DOI QR코드

DOI QR Code

최소 자승법을 이용한 고해상도 밀리미터파 탐색기의 비선형 위상 오차의 추정

Sweep Nonlinearity Estimation for High Range Resolution Millimeter-Wave Seeker Using Least Squares Method

  • 양희성 (한국과학기술원 전기 및 전자공학과) ;
  • 전주환 (한국과학기술원 전기 및 전자공학과) ;
  • 송성찬 (삼성탈레스(주))
  • 투고 : 2011.10.31
  • 심사 : 2012.01.04
  • 발행 : 2012.01.31

초록

본 논문 연구에서는 고해상도 레이더 탐색기에 쓰이는 FMICW(Frequency Modulated Interrupted Continuous Wave) 또는 FMCW(Frequency Modulated Continuous Wave) 시스템의 비선형 특성에 의해서 발생되는 거리 해상도(range resolution) 성능 저하 현상을 보상하기 위하여, 하드웨어의 비선형 위상 오차 성분을 다양한 진폭, 위상을 가지는 사인함수와 랜덤 성분으로 모델링하고, 이를 추정할 수 있는 신호 처리 알고리즘을 새롭게 제안하였다. 이 방법은 알고 있는 거리에 위치한 두 개의 기준점 목표물(point target)로부터 각각 측정된 두 개의 IF 신호를 연립방정식화하여 희소 선형식(sparse linear equation)을 세우고, 최소 자승법(least squares) 관점에서 최적 해로서의 비선형 오차 성분을 추정하는 방법으로써 추정된 비선형 오차 성분은 비선형 오차 특성 보상을 위한 사전 왜곡(predistortion) 기법을 위해 사용될 수 있다.

In this thesis, to compensate the sweep nonlinearity occurring in the high resolution radar system using FMICW or FMCW, the method of the estimation of the nonlinearity is proposed. The nonlinear phase component caused by the nonlinear characteristic of the radar system is modelled as a linear combination of the sinusoidal functions consisting of various magnitudes and phases(systematic nonlinear phase error) and a random component(stochastic nonlinear phase error). From two IF signals that are measured respectively independently for two reference point targets lying in different distances which are known, a sparse linear equation is made and solved by least squares method to estimate the nonlinear phase component. The estimated component can be used for predistortion method to compensate the sweep nonlinearity.

키워드

참고문헌

  1. M. Schikorr, "High range resolution with digital stretch processing", IEEE Radar Conference, pp. 1-6, May 2008.
  2. D. R. Wehner, High Resolution Radar, Second Edition, Artech House, 1995.
  3. Samuel O. Piper, "Homodyne FMCW radar range resolution effects with sinusoidal nonlinearities in the frequency sweep", IEEE Radar Conference, pp. 563-567, May 1995.
  4. Wang Dong Jing, Hu Xiang, and Ruan Wen Jie, "Analysis of the influence of the FM non-linearity on the range resolution of LFMCW radar", IEEE Asia Pacific Microwave Conference, pp. 714-717, 1999.
  5. M. Pichler, A. Stelzer, P. Gulden, and M. Vossiek, "Influence of systematic frequency-sweep non-linearity on object distance estimation in FMCW/FSCW radar systems", European Microwave Conference, vol. 33, pp. 1203-1206, 2003.
  6. A. Stelzer, K. Ettinger, J. Hoftberger, J. Fenk, and R. Weigel, "Fast and accurate ramp generation with PLL-stabilized 24-GHz SiGe VCO for FMCW and FSCW applications", IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp. 893-896, 2003.
  7. S. Scheiblhofer, S. Schuster, and A. Stelzer, "Highspeed FMCW radar frequency synthesizer with DDS based linearization", IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 397-399, May 2007. https://doi.org/10.1109/LMWC.2007.895732
  8. M. Vossiek, P. Heide, M. Nalezinski, and V. Magori, "Novel FMCW radar system concept with adaptive compensation of phase errors", in European Microwave Conference, 26th, vol. 1, pp. 135-139, Oct. 1996.
  9. H. Ruser, V. Magori, "Sweep linearization of a microwave FMCW Doppler sensor by an ultrasonic reference", Proc. IEEE Int. Frequency Control Symp., pp. 201-206, 1997.
  10. S. Scheiblhofer, S. Schuster, and A. Stelzer, "Signal model and linearization for nonlinear chirps in FMCW radar SAW-ID tag request", IEEE Trans. Microw. Theory Tech., vol. 54, pp. 1477-1483, 2006. https://doi.org/10.1109/TMTT.2006.871361
  11. Se-Young Kim, Noh-Hoon Myung, "Wideband linear frequency modulated waveform compensation using system predistortion and phase coefficients extraction method", IEEE Microwave and Wireless Components Letters, vol. 17, no. 11, pp. 808-810, Nov. 2007. https://doi.org/10.1109/LMWC.2007.908061
  12. R. J. Dengler, K. B. Cooper, G. Chattopadhyay, I. Mehdi, E. Schlecht, A. Skalare, C. Chen, and P. H. Siegel, "600 GHz imaging radar with 2 cm range resolution", in IEEE MTT-S Int. Microw. Symp. Dig., Honolulu, HI, pp. 1371-1374, Jun. 2007.
  13. C. C. Paige, M. A. Saunders, "LSQR: An algorithm for sparse linear equations and sparse least squares", ACM Trans. Math. Soft, vol. 8, pp. 43-71, 1982. https://doi.org/10.1145/355984.355989
  14. Henry Stark, John W. Woods, Probability and Random Processes with Applications to Signal Processing, Third Edition, Prentice Hall, 2002.
  15. R. M. Goldstein, H. A. Zebker, and C. L. Werner, "Satellite radar interferometry: Two-dimensional phase unwrapping", Radio Sci., vol. 23, no. 4, pp. 713-720, 1988. https://doi.org/10.1029/RS023i004p00713
  16. T. Virtanen, A. Klapuri, "Separation of harmonic sound sources using Sinusoidal modeling", IEEE International Conference on Acoustics, Speech and Signal Processing, Istanbul, Turkey, 2000.