DOI QR코드

DOI QR Code

Experimental Investigation of Thermal Conductivities of EG-based ZnO Nanofluids Manufactured Using Pulsed Wire Evaporation Method

전기선 폭발법에 의해 제작된 에틸렌 글리콜 기반 ZnO 나노유체의 열전도도

  • 김현진 (한국항공대학교 항공우주 및 기계공학부) ;
  • 황교식 (한국항공대학교 항공우주 및 기계공학부) ;
  • 신현교 (한국항공대학교 항공우주 및 기계공학부) ;
  • 이창규 (한국원자력연구원) ;
  • 이경자 (한국원자력연구원) ;
  • 윤종호 (경일대학교 기계자동차공학부) ;
  • 장석필 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2010.12.16
  • Accepted : 2011.10.28
  • Published : 2012.02.01

Abstract

In this paper, the thermal conductivities of ethylene glycol. based ZnO nanofluids manufactured using the pulsed wire evaporation method are experimentally measured using the transient hot wire method at temperatures in the range of $10^{\circ}C$ to $50^{\circ}C$. For this purpose, ethylene glycol.based ZnO nanofluids with 1%, 3%, and 5.5% volume fractions were manufactured using the pulsed wire evaporation method. Transmission electron microscopy (TEM) was performed to investigate the suspension stability of the ethylene glycol.based ZnO nanofluids. Based on the experimental results, the thermal conductivities of ethylene-glycol-based ZnO nanofluids increase with increasing volume fractions of ZnO nanofluids. The maximum enhancement of the thermal conductivity is 26.5% for a volume fraction of 5.5% at $22^{\circ}C$. Finally, the experimental results are compared with conventional models such as the Maxwell and Hasselman & Johnson models.

본 연구에서는 에틸렌 글리콜 기반의 ZnO 나노유체의 열전도도를 비정상열선법(Transient Hot Wire Method)를 이용하여 $10^{\circ}C$에서 $50^{\circ}C$까지 측정하였다. 에틸렌 글리콜 기반의 ZnO 나노유체는 전기선 폭발법을 사용하여 부피비 1%, 3%, 5.5%로 제작 되었으며, 투과전자현미경(Transmission Electron Microscope, TEM)을 이용하여 제작된 에틸렌 글리콜 기반의 ZnO 나노유체의 분산·부유 특성을 확인하였다. 열전도도 측정 결과 에틸렌 글리콜 기반의 ZnO 나노유체는 부피비에 따라 향상하였으며, 5.5%의 부피비에서 최대 26.5%의 열전도도 향상을 보였다. 측정 결과는 기존의 열전도도 예측 모델인 Maxwell 및 Hasselman & Johnson model 과 비교하였다.

Keywords

References

  1. Choi, S.U.S., 1995, "Enhancing Thermal Conductivity of Fluids with Nanoparticles," FED, Vol.231/MD-Vol. 66, ASME Publications, pp. 99-105.
  2. Lee, S., Choi, S.U.S. and Eastman J.A., 1999, "Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles," ASME J. Heat Transfer, 121, pp.280-290. https://doi.org/10.1115/1.2825978
  3. Pak, B.C. and Cho, Y.I., 1998, "Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles," Exp. Heat Transfer, 11, pp. 151-170. https://doi.org/10.1080/08916159808946559
  4. Eastman, J.A., Choi, S.U.S., Li, S., Soyez, G., Thompson, L.J. and Dimelfi, R.J., 1999, "Novel Thermal Properties of Nanostructured Materials," J. Metastable Nanocryst. Mater. 2, pp. 629-634. https://doi.org/10.4028/www.scientific.net/JMNM.2-6.629
  5. Xuan, Y. and Li, Q., 2000, "Heat Transfer Enhancement of Nanofluids," Int. J. Heat Fluid Flow, 21, pp. 58-64. https://doi.org/10.1016/S0142-727X(99)00067-3
  6. Eastman, J.A., Choi, S.U.S., Li, S., Yu, W. and Thompson, L.J., 2001, "Anomalously Increase Effective Thermal Conductivities of Ethylene Glycol-based Nanofludis Containing Copper Nanoparticles," Appl. Phys. Lett. 78, pp. 718-720. https://doi.org/10.1063/1.1341218
  7. Shukla, R. K. and Dhir, V. K., 2005, "Study of the Effective Thermal Conductivity of Nanofluids," 2005 ASME International Mechanical Engineering Congress and Exposition, IMECE 05-80281
  8. Yang, B., 2008, "Thermal Conductivity Equations Based on Brownian Motion in Suspensions of Nanoparticles (Nanofluids)," ASME J. Heat Transfer, 042408-01
  9. Yu, W., Xie, H., Chen, L. and Li, Y., 2009, "Investigation of Thermal Conductivity and Viscosity of Rthylene Glycol Based ZnO Nanofluids," Thermochimica Acta 491, pp. 92-96 https://doi.org/10.1016/j.tca.2009.03.007
  10. Carslaw, H. S. and Jaeger, J. C., 1959, "Conduction of Heat in Solids," 2nd ed., Oxford University Press, London.
  11. Incropera, F. P. and Dewitt, D. P., 2002, "Fundamentals of Heat and Mass Transfer," 5th Ed., WILEY.
  12. Prasher, R., Bhattacharya, P. and Phelan, P. E., 2006, "Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids," ASME Journal of Heat Transfer, Vol.128, No.6, pp.588-595. https://doi.org/10.1115/1.2188509