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Abstract
In this paper we review a bi-aspect nonparametric test for the two-sample problem under the location trans-

lation model and propose a new one to accommodate a more broad class of underlying distributions. Then we
compare the performance of our proposed test with other existing ones by obtaining empirical powers through
a simulation study. Then we discuss some interesting features related to the bi-aspect test with a comment on a
possible expansion for the proposed test as concluding remarks.
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1. Introduction

When one considers a comparison study for a treatment with control, one may try to apply a suitable
nonparametric test when the underlying distribution cannot be assumed with any specific one. All the
nonparametric test statistics are directly related with ranks that may alleviate some severe departure
from the usual observations that may be called as outliers. Because of minimal assumptions for the
underlying distributions, it may well be that the powers of resulting nonparametric tests are lower
than those of parametric ones under some specific distributions. Then in order to enhance the power
of test, one may consider to use several test procedures simultaneously (cf. Park, 2011a, 2011b).
This procedure may be called the versatile test. In addition, one may try to reduce the scope of the
null hypothesis by splitting the null hypothesis into sub-hypotheses and then intersecting the splitted
sub-hypotheses. Pesarin (2001) initiated this procedure and named it as the multi-aspect test. This
test procedure has been developed and expanded in various situations by many authors. Marozzi
(2004a) considered a bi-aspect test procedure for the location parameter for the two-sample problem
and expanded it for the multi-sample case (cf. Marozzi, 2004b). In addition, for testing equality of
two distributions in a case-control design with treatment effects, Salmaso and Solari (2005) considered
several different features of a null hypothesis that leads to the multiple-aspect test.

In order to complete the chosen test, one has to derive the null distribution of the test statistics to
obtain the critical value for any given significance level or p-value for a more general conclusion of
the test. However, the derivation of the null distribution may be difficult if not impossible since the
used statistics may be correlated to each other in a complicated manner. One way out this quagmire
would be to use a re-sampling method such as the bootstrap or permutation method. This approach
may depend heavily on the computer ability and applicable software.

In this research, we propose a new bi-aspect nonparametric test for the two- sample problem under
the location translation model. In the next section we review Marozzi’s result and propose a new coun-
terpart for broad applications to various distributions. We consider the use of permutation principle
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for obtaining p-values. Then we compare the performance of the proposed test with Marozzi’s that
includes some individual tests (through a simulation study) and discuss interesting features related to
the bi-aspect tests as concluding remarks.

2. Bi-Aspect Test

Let X11, . . . , X1n1 and X21, . . . , X2n2 be two independent random samples from populations with con-
tinuous but unknown distribution functions F1 and F2, respectively. Then we consider the following
location translation model such that for some δ ∈ (−∞,∞),

F2(x) = F1(x + δ), for all x ∈ (−∞,∞).

Under this model, Marozzi (2004a, 2004b) proposed bi-aspect nonparametric test procedures for test-
ing the null hypothesis

H0 : {δ = 0} ∩ {F1 = F2}

based on the following two statistics T1 and T2 such that

T1 =

n1∑
i=1

X1i and T2 =

n1∑
i=1

I
(
X1i > M̃

)
,

where I(·) is an indicator function and M̃ is a sample median from the combined sample. We note that
T1 is a version of two-sample t-statistic and T2, the Mood-type median test statistic (cf. Mood, 1950).
This means that for testing H01 : δ = 0 and H02 : F1 = F2, one may use T1 and T2 as test statistics,
respectively. For the time being, for more detailed discussion of our arguments, we now consider the
one-sided alternative such that H11 : δ > 0 or H12 : F1(x) < F2(x) for some x ∈ (−∞,∞). Let λ1 and
λ2 be the respective p-values for testing H01 : δ = 0 against H11 : δ > 0 and H02 : F1 = F2 against
H12 : F1(x) < F2(x) for some x ∈ (−∞,∞) with T1 and T2. Then by choosing a suitable combining
function to obtain an overall p-value, one can continue this testing procedure as follows. With the
Tippett combining function (cf. Pesarin, 2001), Marozzi (2004a, 2004b) proposed a test statistic T12
based on T1 and T2 as follows.

T12 = max {1 − λ1, 1 − λ2} .

For each j, j = 1, 2, we note that the p-value λ j is a random variable since λ j is a function from T j.
Since at least any one of λ j’s tends to be 0 if H0 : {δ = 0} ∩ {F1 = F2} is false, the test based on
T12 would be to reject H0 when the value of T12 approaches 1. Then in order to complete this test
procedure, we need the null distribution of T12. For this, Marozzi (2004a, 2004b) applied the permu-
tation principle (cf. Good, 2000; Pesarin, 2001) for obtaining the overall p-value for T12. Especially,
Marozzi (2004a) presented a procedure by obtained the p-value with the Monte-Carlo approach and
modified slightly the form of statistics by adding 1/2 and 1 in the numerator and denominator, respec-
tively to ensure to obtain the p-values in the interval because of computational convenience. Since the
statistic T1 is a version of t-statistic that produces an optimal test when the underlying distribution is
normal, one may worry about the power of the test when the underlying distribution may be skewed
or heavy-tailed. Thus the test based on T12 may be inappropriate when the underlying distribution is
exponential or Cauchy. For this reason, we may propose a new test that uses the Wilcoxon rank-sum
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Table 1: Normal distribution

Test (n1, n2) δ
0.0 0.2 0.4 0.6 0.8 1.0 1.2

(15, 15) 0.0495 0.1361 0.2759 0.4842 0.6831 0.8442 0.9384
T1 (20, 10) 0.0455 0.1252 0.2560 0.4428 0.6372 0.8059 0.9129

(20, 30) 0.0530 0.1748 0.3990 0.6682 0.8614 0.9626 0.9941
(15, 15) 0.0129 0.0367 0.0934 0.1837 0.3164 0.4685 0.6355

T2 (20, 10) 0.0237 0.0579 0.1263 0.2299 0.3678 0.5225 0.6744
(20, 30) 0.0221 0.0755 0.1834 0.3581 0.5665 0.7587 0.8897
(15, 15) 0.0486 0.1295 0.2630 0.4527 0.6517 0.8180 0.9222

T3 (20, 10) 0.0438 0.1187 0.2441 0.4174 0.6053 0.7773 0.8942
(20, 30) 0.0528 0.1711 0.3766 0.6427 0.8431 0.9555 0.9905
(15, 15) 0.0534 0.1409 0.2878 0.4919 0.6909 0.8482 0.9396

T12 (20, 10) 0.0543 0.1407 0.2774 0.4617 0.6561 0.8171 0.9180
(20, 30) 0.0595 0.1888 0.4137 0.6808 0.8883 0.9648 0.9942
(15, 15) 0.0504 0.1320 0.2674 0.4574 0.6553 0.8198 0.9228

T32 (20, 10) 0.0491 0.1290 0.2565 0.4290 0.6168 0.7843 0.8968
(20, 30) 0.0563 0.1783 0.3853 0.6480 0.8466 0.9563 0.9905

statistic, T3,

T3 =

n1∑
i=1

R1i,

where R1i is the rank of X1i from the combined sample. Then based on T3, let λ3 be the individual
p-value for testing H01 : δ = 0 against H11 : δ > 0. Then using the Tippett combining function, we
may propose a test statistic T32 as follows:

T32 = max{1 − λ3, 1 − λ2}.
The testing rule also rejects H0 in favor of H1 for large values of T32. Then by using the permutation
principle to obtain the overall p-value, we can complete the test. In the next section, we compare the
performance between T12 and T32 through a simulation study.

3. Simulation Study

In order to compare the performance of the proposed test with other procedures, we now carry out a
simulation study. We tabulate the simulation results in Table 1 through Table 4. In this comparison
study, we consider the two bi-aspect tests, T12 and T32 with the individual tests, T1, T2 and T3 to
obtain empirical powers through the application of the permutation principle. We consider the normal,
Cauchy, exponential and uniform distributions with unit variance except the Cauchy distribution under
the location translation model. We consider the standard Cauchy distribution. The value of varies from
0.0 to 1.2 with increment 0.2. The nominal significance level is 0.05 for all cases. We consider the
three cases (15, 15), (20, 10) and (20, 30) for (n1, n2). All the results are based on 10,000 simulations
with the Monte-Carlo method and within a simulation, we applied the permutation principle by 10,000
iterations also with the Monte-Carlo approach to estimate the distribution. All the computations were
carried out by SAS/IML with PC-version. First, we note that the test based on T2 barely achieves the
nominal significance level for all cases. This may be a drawback of the median test. For the normal
and uniform distributions(Table 1 and Table 4), the tests, T1 and T12 show the best performance while
for the Cauchy and exponential case(Table 2 and Table 3), T3 and T32 achieve more powerful results.
Especially we note that T32 performs the best of all for the Cauchy distribution(Table 2). Therefore
T32 would be effective for the heavy-tailed underlying distribution.
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Table 2: Cauchy distribution

Test (n1, n2) δ
0.0 0.2 0.4 0.6 0.8 1.0 1.2

(15, 15) 0.0524 0.0716 0.0934 0.1199 0.1540 0.1880 0.2260
T1 (20, 10) 0.0510 0.0682 0.0903 0.1180 0.1446 0.1765 0.2093

(20, 30) 0.0512 0.0702 0.0941 0.1196 0.1495 0.1809 0.2139
(15, 15) 0.0125 0.0289 0.0601 0.1068 0.1720 0.2581 0.3506

T2 (20, 10) 0.0248 0.0521 0.0918 0.1477 0.2223 0.3094 0.3966
(20, 30) 0.0218 0.0552 0.1197 0.2166 0.3480 0.4934 0.6271
(15, 15) 0.0476 0.0862 0.1387 0.2126 0.2977 0.3939 0.4869

T3 (20, 10) 0.0483 0.0826 0.1314 0.1962 0.2734 0.3603 0.4457
(20, 30) 0.0527 0.1021 0.1821 0.2874 0.4150 0.5473 0.6617
(15, 15) 0.0589 0.0684 0.1262 0.1788 0.2495 0.3335 0.4244

T12 (20, 10) 0.0657 0.0997 0.1452 0.2053 0.2795 0.3646 0.4495
(20, 30) 0.0642 0.1050 0.1737 0.2703 0.3945 0.5288 0.6534
(15, 15) 0.0489 0.0898 0.1458 0.2234 0.3149 0.4169 0.5160

T32 (20, 10) 0.0526 0.0939 0.1494 0.2225 0.3112 0.4058 0.4959
(20, 30) 0.0553 0.1097 0.2021 0.3228 0.4601 0.6041 0.7229

Table 3: Exponential distribution

Test (n1, n2) δ
0.0 0.2 0.4 0.6 0.8 1.0 1.2

(15, 15) 0.0505 0.1458 0.3167 0.5234 0.7156 0.8473 0.9251
T1 (20, 10) 0.0503 0.1563 0.3261 0.5250 0.7066 0.8311 0.9150

(20, 30) 0.0508 0.1735 0.4083 0.6634 0.8576 0.9535 0.9873
(15, 15) 0.0122 0.0506 0.1419 0.3028 0.4825 0.6676 0.8061

T2 (20, 10) 0.0245 0.0749 0.1677 0.2976 0.4447 0.5900 0.7142
(20, 30) 0.0238 0.1006 0.2891 0.5693 0.8107 0.9412 0.9864
(15, 15) 0.0497 0.2080 0.4593 0.6981 0.8522 0.9370 0.9762

T3 (20, 10) 0.0476 0.1991 0.4253 0.6376 0.7941 0.8911 0.9438
(20, 30) 0.0508 0.2779 0.6446 0.8870 0.9758 0.9957 0.9995
(15, 15) 0.0545 0.1619 0.3449 0.5633 0.7541 0.8796 0.9461

T12 (20, 10) 0.0593 0.1747 0.3520 0.5541 0.7305 0.8494 0.9272
(20, 30) 0.0609 0.2091 0.4741 0.7503 0.9205 0.9812 0.9969
(15, 15) 0.0506 0.2096 0.4599 0.6983 0.8522 0.9370 0.9762

T32 (20, 10) 0.0543 0.2038 0.4267 0.6383 0.7943 0.8911 0.9438
(20, 30) 0.0553 0.2813 0.6455 0.8873 0.9759 0.9957 0.9995

4. Some Concluding Remarks

The bi-aspect test has some flexibility since one may consider various existing tests that combine them
together upon the situations. Thus when no information for the underlying distributions is available,
one can try to combine various tests and increase the significance of the test.

In Section 2, we stated that the statistic T1 is a version of t-statistic without the expression of the
pooled sample variance S 2

p. Since we have chosen the permutation principle to obtain p-value, the

divisor
√

S 2
p at T1 would be redundant since

√
S 2

p is common for all permutations. If we take the
approach of invoking the t-distribution table, then the complete form for the t-statistic should be used.

For the construction of T12 and T32 in Section 2, we have used the respective p-values instead of
the statistics themselves since the form of T12 and T32 is maximal. If T ′12 = max{T1,T2} or T ′32 =

max{T3,T2}, then both T ′12 and T ′32 would be meaningless. Then in order to make them meaningful,
one has to obtain the null means and variances of the respective statistics in order to normalize them.
This is why we use the respective p-values rather than the original statistics.
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Table 4: Uniform distribution

Test (n1, n2) δ
0.0 0.2 0.4 0.6 0.8 1.0 1.2

(15, 15) 0.0503 0.1258 0.2747 0.4763 0.6808 0.8481 0.9439
T1 (20, 10) 0.0470 0.1240 0.2574 0.4391 0.6371 0.8105 0.9195

(20, 30) 0.0482 0.1656 0.2795 0.6475 0.8596 0.9616 0.9929
(15, 15) 0.0140 0.0320 0.0634 0.1062 0.1807 0.2844 0.4148

T2 (20, 10) 0.0232 0.0498 0.0905 0.1541 0.2422 0.3517 0.4806
(20, 30) 0.0199 0.0517 0.1111 0.2131 0.3411 0.5036 0.6776
(15, 15) 0.0482 0.1237 0.2615 0.4419 0.6240 0.7861 0.8978

T3 (20, 10) 0.0464 0.1168 0.2405 0.4024 0.5797 0.7446 0.8625
(20, 30) 0.0469 0.1609 0.3597 0.6054 0.8088 0.9283 0.9780
(15, 15) 0.0525 0.1302 0.2758 0.4769 0.6811 0.8482 0.9440

T12 (20, 10) 0.0529 0.1308 0.2630 0.4428 0.6386 0.8109 0.9201
(20, 30) 0.0522 0.1699 0.3817 0.6483 0.8596 0.9616 0.9929
(15, 15) 0.0500 0.1250 0.2622 0.4424 0.6242 0.7861 0.8978

T32 (20, 10) 0.0516 0.1237 0.2455 0.4056 0.5816 0.7451 0.8634
(20, 30) 0.0510 0.1652 0.3616 0.6062 0.8088 0.9284 0.9780

In order to express T2 using the ranks, let n = n1 + n2. Then a rank for a median, nM , can be
defined as nM = [n/2] + 1, where [x] is the largest integer of the real number x. Then X(nM ) be a
median and so can be M̃, where X(nM) is the nMth order statistic from the combined sample. Since the
ranks preserve the original order of the observations, we see that

T2 =

n1∑
i=1

(
X1i > M̃

)
=

n1∑
i=1

I (R1i > nM) .

Even though Marozzi (2004a) did not derive the limiting distribution for T12, one may obtain
the limiting distribution of T12 using the large sample approximation theorem with applications of
Slutsky’s theorem and Cramer-Wold device (cf. Serfling, 1980). However, the resulting distribution
will be a bivariate normal whose distributional tables are rare or not at all (cf. Owen, 1962). Also
the software for the computation of probability hardly provide the multivariate normal distributions or
any multivariate distribution. For example, SAS can only provide bivariate normal distribution. These
points might make Marozzi (2004a) to reconsider the limiting distribution for T12.

The simultaneous use of several statistics in the nonparametric test procedures has been developed
for the purpose to obtain high power of test; however, the increase of the use of the statistics does not
guarantee the increase of power (cf. Park, 2011a). Therefore before analyzing the data with intensity, it
would be necessary to take some preliminary or explanatory analysis to choose some suitable statistics
that can be included in a multi-aspect test.

For the combining functions of several statistics or p-values, one may consider using summing or
quadratic types for the consideration of enhancing power of test; however, we note that the quadratic
form can only be used for the two-sided test. Therefore, the summing and maximal type can be used
in order to accommodate more general cases in our study. In addition, a comparison study for both
types will appear in the near future in the suitable medium.

Finally we note that there is one more re-sampling method such as the bootstrap method. The
distinction between the bootstrap and permutation methods are as follows. The bootstrap method
re-samples with replacement but the permutation principle, without replacement from the original
sample, however the difference can be significant in some cases (cf. Good, 2000).
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