respect to t. The explicit
formulae for Î′i j(t) and Î′′i j(t) are derived in Appendix. Now, if we replace Îi j(t) in (3.2)–(3.4) with



140 Byungtae Seo

(4.1), one can verify the following approximated M-step using the approximations of
∫

I(t)K(t, xi)dt,∫
tI(t)K(t, xi)dt, and

∫
tI(t)K(t, xi)dt given in Appendix:

p(m+1)
j ≈ 1

n

n∑
i=1

∫ (
Îi j(xi) + Î′i j(xi)(xi − t) +

1
2

Î′′k (xi)(xi − t)2
)

Kh(xi, t)dt

=
1
n

n∑
i=1

Îi j(xi) +
h

2n

n∑
i=1

Î′′i j(xi),

µ(m+1)
j ≈ 1

np(m+1)
j

n∑
i=1

∫
t
(
Îi j(xi) + Î′i j(xi)(xi − t) +

1
2

Î′′k (xi)(xi − t)2
)

Kh(xi, t)dt

=
1

np(m+1)
j

n∑
i=1

xi Îi j(xi) + hÎ′i j(xi) +
hxi Î′i j(xi)

2

 ,
σ2(m+1)

j ≈ 1

np(m+1)
j

n∑
i=1

∫ (
t − µ(m+1)

j

)2
(
Îi j(xi) + Î′i j(xi)(xi − t) +

1
2

Î′′k (xi)(xi − t)2
)

Kh(xi, t)dt

=
1

np(m+1)
j

n∑
i=1

Îi j(xi)
(
h + x2

i

)
+ 2Î′i j(xi)xih +

Î′′i j(xi)

2
h
(
3h + x2

i

) − (
µ(m+1)

j

)2
.

The accuracy of this approximation depends on the moment of (T − Xi)3 or (T − Xi)4, so the mag-
nitude of h is an important factor to control the accuracy of approximation. Clearly, an approximation
error becomes large as h increases. In this case, we may need a higher-order Taylor expansion in (4.1)
to gain more accuracy. However, a typical choice of h for the DS-MLE would be very small in the
normal mixture case although any choice of h guarantees the consistency of DS-MLE. This is because
a very small h is enough to remove degeneracy as shown in Seo and Linday (2010). Of course, a large
h can also remove degeneracy but with some information loss.

There is a practical guideline for the choice of h in the DS-MLE. Seo and Linday (2010) suggested
to use spectral degrees of freedom(sDOF) as a tool to determine a reasonable range of bandwidth that
utilizes the spectral decomposition of quadratic distances for probability distributions. The empirical
sDOF for a given kernel Kh(· , ·) with a bandwidth h can be calculated as

ŝDOF =

(
1
n
∑

i K̃2h(xi, x j)
)2

2
n(n−1)

∑
i< j

(
K̃2h(xi, x j)

)2 ,

where

K̃2h(xi, x j) = K2h(xi, x j) −
1
n

∑
i

K2h(xi, x j) −
1
n

∑
j

K2h(xi, x j) +
1
n2

∑
i

∑
j

K2h(xi, x j).

For more detail, see Lindsay et al. (2008) and Ray and Lindsay (2008).
Since the sDOF is analogous to the usual degrees of freedom in the Chi-squared goodness of fit

test, a rough rule of thumb is to choose h of which the sDOF is between 5 and n/5. A sDOF for a
given kernel and bandwidth greater than n/5 implies that h is too small; however, the corresponding
h is too large if the sDOF is less than 5. Although this guideline can be adopted to our case, for the
proposed quadratic approximation, we recommend to use h whose sDOF is close to n/5 (the upper
bound of sDOF in the guideline) to minimize the approximation error due to a large h.
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Table 1: Computing times in seconds for the proposed method and Monte-Carlo EM.

h MLE∗ S
200 400 600 800 1000

0.001 0.59 11.13 23.85 47.70 75.38 71.33
0.01 0.62 33.36 56.06 77.86 104.02 120.84
0.1 0.59 66.95 120.59 165.46 215.84 251.56

5. Numerical Example

In this section, we present results of some numerical studies to see the performance of the proposed
method in terms of the speed and accuracy compared to the Monte-Carlo method. Analysis of the
parameter estimate with mixture models has some complex features due to label switching, spurious
solutions, and multiple modes. It is very difficult to remove all of these undesirable feature with
mixture models. For this reason, in this section, we only consider the speed and accuracy of the
proposed method compared to the Monte-Carlo method proposed in Seo and Lindsay (2010).

5.1. Real data example

To show the performance of the proposed method, we first use the Acidity data set that contains acidity
indices from 155 lakes in the Northeastern United States (Crawford et al., 1992). Many authors
have used this data set to illustrate normal mixture models and found that the appropriate number
of components would be two to five. To assess the performance of the proposed method, we use a
two-component normal mixture model

p1√
2πσ2

1

exp
− (xi − µ1)2

2σ2
1

 + p2√
2πσ2

2

exp
− (xi − µ2)2

2σ2
2

 .
Since we only aim to see the speed and accuracy of the proposed method, we use just one initial value
for the EM algorithm. To choose the initial value, we first run the EM algorithm using a set of random
multiple initial values. We found three local maxima and several degenerate parameter estimates that
give infinite likelihood values as found in Seo and Lindsay (2010). For the initial value to be used
in our example, we choose the one with the largest likelihood value among all non-degenerate local
maxima. We expect that using this initial value is suitable to efficiently assess the performance of the
proposed estimator because this frees us from the issues regarding degeneracy and multimodality.

To see the performance of the MCEM proposed by Seo and Lindsay (2010) and the new EM, we
choose h = 0.1, 0.01, 0.001. Note that the empirical sDOF values corresponding to these h values
range from 5 to 31 (=155/5). Figure 1 shows the estimated (µ1, σ

2
1, p) over various S values. The

x-axis represents S , the number of random numbers used in (2.7) for each datum. The dashed line
represents the estimated parameter value obtained from the MCEM for each S . The solid line stands
for the parameter estimate from the proposed method denoted as DSEM. Note that DSEM does not
require Monte Carlo samples, and thus it remains the same over S . Due to the variability of the
Monte-Carlo samples used in MCEM, the estimated parameter values using MCEM fluctuate and the
magnitude of fluctuation taper off as S increases. For h = 0.001, it seems that S = 50 gives stable
estimates while more than 1000 Monte Carlo random numbers are required for h = 0.1. However,
DSEM gives quite accurate values similar to MCEM with S = 1000. This confirms that the proposed
method provides a relatively high accuracy without simulation based computation. Table 1 shows
the required computing times in seconds. Note that MCEM requires tremendous computing time
compared to DSEM without a significant gain of accuracy. Together this with the observation from
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Figure 1: Parameter estimates from MCEM (dashed line) and DSEM (solid line)

Figure 1, the proposed method is quite fast compared to MCEM while maintaining high accuracy. This
improvement would become more evident when one uses mixtures with more than two components
or the sample size is large.
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Table 2: Bias, standard error, and average runtime of each algorithm

h Method bias × 100 (standard error × 100) Average
µ1 µ2 σ2

1 σ2
1 p runtime

- EM −0.34(16.01) 0.64(14.92) −3.44(23.52) −3.60(22.78) 0.37(5.67) 0.11
DSEM −0.32(15.98) 0.66(14.91) −3.40(23.44) −3.64(22.69) 0.37(5.67) 0.11
MCEM50 −0.38(16.01) 0.64(14.90) −3.40(23.44) −3.66(22.68) 0.37(5.67) 2.18

0.01 MCEM100 −0.35(15.99) 0.65(14.91) −3.44(23.48) −3.60(22.66) 0.37(5.67) 4.08
MCEM300 −0.32(16.00) 0.67(14.92) −3.38(23.48) −3.65(22.71) 0.37(5.67) 10.97
MCEM500 −0.33(15.98) 0.66(14.90) −3.44(23.40) −3.66(22.69) 0.37(5.67) 17.26
DSEM 0.23(16.16) 1.07(15.90) −1.63(24.97) −4.18(22.99) 0.46(5.84) 0.17
MCEM50 −0.23(16.17) 1.04(15.31) −2.53(23.70) −4.79(22.42) 0.44(5.74) 3.04

0.3 MCEM100 −0.10(16.01) 1.05(15.25) −2.80(23.83) −4.52(22.22) 0.44(5.77) 5.63
MCEM300 0.02(16.06) 1.10(15.27) −2.56(23.55) −4.51(22.26) 0.44(5.74) 14.91
MCEM500 −0.02(15.97) 1.09(15.20) −2.77(23.62) −4.63(22.29) 0.44(5.76) 23.47

5.2. Simulation study

As reviewers requested, we also conduct a simple simulation experiment to see the performance of the
DS-MLE with each algorithm. Again, we mainly focus on the accuracy and speed of each algorithm in
this simulation study. For this, we generate n = 100 random sample from pN(µ1, σ

2
1)+(1−p)N(µ2, σ

2
2)

to find the MLE and the DS-MLE with MCEM and the proposed algorithm. The true parameter used
in this simulation is (µ1, µ2, σ

2
1, σ

2
2, p) = (0, 5, 1, 1, 0.5). This true parameter value represents a well-

separated normal mixture density. The initial set of parameter values is set to be true parameter values.
We choose this well separated mixture model and the true initial value to remove undesirable features
such as labeling switching and spurious solutions when we summarize the results; subsequently, the
ordinary EM algorithm hardly converges to degenerate solutions. Hence this enables us to only see the
accuracy and speed of the MCEM and DSEM. For all algorithms we considered here, each algorithm
is stopped if the difference of the consecutive log likelihood values was less than 10−7. We also test
two choices of bandwidths h = 0.01 and 0.3 that represent the maximum and minimum bandwidths
based on the guidelines explained in Section 4.

Table 2 shows the empirical bias, standard error, and average runtime for each algorithm based on
200 replications. For each sample, the ordinary EM algorithm is applied and then DSEM and MCEM
are used for h = 0.01 and 0.3. In Table 2, MCEM50, MCEM100, MCEM300, and MCEM500
represent the MCEM algorithms with S = 50, 100, 300, 500, respectively. For both h = 0.01 and
0.3, all methods show similar performance but MCEM’s require a large amount of computing time.
Although h = 0.3 is quite a large bandwidth, the DS-MLE obtained by either DSEM or MCEM
still produces reasonable estimators. This shows that the DS-MLE is not so sensitive to the choice
of h. The average runtime for MCEM is very large compared to EM while the runtime of DSEM is
slightly larger than EM. From this limited simulation, we can see that the proposed algorithm provides
sufficient accuracy while it dramatically reduces the computing time compared to MCEM.

6. Conclusion

In this paper, we derive an EM procedure for the DS-MLE in normal mixture models. EM algorithms
for other types of mixture models can be obtained similarly. In addition, we show that a quadratic
approximation can dramatically reduce computing effort while it maintains high precision. However,
when one needs to use a large bandwidth, the proposed method may not provide an accurate estima-
tor. Hence, if the DS-MLE is used to remove degenerate MLEs, we recommend using the smallest
bandwidth within the range of the bandwidth determined by the sDOF. It would be an important future
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task to develop a fast accurate method for the DS-MLE with a large bandwidth.

Appendix:

• The first derivatives of Q∗ to obtain M-step in Section 3

dQ∗

dp j
=

J∑
j=1

1
p j

 n∑
i=1

∫
Îi j(t)Kh(t − xi)dt

 ,
dQ∗

dµ j
=

n∑
i=1

∫  t − µ j

σ2
1 + h

 Îi j(t)Kh(t − xi)dt,

dQ∗

dσ2
j

=

n∑
i=1

∫ 
(
t − µ2

j

)
(
σ2

j + h
)2 −

1(
σ2

j + h
)
 Îi j(t)Kh(t − xi)dt.

• The explicit forms of Î′i j(t) and Î′′i j(t)

Let a j(t) = p jN(t; µ j, σ
2
j + h) and A(t) =

∑
j a j(t), where N(t; µ, σ2) is the normal density with

mean µ and variance σ2. One can then easily verify a′j(t) = −{(t − µ j)/(σ2
j + h)}a j(t), a′′j (t) =

[{(t − µ j)/(σ2
j + h)} − 1/(σ2

j + h)]a j(t), A′(t) =
∑

j a′j(t), and A′′(t) =
∑

j a′′j (t). Under these nota-
tions, we can verify

Î′i j(t) =
a′j(t)A(t) − a j(t)A′(t)

(A(t))2

and

Î′′i j(t) =
a′′j (t)A(t) − a j(t)A′′(t)

(A(t))2 −
2A′(t)Î′i j(t)

A(t)
.

• Approximations of
∫

I(t)Kh(t, xi)dt,
∫

tI(t)Kh(t, xi)dt, and
∫

t2I(t)Kh(t, xi)dt for p(m+1)
j , µ(m+1)

j , and

σ2(m+1)
j in Section 4.

For the normal kernel Kh(xi, t) with variance h, we have
∫

Kh(xi, t)dt = 1,
∫

tKh(xi, t)dt = xi,∫
t2Kh(xi, t)dt = x2

i + h,
∫

t3Kh(xi, t)dt = x3
i + 3xih, and

∫
t4Kh(xi, t)dt = x4

i + 6x2
i h + 3h2. Using

these and tedious calculus, one can verify followings:∫
I(t)Kh(t, xi)dt ≈

∫ (
I(xi) + I′(xi)(t − xi) +

1
2

I′′(xi)(t − xi)2
)

Kh(t, xi)dt

= I(xi)
∫

Kh(t, xi)dt + I′(xi)
∫

(t − xi)Kh(t, xi)dt +
1
2

I′′(xi)
∫

(t − xi)2Kh(t, xi)dt

= I(xi) +
h
2

I′′(xi),∫
tI(t)Kh(t, xi)dt ≈

∫
t
(
I(xi) + I′(xi)(t − xi) +

1
2

I′′(xi)(t − xi)2
)

Kh(t, xi)dt

= I(xi)
∫

tKh(t, xi)dt + I′(xi)
∫

t(t − xi)Kh(t, xi)dt +
1
2

I′′(xi)
∫

t(t − xi)2Kh(t, xi)dt
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= xiI(xi) + hI′(xi) +
hxiI′′(xi)

2
,∫

t2I(t)Kh(t, xi)dt ≈
∫

t2
(
I(xi) + I′(xi)(t − xi) +

1
2

I′′(xi)(t − xi)2
)

Kh(t, xi)dt

= I(xi)
∫

t2Kh(t, xi)dt + I′(xi)
∫

t2(t − xi)Kh(t, xi)dt

+
1
2

I′′(xi)
∫

t2(t − xi)2Kh(t, xi)dt

= I(xi)
(
h + x2

i

)
+ 2I′(xi)xih +

1
2

I′′(xi)h
(
3h + x2

i

)
.
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