DOI QR코드

DOI QR Code

Hierarchical Finite-Element Modeling of SiCp/Al2124-T4 Composites with Dislocation Plasticity and Size-Dependent Failure

전위 소성과 크기 종속 파손을 고려한 SiCp/Al2124-T4 복합재의 계층적 유한요소 모델링

  • 서영성 (한남대학교 기계공학과) ;
  • 김용배 (한남대학교 기계공학과)
  • Received : 2011.10.31
  • Accepted : 2011.12.02
  • Published : 2012.02.01

Abstract

The strength of particle-reinforced metal matrix composites is, in general, known to be increased by the geometrically necessary dislocations punched around a particle that form during cooling after consolidation because of coefficient of thermal expansion (CTE) mismatch between the particle and the matrix. An additional strength increase may also be observed, since another type of geometrically necessary dislocation can be formed during extensive deformation as a result of the strain gradient plasticity due to the elastic-plastic mismatch between the particle and the matrix. In this paper, the magnitudes of these two types of dislocations are calculated based on the dislocation plasticity. The dislocations are then converted to the respective strengths and allocated hierarchically to the matrix around the particle in the axisymmetric finite-element unit cell model. The proposed method is shown to be very effective by performing finite-element strength analysis of $SiC_p$/Al2124-T4 composites that included ductile failure in the matrix and particlematrix decohesion. The predicted results for different particle sizes and volume fractions show that the length scale effect of the particle size obviously affects the strength and failure behavior of the particle-reinforced metal matrix composites.

일반적으로 복합재의 강도에 대한 크기 효과는 입자강화 알루미늄 복합재 제조시, 입자와 기지재를 압밀한 후 냉각할 때 입자와 기지재 사이의 열팽창계수 차에 의하여 기지재에 펀칭되는 기하적 필수 전위와, 변형 중 입자와 기지재사이의 탄소성 강성도 차로 인해 발생하는 변형률 구배 소성으로 인한 기하적 필수 전위가 주로 영향을 미치는 것으로 알려져 있다. 본 논문에서는 이러한 두 종류의 기하적 필수 전위를 전위 소성 이론에 입각하여 강도로 환산한 후 계층적으로 입자 주위 유한요소 영역에 할당하여 동일한 체적비에서 입자의 크기에 따라 변화하는 복합재의 파손 거동을 효과적으로 예측하였다. 이 방법을 적용함으로써 구형입자의 경우 간단한 축대칭 유한요소 모델링과 실험데이터를 연계하여 입자강화 복합재의 입자 크기 의존 강도 및 파손 효과를 수월하게 예측할 수 있음을 보였다. 또한 서로 다른 입자의 체적비 및 크기에 대하여SiC강화 알루미늄 2124-T4 복합재의 강도와 파손 거동이 분명한 차이가 있음을 보인다.

Keywords

References

  1. Arsenault, R. J. and Shi, N., 1986, "Dislocation Generation due to Differences Between the Coefficients of Thermal Expansion," Materials Science and Engineering, Vol. 81, pp. 175-187. https://doi.org/10.1016/0025-5416(86)90261-2
  2. Lloyd, D. J., 1994, "Particle Reinforced Aluminum and Magnesium Matrix Composites," International Materials Reviews , Vol. 39, No. 1, pp. 1-23. https://doi.org/10.1179/095066094790150982
  3. Nan, C. W. and Clarke, D. R., 1996, "The Influence of Particle Size and Particle Fracture on the Elastic/Plastic Deformation of Metal Matrix Composites," Acta Materialia, Vol. 44, No.9, pp. 3801-3811. https://doi.org/10.1016/1359-6454(96)00008-0
  4. Suh, Y. S., Joshi, S. P. and Ramesh, K. T., 2009, "An Enhanced Continuum Model for Size-Dependent Strengthening and Failure of Particle-Reinforced Composites," Acta Materialia, Vol. 57, No. 19, pp. 5848-5861. https://doi.org/10.1016/j.actamat.2009.08.010
  5. Suh, Y. S., Kim, Y. B. and Rhee Z. K., 2009, "Strength Analysis of Particle-Reinforced Aluminum Composites with Length-Scale Effect based on Geometrically Necessary Dislocations," Transactions of Materials Processing, Vol. 18, No. 6, pp.482-487. https://doi.org/10.5228/KSPP.2009.18.6.482
  6. Shibata, S., Taya, M., Mori T. and Mura, T., 1992, "Dislocation Punching from Spherical Inclusions in a Metal Matrix Composite," Acta Metallurgica et Materialia, Vol. 40, No. 11, pp. 3141-3148. https://doi.org/10.1016/0956-7151(92)90477-V
  7. Ashby, M. F., 1970, "The Deformation of Plastically Non-Homogeneous Alloys," Philosophical Magazine, Vol. 21, No. 170, pp. 399-424. https://doi.org/10.1080/14786437008238426
  8. Taya, M., Lulay, K. E. and Lloyd, D. J., 1991, "Strengthening of a Particulate Metal Matrix Composite by Quenching," Acta Metallurgica et Materialia, Vol. 39, No. 1, pp. 73-87. https://doi.org/10.1016/0956-7151(91)90329-Y
  9. Dassault Systemes Simulia, Inc., 2009, Abaqus v. 6.9, Providence, U.S.A.
  10. Hansen N., 1977, "The Effect of Grain Size and Strain on the Tensile Flow Stress of Aluminium at Room Temperature," Acta Metallurgica, Vol. 25, No. 8, pp. 863-869. https://doi.org/10.1016/0001-6160(77)90171-7
  11. Brown, L. M. and Stobbs, W. M., 1976, "The Workhardening of Copper-Silica v. Equilibrium Plastic Relaxation by Secondary Dislocations, Philosophical Magazine, Vol. 34, No. 3, pp. 351-372. https://doi.org/10.1080/14786437608222028
  12. Martin, E., Forn, A. and Nogue, R., 2003, "Strain Hardening Behaviour and Temperature Effect on $Al-2124/SiC_{p}$," Journal of Materials Processing Technology, Vol. 143-144, pp. 1-4. https://doi.org/10.1016/S0924-0136(03)00292-9
  13. Zhou, C. Yang, W. and Fang, D., 2000, "Damage of Short-Fiber-Reinforced Metal Matrix Composites Considering Cooling and Thermal Cycling," Journal of Engineering Materials and Technology, Vol. 122, No. 2, pp. 203-209. https://doi.org/10.1115/1.482788
  14. Biner, S. B., 1994, "The Role of Interfaces and Matrix Void Nucleation Mechanism on the Ductile Fracture Process of Discontinuous Fiber-Reinforced Composite," Journal of Material Science, Vol. 29, No. 11, pp. 2893-2902. https://doi.org/10.1007/BF01117598
  15. Chu, C. and Needleman, A., 1980, "Void Nucleation Effects in Biaxially Stretched Sheets," ASME Journal of Engineering Materials and Technology, Vol. 102, No. 3, pp. 249-256. https://doi.org/10.1115/1.3224807
  16. Hall, J. N., Wayne Jones, J. and Sachdev, A. K., 1994, "Particle Size, Volume Fraction and Matrix Strength Effects on Fatigue Behavior and Particle Fracture in 2124 $Aluminum-SiC_{p}$ Composites," Materials Science and Engineering A, Vol. 183, No. 1-2, pp. 69-80. https://doi.org/10.1016/0921-5093(94)90891-5