DOI QR코드

DOI QR Code

전기방사법을 이용한 고분자 나노섬유의 합성과 다중벽 탄소나노튜브의 혼합을 통한 물리적 강도 향상

Reinforcing Polymer Nanofibers Through Incorporation of Multi-walled Carbon Nanotubes

  • 이미현 (성균관대학교 BK21 물리연구단, 에너지과학과) ;
  • 송우석 (성균관대학교 BK21 물리연구단, 에너지과학과) ;
  • 김유석 (성균관대학교 BK21 물리연구단, 에너지과학과) ;
  • 장성원 (성균관대학교 BK21 물리연구단, 에너지과학과) ;
  • 최원철 (한국과학기술연구원(KIST) 전자재료센터) ;
  • 박종윤 (성균관대학교 BK21 물리연구단, 에너지과학과)
  • Lee, Mi-Hyun (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University) ;
  • Song, Woo-Seok (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University) ;
  • Kim, Yoo-Seok (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University) ;
  • Jang, Sung-Won (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University) ;
  • Choi, Won-Chel (Electronic Materials Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Park, Chong-Yun (BK21 Physics Research Division and Department of Energy Science, Sungkyunkwan University)
  • 투고 : 2011.11.15
  • 심사 : 2012.01.11
  • 발행 : 2012.01.30

초록

본 연구에서는 전기방사법(electrospinning method)을 이용하여 다중벽 탄소나노튜브(multi-walled carbon nanotubes, MWCNTs)가 첨가된 polyacrylonitrile (PAN)과 poly (methyl methacrylate) (PMMA) 고분자 복합 나노섬유를 합성하였다. 합성 과정에서 고분자 물질의 농도와 인가전압의 변화가 나노섬유의 합성에 미치는 영향을 조사하여 최적화된 고분자 나노섬유 합성 조건을 확립하였다. 또한, MWCNTs의 첨가량의 변화에 따른 복합 나노섬유의 구조적 특징을 주사전자현미경(scanning electron microscopy)과 투과전자현미경(transmission electron microscopy)을 통해 분석하였으며, 기계적 강도를 조사하였다. 5 wt%의 MWCNTs가 첨가된 경우, 인장강도(tensile strength)와 영률(Young's modulus)이 PAN 복합 나노섬유는 500%, 27% 향상되었으며, PMMA 복합 나노섬유는 250%, 1,017% 향상된 것을 확인할 수 있었다.

Multi-walled carbon nanotubes (MWCNTs) incorporated polyacrylonitrile (PAN) and poly (methyl methacrylate) (PMMA) nanofibers were synthesized using electronspinning method. Effects of polymer concentration and applied voltage on the synthesis of PAN and PMMA nanofibers were systematically investigated. The structural characterization of PAN/MWCNTs and PMMA/MWCNTs composited nanofibers synthesized as a function of the MWCNTs concentration was performed by scanning electron microscopy and transmission electron microscopy. 5 wt% MWCNTs incorporated PAN and PMMA electrospun nanofiber exhibit best strength and stiffness.

키워드

참고문헌

  1. Y. Dzenis, Science, 304, 1917 (2004). https://doi.org/10.1126/science.1099074
  2. S. G. Kumbar, R. James, S. P. Nukavarapu, and C. T. Laurencin, Biomed. Mater. 3, 034002 (2008). https://doi.org/10.1088/1748-6041/3/3/034002
  3. G. E. Wnek, M. E. Carr, D. G. Simpson, and G. L. Bowlin, Nano Lett. 3, 213 (2003). https://doi.org/10.1021/nl025866c
  4. S. W. Choi, S. M. Jo, W. S. Lee, and Y. -R. Kim, Adv. Mater. 15, 2027 (2003). https://doi.org/10.1002/adma.200304617
  5. Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, Polymer, 42, 9955 (2001). https://doi.org/10.1016/S0032-3861(01)00540-7
  6. R. Jalili, M. Morshed, and S. A. H. Ravandi, J. Appl. Polym. Sci. 101, 4350 (2006). https://doi.org/10.1002/app.24290
  7. W. E. Teo, and S. Ramakrishna, Nanotechnology, 17, 89 (2006). https://doi.org/10.1088/0957-4484/17/1/015
  8. S. Y. Gu, J. Ren, and G. J. Vancso, Eur. Polym. J. 41, 2559 (2005). https://doi.org/10.1016/j.eurpolymj.2005.05.008
  9. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and Hongjie Dai, Nature, 424, 654 (2003). https://doi.org/10.1038/nature01797
  10. A. Modi, N. Koratkar, E. Lass, B. Wei, and P. M. Ajayan, Nature, 424, 171 (2003). https://doi.org/10.1038/nature01777
  11. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, and Y. W. Jin, Appl. Phys. Lett. 75, 3129 (1999). https://doi.org/10.1063/1.125253
  12. S. M. Lee, and Y. H. Lee, Appl. Phys. Lett. 76, 2877 (2000). https://doi.org/10.1063/1.126503
  13. K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, and A. Windle, Science, 318, 1892 (2007). https://doi.org/10.1126/science.1147635
  14. M. Motta, Y. -L. Li, I. Kinloch, and A. Windle, Nano Lett. 5, 1529 (2005). https://doi.org/10.1021/nl050634+
  15. W. Song, C. Jeon, Y. S. Kim, Y. T. Kwon, D. S. Jung, S. W. Jang, W. C. Choi, J. S. Park, R. Saito, and C. -Y. Park, ACS Nano. 4, 1012 (2010). https://doi.org/10.1021/nn901135b
  16. W. Song, D. S. Jung, W. Jung, Y. T. Kwon, Y. S. Kim, S. W. Jang, S. Shrestha, C. Jeon, W. C. Choi, and C. -Y. Park, J. Korean Phys. Soc. 55, 2451 (2009). https://doi.org/10.3938/jkps.55.2451
  17. W. Song, D. S. Jung, Y. T. Kwon, N. T. Anh, W. C. Choi, and C. -Y. Park, J. Korean Phys. Soc. 57, 84 (2010). https://doi.org/10.3938/jkps.57.84
  18. V. P. Veedu, A. Cao, X. Li, K. Ma, C. Soldano, S. Kar, P. M. Ajayan, and M. N. Ghasemi, Nat. Mater. 5, 457 (2006). https://doi.org/10.1038/nmat1650
  19. R. Sen, B. Zhao, D. Perea, M. E. Itkis, H. Hu, J. Love, E. Bekyarova, and R. C. Haddon, Nano Lett. 4, 459 (2004). https://doi.org/10.1021/nl035135s
  20. J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gunko, Carbon. 44, 1624 (2006). https://doi.org/10.1016/j.carbon.2006.02.038
  21. F. H. Gojny, M. H. G. Wichmann, U. Kopke, B. Fiedler, and K. Schulte, Compos. Sci. Technol. 64, 2363 (2004). https://doi.org/10.1016/j.compscitech.2004.04.002
  22. T. V. Sreekumar, T. Liu, B. G. Min, H. Guo, S. Kumar, R. H. Hauge, and R. E. Smalley, Adv. Mater. 16, 58 (2004). https://doi.org/10.1002/adma.200305456
  23. M. -K. Yeh, N. -H. Tai, and J. -H. Liu, Carbon 44, 1 (2006). https://doi.org/10.1016/j.carbon.2005.07.005
  24. C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, Polymer 40, 7397 (1999). https://doi.org/10.1016/S0032-3861(98)00866-0
  25. H. Fong, I. Chun, and D. H. Reneker, Polymer 40, 4585 (1999). https://doi.org/10.1016/S0032-3861(99)00068-3

피인용 문헌

  1. Robust and Flexible Polyurethane Composite Nanofibers Incorporating Multi-Walled Carbon Nanotubes Produced by Solution Blow Spinning vol.301, pp.4, 2016, https://doi.org/10.1002/mame.201500298
  2. Recent trends in electrospinning of polymer nanofibers and their applications in ultra thin layer chromatography vol.229, 2016, https://doi.org/10.1016/j.cis.2015.12.003