DOI QR코드

DOI QR Code

정확하고 효율적인 인체 FDTD 분산 모델링

Dispersive FDTD Modeling of Human Body with High Accuracy and Efficiency

  • 하상규 (한양대학교 전자컴퓨터통신공학과) ;
  • 조제훈 (한양대학교 전자컴퓨터통신공학과) ;
  • 김형동 (한양대학교 전자컴퓨터통신공학과) ;
  • 최재훈 (한양대학교 전자컴퓨터통신공학과) ;
  • 정경영 (한양대학교 전자컴퓨터통신공학과)
  • Ha, Sang-Gyu (Department of Electronics Computer Engineering, Hanyang University) ;
  • Cho, Jea-Hoon (Department of Electronics Computer Engineering, Hanyang University) ;
  • Kim, Hyeong-Dong (Department of Electronics Computer Engineering, Hanyang University) ;
  • Choi, Jae-Hoon (Department of Electronics Computer Engineering, Hanyang University) ;
  • Jung, Kyung-Young (Department of Electronics Computer Engineering, Hanyang University)
  • 투고 : 2012.01.03
  • 심사 : 2012.01.04
  • 발행 : 2012.01.31

초록

본 논문에서는 인체의 전자파 해석을 위해 유한 차분 시간 영역법(FDTD: Finite-Difference Time-Domain)에 적합한 분산 모델링을 제안한다. 주파수에 따라 전기적 특성이 변하는 인체의 분산 특성을 정확하고 효율적으로 모델링을 하기 위해 상대 유전율을 2차 복소수 분수 함수식(QCRF: Quadratic Complex Rational Function)으로 표현하였다. WLSM(Weight Least Square Method) 기반의 복소수 커브 피팅법을 적용하여 인체 조직에 대한 QCRF 계수들을 추출하였으며, QCRF 분산 모델을 FDTD에 적용하는 방법을 논의하였다. 본 논문에서 제안한 QCRF 기반의 인체 분산 모델이 Gabriel의 측정 데이터와 일치하며, FDTD 적용시 Cole-Cole 분산 모델보다 계산 효율이 뛰어남을 확인하였다. 단일 주파수와 광대역 주파수 신호를 입력원으로 한 모의 실험을 통하여 QCRF 기반의 FDTD 분산 알고리즘의 검증 및 분석을 마무리하였다.

We propose a dispersive finite-difference time domain(FDTD) algorithm suitable for the electromagnetic analysis of the human body. In this work, the dispersion relation of the human body is modeled by a quadratic complex rational function(QCRF), which leads to an accurate and efficient FDTD algorithm. Coefficients(involved in QCRF) for various human tissues are extracted by applying a weighted least square method(WLSM), referred to as the complex-curve fitting technique. We also presents the FDTD formulation for the QCRF-based dispersive model in detail. The QCRFbased dispersive model is significantly accurate and its FDTD implementation is more efficient than the counterpart of the Cole-Cole model. Numerical examples are used to show the validity of the proposed FDTD algorithm.

키워드

참고문헌

  1. 이승학, 김채영, 강승진, "휴대폰 전파의 인체 흡수전력량과 온도 상승량 산출", 한국전자파학회논문지, 12(3), pp. 409-415, 2001년 4월.
  2. 가원석, 김태홍, 김정란, 백정기, "분산 알고리즘에 따른 광대역 펄스 전자파 노출에 대한 인체 노출량 해석", 한국전자파학회논문지, 17(7), pp. 684-693, 2006년 7월.
  3. K. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media", IEEE Trans. Antennas Propag., vol. 14, pp. 302-307, May 1966. https://doi.org/10.1109/TAP.1966.1138693
  4. K.-Y. Jung, F. L. Teixeira, and R. M. Rean, "Au/ $SiO_2$ nanoring plasmon waveguides at optical communication band", J. Lightw. Technol. vol. 25, pp. 2757-2765, Sep. 2007. https://doi.org/10.1109/JLT.2007.902100
  5. M. A. Sefunc, A. K. Okyay, and H. V. Demir, "Plasmonic backcontact grating for P3HT:PCBM organic solar sells enabling strong optical absorption increased in all polarizations", Opt. Express, vol. 19, no. 15, pp. 14200-14209, Jul. 2011. https://doi.org/10.1364/OE.19.014200
  6. C. Gabriel, "Compilation of the dielectric properties of body tissue at RF and microwave frequency", Brooks Air Force, Tech. Rep. AL/OE-TR-1996-00- 37, 1996.
  7. F. Torres, P. Vaudon, and B. Jecko, "Application of fractional derivatives to the FDTD modeling of pulse propagation in Cole-Cole dispersive medium", Microw. Opt. Technol. Lett., vol. 13, no. 5, pp. 300-304, Dec. 1996. https://doi.org/10.1002/(SICI)1098-2760(19961205)13:5<300::AID-MOP16>3.0.CO;2-A
  8. J. W Schuster, R. J. Luebbers, "An FDTD algorithm for transient propagation in biological tissue with a Cole-Cole dispersion relation", IEEE Antennas and Propag. Symp, vol. 4, pp. 1988-1991, Jun. 1998.
  9. M. R. Tofighi, "FDTD modeling of biological tissues Cole-Cole dispersion for 0.5-30 GHz using relaxation time distribution sample-novel and improved implementation", IEEE Trans. Microw. Theory Tech., vol. 57, no. 10, pp. 2588-2596, Oct. 2009. https://doi.org/10.1109/TMTT.2009.2029767
  10. J. Wang, D. Su, "Design of an ultra wideband system for in-body wireless communications", The 4th Asia-Pacific Conf. Environmental Electromagn., Dalian, China, 2006.
  11. O. P. Gandhi, C. M. Furse, "Current induced in the human body for exposure to ultrawideband electromagnetic pulses", IEEE Trans. Electromagn. Compat., vol. 39, no. 2, pp. 174-180, May 1997. https://doi.org/10.1109/15.584941
  12. T. Wuren, T. Takai, Fujii, and I. Sakagami, "Effective 2-Debye-pole FDTD model of electromagnetic interaction between whole human body and UWB radiation", IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 483-485, Jul. 2007. https://doi.org/10.1109/LMWC.2007.899295
  13. M. Eleiwa, A. Elsherbeni, "Accurate FDTD simulation of biological tissues for bio-electromagnetic application", IEEE Proc. Southeast Conf. pp. 174-178, Clemson, SC, USA, 2001.
  14. M. Mrozowski, M. Stuchly, "Parameterization of media dispersive properties for FDTD", IEEE Trans. Antennas Propag., vol. 45, no. 9, pp. 1438-1439, Sep. 1997. https://doi.org/10.1109/8.623134
  15. E. C. Levi, "Complex-curve fitting", IRE Trans. Automat. Contr., vol. 4, pp. 37-44, May 1959. https://doi.org/10.1109/TAC.1959.1104874
  16. B. Guo, J. Li, and H. Zmuda, "A new FDTD formulation for wave propagation in biological media with Cole-Cole model", IEEE Microw. Wireless Compon. Lett., vol. 16, no. 12, pp. 633-635, Dec. 2006. https://doi.org/10.1109/LMWC.2006.885583
  17. S. Su, W. Dai, D. T. Haynie, and N. Simicevic, "Use of the z-transform to investigate nanopulse penetration of biological matter", Bioelectromagn., vol. 26, pp. 389-397, 2005. https://doi.org/10.1002/bem.20120
  18. M. Fujii, R. Fujii, R. Yotsuki, T. Wuren, T. Takai, and I. Sakagami, "Exploration of whole human body and UWB radiation interaction by efficient and accurate two-Debye-pole tissue models", IEEE Trans. Antennas Propag., vol. 58, no. 2, pp. 515- 524, Feb. 2010. https://doi.org/10.1109/TAP.2009.2024968
  19. K. Kang, X. Chu, R. Dilmaghani, and M. Ghavami, "Low-complexity Cole-Cole expression for modelling human biological tissues in $(FD)^2TD $method", Electron. Lett., vol. 43, no. 3, pp. 143-144, Feb. 2007. https://doi.org/10.1049/el:20073644