Abstract
In this paper, the thermal conductivities of ethylene glycol. based ZnO nanofluids manufactured using the pulsed wire evaporation method are experimentally measured using the transient hot wire method at temperatures in the range of $10^{\circ}C$ to $50^{\circ}C$. For this purpose, ethylene glycol.based ZnO nanofluids with 1%, 3%, and 5.5% volume fractions were manufactured using the pulsed wire evaporation method. Transmission electron microscopy (TEM) was performed to investigate the suspension stability of the ethylene glycol.based ZnO nanofluids. Based on the experimental results, the thermal conductivities of ethylene-glycol-based ZnO nanofluids increase with increasing volume fractions of ZnO nanofluids. The maximum enhancement of the thermal conductivity is 26.5% for a volume fraction of 5.5% at $22^{\circ}C$. Finally, the experimental results are compared with conventional models such as the Maxwell and Hasselman & Johnson models.
본 연구에서는 에틸렌 글리콜 기반의 ZnO 나노유체의 열전도도를 비정상열선법(Transient Hot Wire Method)를 이용하여 $10^{\circ}C$에서 $50^{\circ}C$까지 측정하였다. 에틸렌 글리콜 기반의 ZnO 나노유체는 전기선 폭발법을 사용하여 부피비 1%, 3%, 5.5%로 제작 되었으며, 투과전자현미경(Transmission Electron Microscope, TEM)을 이용하여 제작된 에틸렌 글리콜 기반의 ZnO 나노유체의 분산·부유 특성을 확인하였다. 열전도도 측정 결과 에틸렌 글리콜 기반의 ZnO 나노유체는 부피비에 따라 향상하였으며, 5.5%의 부피비에서 최대 26.5%의 열전도도 향상을 보였다. 측정 결과는 기존의 열전도도 예측 모델인 Maxwell 및 Hasselman & Johnson model 과 비교하였다.