J. Korean Math. Soc. **49** (2012), No. 2, pp. 405–417 http://dx.doi.org/10.4134/JKMS.2012.49.2.405

THE MINIMAL FREE RESOLUTION OF A STAR-CONFIGURATION IN \mathbb{P}^n AND THE WEAK LEFSCHETZ PROPERTY

JEAMAN AHN¹ AND YONG SU SHIN²

ABSTRACT. We find the Hilbert function and the minimal free resolution of a star-configuration in \mathbb{P}^n . The conditions are provided under which the Hilbert function of a star-configuration in \mathbb{P}^2 is generic or non-generic. We also prove that if \mathbb{X} and \mathbb{Y} are linear star-configurations in \mathbb{P}^2 of types t and s, respectively, with $s \geq t \geq 3$, then the Artinian k-algebra $R/(I_{\mathbb{X}} + I_{\mathbb{Y}})$ has the weak Lefschetz property.

1. Introduction

Throughout the paper, $R = k[x_0, x_1, \ldots, x_n]$ will be an (n + 1)-variable polynomial ring over an algebraically closed field k of characteristic 0, and the symbol \mathbb{P}^n will denote the projective *n*-space over a field k. Let I be a homogeneous ideal of R. Then the numerical function

$$\mathbf{H}_{R/I}(t) := \dim_k R_t - \dim_k I_t$$

is called the *Hilbert function* of the ring R/I. If $I := I_{\mathbb{X}}$ is the ideal of a subscheme \mathbb{X} in \mathbb{P}^n , then we denote

$$\mathbf{H}_{R/I_{\mathbb{X}}}(t) := \mathbf{H}_{\mathbb{X}}(t) \quad \text{for } t \ge 0$$

and call it the *Hilbert function* of X. Many interesting problems in the study of Hilbert functions and minimal free resolutions of standard graded algebras have been studied (see [12, 13, 14, 15, 16, 19]).

A graded Artinian k-algebra $A = \bigoplus_{i=0}^{s} A_i$ $(A_s \neq 0)$ has the weak Lefschetz property if the homomorphism $(\times L) : A_i \to A_{i+1}$ induced by multiplication by a general linear form L has maximal rank for all *i*. In this case, we call

 $\bigodot 2012$ The Korean Mathematical Society

Received March 10, 2011; Revised June 23, 2011.

²⁰¹⁰ Mathematics Subject Classification. Primary 13P40; Secondary 14M10. Key words and phrases. Hilbert functions, Artinian algebras, minimal free resolutions, weak Lefschetz property, star-configurations.

¹This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2010-0025762).

 $^{^2 {\}rm This}$ research was supported by a grant from Sungshin Women's University in 2010 (2010-2-11-037/1).

L a *Lefschetz element*. This fundamental property has been studied by many authors (see [3, 6, 12, 17, 21, 22, 24, 25]).

In [2], the following interesting result has been proved.

Proposition 1.1 (Proposition 3.4, [2]). Let F_1, F_2, \ldots, F_r be general forms in $R = k[x_0, x_1, \ldots, x_n]$ with $r \ge 3$. Then

$$\bigcap_{\leq i < j \leq r} (F_i, F_j) = \sum_{i=1}^r (F_1 \cdots \hat{F}_i \cdots F_r),$$

where $\hat{*}$ means that we omit *.

The variety \mathbb{X} in \mathbb{P}^n of the ideal

1

$$\bigcap_{1 \le i < j \le r} (F_i, F_j) = \sum_{i=1}^r (F_1 \cdots \hat{F}_i \cdots F_r)$$

in Proposition 1.1 is called a *star-configuration* in \mathbb{P}^n of type r. Furthermore, if the F_i are all general linear forms in R, the star-configuration \mathbb{X} is called a *linear star-configuration* in \mathbb{P}^n .

The Terracini Lemma in [27] says that the Hilbert function of the union of star-configurations in \mathbb{P}^n gives the dimensions of the secant varieties of the varieties of reducible forms (see also [2, 4, 5, 9, 10, 23]). In [18], Geramita, Migliore, and Sabourin showed that a linear star-configuration in \mathbb{P}^2 has a generic Hilbert function. In this paper we study Hilbert functions and minimal free resolutions of star-configurations in \mathbb{P}^n , and give answers to the following two interesting questions.

Question 1.2. Let F_1, \ldots, F_r be general forms in $R = k[x_0, x_1, \ldots, x_n]$ of degrees $1 \le d_1 \le \cdots \le d_r$, respectively.

- (a) What is the Hilbert function of the ideal of a star-configuration defined by F_1, \ldots, F_r ?
- (b) What is the minimal free resolution of the ideal of a star-configuration defined by F_1, \ldots, F_r ?

Question 1.3. Let X and Y be star-configurations in \mathbb{P}^2 defined by general forms of degree $d \geq 1$. Does the Artinian ring $R/(I_X + I_Y)$ have the weak Lefschetz property?

In Section 2, we introduce preliminary results and definitions and then find the Hilbert function and the minimal free resolution of a star-configuration in \mathbb{P}^n (Theorem 2.1 and Corollary 2.5), which is the complete answer to Question 1.2. In Section 3 we show that the star-configuration \mathbb{X} in \mathbb{P}^2 , defined by general forms F_1, \ldots, F_r of the same degree d with d = 1, 2, has a generic Hilbert function (see Proposition 3.1), which slightly generalizes the result of [18]. In other words,

$$\mathbf{H}_{\mathbb{X}}(t) = \min\left\{ \binom{t+2}{2}, \deg(\mathbb{X}) \right\} \text{ for } t \ge 0.$$

However, if the star-configuration \mathbb{X} is defined by general forms F_1, \ldots, F_r of the same degree d with $d \geq 3$, then the Hilbert function of the star-configuration is NEVER generic (see Example 3.2, Proposition 3.3, and Remark 3.4). In Section 4, we show that if \mathbb{X} and \mathbb{Y} are linear star-configurations in \mathbb{P}^2 of types t and s with $s \geq t \geq 3$, then the Artinian ring $R/(I_{\mathbb{X}} + I_{\mathbb{Y}})$ has the weak Lefschetz property (see Theorem 4.2), which is the answer to Question 1.3 for d = 1. However, Question 1.3 is still open for d > 1.

2. Star-configurations in \mathbb{P}^n

Let X be a star-configuration in \mathbb{P}^n defined by general forms F_1, \ldots, F_r in $R = k[x_0, \ldots, x_n]$ of degrees $1 \leq d_1 \leq \cdots \leq d_r$, respectively. By Proposition 1.1, a star-configuration X in \mathbb{P}^n is a closed subscheme of codimension 2, and the ideal of a linear star-configuration X has r generators of degree r - 1. For any matrix M with entries in an arbitrary ring R we write $I_t(M)$ for the ideal generated by the $t \times t$ minors of M. We begin with the following theorem, which gives an answer to Question 1.2.

Theorem 2.1. Let \mathbb{X} be a star-configuration in \mathbb{P}^n defined by general forms F_1, \ldots, F_r in $R = k[x_0, \ldots, x_n]$ of degrees $1 \leq d_1 \leq \cdots \leq d_r$, respectively, and let $d = d_1 + d_2 + \cdots + d_r$. Then the minimal free resolution of $R/I_{\mathbb{X}}$ is

$$0 \rightarrow R^{r-1}(-d) \rightarrow \bigoplus_{i=1}^{r} R(-(d-d_i)) \rightarrow R \rightarrow R/I_{\mathbb{X}} \rightarrow 0.$$

Proof. For the proof, we first introduce some notations.

- Let $\mathbf{e}_i = [0, \dots, \stackrel{i-\text{th}}{1}, \dots, 0]^T$ be an *i*-th standard vector in \mathbb{R}^r for $i = 1, \dots, r$.
- Define $\sigma_{i,j} = F_i \mathbf{e}_i F_j \mathbf{e}_j$ for $1 \le i < j \le r$.
- Let *M* be an $r \times (r-1)$ matrix whose column vectors are $\sigma_{1,2}, \sigma_{2,3}, \ldots, \sigma_{r-1,r}$, that is,

$$M := \begin{pmatrix} F_1 & 0 & 0 & \cdots & 0 & 0 \\ -F_2 & F_2 & 0 & \cdots & 0 & 0 \\ 0 & -F_3 & F_3 & \cdots & 0 & 0 \\ 0 & 0 & -F_4 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \cdots & -F_{r-1} & F_{r-1} \\ 0 & 0 & \cdots & \cdots & 0 & -F_r \end{pmatrix}$$

- Let $\delta_i = F_1 \cdots \hat{F}_i \cdots F_r$ be a homogeneous polynomial of degree $d d_i$ for $i = 1, \ldots, r$.
- Define two maps ψ and φ as

$$\psi : \bigoplus_{i=1}^{r} R(-(d-d_i)) \xrightarrow{[\delta_1,\dots,\delta_r]} R, \text{ and}$$
$$\varphi : R^{r-1}(-d) \xrightarrow{M} \bigoplus_{i=1}^{r} R(-(d-d_i)).$$

We shall show that the following sequence is the minimal free resolution of $R/I_{\mathbb{X}}$.

 $0 \quad \to \quad R^{r-1}(-d) \quad \stackrel{\varphi}{\to} \quad \bigoplus_{i=1}^r R(-(d-d_i)) \quad \stackrel{\psi}{\to} \quad R \quad \to \quad R/I_{\mathbb{X}} \quad \to \quad 0.$

First, we prove that $\mathrm{Im}\,\varphi=\mathrm{Ker}\,\psi.$ It is obvious that $\mathrm{Im}\,\varphi\subseteq\mathrm{Ker}\,\psi.$ Conversely, suppose that

$$(a_1,\ldots,a_r) \in \operatorname{Ker} \psi$$
, where $a_i \in R$.

Since $a_1\delta_1 + \cdots + a_r\delta_r = 0$, we have that, for $i = 1, \ldots, r$,

$$F_i \mid (a_1 \delta_1 + \dots + a_{i-1} \delta_{i-1} + a_{i+1} \delta_{i+1} + \dots + a_r \delta_r) = -a_i \delta_i, \quad \text{i.e.,} \quad F_i \mid a_i.$$

Let $a_i = b_i F_i$ for such *i*. Then we have

$$a_1\delta_1 + \dots + a_r\delta_r = (b_1 + \dots + b_r)F_1 \cdots F_r = 0$$
, that is, $b_1 + \dots + b_r = 0$,
and so

$$\begin{aligned} (a_1, \dots, a_r) &= (b_1 F_1, b_2 F_2, \dots, b_{r-1} F_{r-1}, b_r F_r) \\ &= (b_1 F_1, b_2 F_2, \dots, b_{r-1} F_{r-1}, -(b_1 + \dots + b_{r-1}) F_r) \\ &= b_1 \sigma_{1,r} + b_2 \sigma_{2,r} + \dots + b_{r-1} \sigma_{r-1,r} \\ &= b_1 (\sigma_{1,2} + \dots + \sigma_{r-1,r}) + b_2 (\sigma_{2,3} + \dots + \sigma_{r-1,r}) + \dots + b_{r-1} \sigma_{r-1,r} \\ &= b_1 \sigma_{1,2} + (b_1 + b_2) \sigma_{2,3} + \dots + (b_1 + \dots + b_{r-1}) \sigma_{r-1,r} \\ &= M [b_1, b_1 + b_2, \dots, b_1 + \dots + b_{r-1}]^T \\ &\in \operatorname{Im} \varphi, \end{aligned}$$

as we wished.

Second, we show that the map φ is injective. If $\varphi(a_1, \ldots, a_{r-1}) = (0, \ldots, 0)$ in \mathbb{R}^r , then we have

$$\varphi(a_1, \dots, a_{r-1}) = M[a_1, \dots, a_{r-1}]^T$$

= $a_1\sigma_{1,2} + a_2\sigma_{2,3} + \dots + a_{r-1}\sigma_{r-1,r}$
= $a_1F_1\mathbf{e}_1 + (a_2 - a_1)F_2\mathbf{e}_2 + \dots + (a_{r-2} - a_{r-1})F_{r-1}\mathbf{e}_{r-1} - a_rF_r\mathbf{e}_{r-1}$
= $(0, \dots, 0).$

This implies that $a_1F_1 = (a_2 - a_1)F_2 = \dots = (a_{r-2} - a_{r-1})F_{r-1} = -a_rF_r = 0$. Therefore

$$a_1 = \dots = a_r = 0,$$

which completes the proof.

Remark 2.2. Let X be a star-configuration in \mathbb{P}^n defined by general forms F_1, \ldots, F_r in $R = k[x_0, \ldots, x_n]$ of degrees $1 \leq d_1 \leq \cdots \leq d_r$, respectively.

408

From Theorem 2.1 and Hilbert-Burch theorem (see [11]), we have that $I_{\mathbb{X}}$ is generated by maximal minors of the matrix

$$M := \begin{pmatrix} F_1 & 0 & 0 & \cdots & 0 & 0 \\ -F_2 & F_2 & 0 & \cdots & 0 & 0 \\ 0 & -F_3 & F_3 & \cdots & 0 & 0 \\ 0 & 0 & -F_4 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \cdots & -F_{r-1} & F_{r-1} \\ 0 & 0 & \cdots & \cdots & 0 & -F_r \end{pmatrix},$$

and $I_{\mathbb{X}}$ has depth exactly 2. Moreover, by Auslander-Buchsbaum formula (see [11] again), we see that

$$\operatorname{depth}(R/I_{\mathbb{X}}) = \operatorname{depth}(R) - \operatorname{pd}(R/I_{\mathbb{X}}) = (n+1) - 2 = n - 1.$$

Since X is a closed subscheme in \mathbb{P}^n of codimension 2, we get that

$$\dim(R/I_{\mathbb{X}}) = \dim \mathbb{X} + 1 = n - 1 = \operatorname{depth}(R/I_{\mathbb{X}}).$$

This implies that $R/I_{\mathbb{X}}$ is a Cohen-Macaulay ring, i.e., \mathbb{X} is an arithmetically Cohen-Macaulay subscheme in \mathbb{P}^n .

The following two corollaries are the special cases of Theorem 2.1 when $d_1 = \cdots = d_r = d$ and $d_1 = \cdots = d_r = 1$, respectively.

Corollary 2.3. With notations as in Theorem 2.1 for $d_1 = \cdots = d_r = d$, the minimal free resolution of R/I_X is

$$0 \rightarrow R^{r-1}(-dr) \rightarrow R^r(-d(r-1)) \rightarrow R \rightarrow R/I_{\mathbb{X}} \rightarrow 0.$$

Corollary 2.4. Let \mathbb{X} be a linear star-configuration in \mathbb{P}^n of type r with $r \geq 3$. Then the minimal free resolution of $R/I_{\mathbb{X}}$ is

$$0 \rightarrow R^{r-1}(-r) \rightarrow R^r(-(r-1)) \rightarrow R \rightarrow R/I_{\mathbb{X}} \rightarrow 0.$$

From Theorem 2.1, we can immediately find the Hilbert function of a starconfiguration in \mathbb{P}^n defined by general forms F_1, \ldots, F_r in $R = k[x_0, \ldots, x_n]$, and thus we have the following corollary.

Corollary 2.5. Let X be a star-configuration in \mathbb{P}^n defined by general forms F_1, \ldots, F_r in $R = k[x_0, \ldots, x_n]$ of degrees $1 \leq d_1 \leq \cdots \leq d_r$, respectively.

Then the Hilbert function of $R/I_{\mathbb{X}}$ is

$$\mathbf{H}_{\mathbb{X}}(i) = \begin{cases} \binom{n+i}{n}, & 1 \leq i < d-d_{r}, \\ \binom{n+i}{n} - \binom{n+i-(d-d_{r})}{n}, & d-d_{r} \leq i < d-d_{r-1}, \\ \binom{n+i}{n} - \binom{n+i-(d-d_{r})}{n} - \binom{n+i-(d-d_{r-1})}{n}, & d-d_{r-1} \leq i < d-d_{r-2} \end{cases}$$

$$\mathbf{H}_{\mathbb{X}}(i) = \begin{cases} \binom{n+i}{n} - \sum_{j=2}^{r} \binom{n+i-(d-d_{j})}{n}, & d-d_{2} \leq i < d-d_{1}, \\ \binom{n+i}{n} - \sum_{j=1}^{r} \binom{n+i-(d-d_{j})}{n}, & d-d_{1} \leq i < d, \\ \binom{n+i}{n} - \sum_{j=1}^{r} \binom{n+i-(d-d_{j})}{n} + (r-1)\binom{n+i-d}{n}, & i \geq d. \end{cases}$$

Proof. From the minimal free resolution of R/I_X

$$0 \rightarrow R^{r-1}(-d) \rightarrow \bigoplus_{i=1}^{r} R(-(d-d_i)) \rightarrow R \rightarrow R/I_{\mathbb{X}} \rightarrow 0,$$

the Hilbert function of $\mathbb X$ is

$$\mathbf{H}_{\mathbb{X}}(i) = \dim_k R_i - \left[\sum_{j=1}^r \dim_k R_{i-(d-d_j)}\right] + (r-1)\dim_k R_{i-d}$$
$$= \binom{n+i}{n} - \left[\sum_{j=1}^r \binom{n+i-(d-d_j)}{n}\right] + (r-1)\binom{n+i-d}{n},$$
eded.

as needed.

3. Some properties of Hilbert functions of star-configurations in \mathbb{P}^2

In this section, we introduce a few more interesting results on star-configurations in \mathbb{P}^2 when $d_1 = \cdots = d_r = d$.

Proposition 3.1. Let \mathbb{X} be a star-configuration in \mathbb{P}^2 defined by general forms F_1, \ldots, F_r in $R = k[x_0, x_1, x_2]$ of degree d (d = 1, 2) with $r \ge 3$. Then $R/I_{\mathbb{X}}$ has generic Hilbert function, i.e.,

$$\mathbf{H}_{\mathbb{X}}(-) : 1 \begin{pmatrix} 1+2\\2 \end{pmatrix} \begin{pmatrix} 2+2\\2 \end{pmatrix} \cdots \begin{pmatrix} 2+((r-1)d-1)\\2 \end{pmatrix} \begin{pmatrix} 2+(r-2)\\2 \end{pmatrix} d^2 \rightarrow .$$

Proof. By Proposition 1.1, $I_{\mathbb{X}}$ is the ideal of a set of $\binom{r}{2} \times d^2$ points in \mathbb{P}^2 , and $I_{\mathbb{X}}$ has only r generators in degree d(r-1). Hence it suffices to show that, for d = 1, 2,

$$\mathbf{H}_{\mathbb{X}}(d(r-1)) = \deg(\mathbb{X}) = \binom{2+(r-2)}{2}d^2.$$

Case 1. If d = 1, then

$$\mathbf{H}_{\mathbb{X}}(r-1) = \dim_{k} R_{r-1} - r$$
$$= \begin{pmatrix} 2+(r-1)\\ 2 \end{pmatrix} - r$$
$$= \begin{pmatrix} 2+(r-2)\\ 2 \end{pmatrix} \cdot 1^{2}$$

(see also Lemma 7.8, [18]).

Case 2. If d = 2, then

$$\begin{aligned} \mathbf{H}_{\mathbb{X}}(2(r-1)) &= \dim_k R_{2(r-1)} - r \\ &= \begin{pmatrix} 2+2(r-1) \\ 2 \end{pmatrix} - r \\ &= \begin{pmatrix} 2r \\ 2 \end{pmatrix} - r \\ &= \begin{pmatrix} 2r \\ 2 \end{pmatrix} \cdot 2^2. \end{aligned}$$

Therefore, Cases 1 and 2 complete the proof.

The following example, however, shows that Proposition 3.1 does not hold for d = 3 and r = 3.

Example 3.2. Let F_1, F_2, F_3 be general forms in $R = k[x_0, x_1, x_2]$ of degree 3 and let $I = (F_1F_2, F_1F_3, F_2F_3)$. By Corollary 2.5, the Hilbert function of R/I is

$$1 \quad 3 \quad 6 \quad 10 \quad 15 \quad 21 \quad 25 \quad 27 \quad \rightarrow .$$

In other words,

$$\mathbf{H}(R/I, 3(3-1)) = \mathbf{H}(R/I, 6) = 25 \neq 27 = \binom{3}{2} \cdot 3^2$$

which does not satisfy Proposition 3.1.

The following proposition shows that the Hilbert function of a star-configuration defined by general forms of degree $d \ge 3$ can never be generic (see Remark 3.4).

Proposition 3.3. Let X be a star-configuration in \mathbb{P}^2 defined by general forms F_1, \ldots, F_r in $R = k[x_0, x_1, x_2]$ of degree $d \ge 3$ with $r \ge 3$. Then the Hilbert function of R/I_X is

$$\mathbf{H}_{\mathbb{X}}(i) = \begin{cases} \binom{2+i}{2}, & 0 \le i \le d(r-1) - 1, \\ \binom{2+i}{2} - \binom{2+(i-d(r-1))}{2}, & d(r-1) \le i \le d(r-1) + (d-2), \\ \deg(\mathbb{X}), & i \ge d(r-1) + (d-2). \end{cases}$$

Proof. By Corollary 2.3, the minimal free resolution of R/I_X is

$$0 \rightarrow R^{r-1}(-dr) \rightarrow R^r(-d(r-1)) \rightarrow R \rightarrow R/I_{\mathbb{X}} \rightarrow 0.$$

Hence the Hilbert function of $R/I_{\mathbb{X}}$ is

$$\begin{aligned} \mathbf{H}_{\mathbb{X}}(i) &= \dim_k R_i - r \cdot \dim_k R(-d(r-1))_i + (r-1) \cdot \dim_k R(-dr)_i \\ &= \binom{2+i}{2} - r \cdot \binom{2+i-d(r-1)}{2} + (r-1) \cdot \binom{2+i-dr}{2}, \end{aligned}$$

and so, for $d(r-1) \leq i \leq d(r-1) + (d-2),$ the Hilbert function of $R/I_{\mathbb{X}}$ is now of the form

$$\mathbf{H}_{\mathbb{X}}(i) = \begin{cases} \binom{2+i}{2}, & 0 \le i \le d(r-1) - 1, \\ \binom{2+i}{2} - r \cdot \binom{2+(i-d(r-1))}{2}, & d(r-1) \le i \le d(r-1) + (d-2). \end{cases}$$

In particular, the Hilbert function of R/I_X in degree d(r-1) + (d-2) is

$$\begin{aligned} \mathbf{H}_{\mathbb{X}}(d(r-1) + (d-2)) &= \begin{pmatrix} 2 + (d(r-1) + (d-2)) \\ 2 \end{pmatrix} - \begin{pmatrix} 2 + (d-2) \\ 2 \end{pmatrix} \cdot r \\ &= \begin{pmatrix} dr \\ 2 \end{pmatrix} - \begin{pmatrix} d \\ 2 \end{pmatrix} \cdot r \\ &= \frac{dr(dr-1)}{2} - \frac{d(d-1)}{2} \cdot r \\ &= \begin{pmatrix} r \\ 2 \end{pmatrix} \cdot d^2 \\ &= \deg(\mathbb{X}), \end{aligned}$$

and therefore the Hilbert function of $R/I_{\mathbb X}$ is

$$\mathbf{H}_{\mathbb{X}}(i) = \begin{cases} \binom{2+i}{2}, & 0 \le i \le d(r-1) - 1, \\ \binom{2+i}{2} - r \cdot \binom{2+(i-d(r-1))}{2}, & d(r-1) \le i \le d(r-1) + (d-2), \\ \deg(\mathbb{X}), & i \ge d(r-1) + (d-2), \end{cases}$$

which completes the proof.

Here is an alternative proof of Proposition 3.3 counting the number of minimal generators of $I_{\mathbb{X}}$ in each degree. Moreover, the following alternative proof shows what the polynomial basis for $(I_{\mathbb{X}})_d$ is precisely in each degree d.

Alternative Proof of Proposition 3.3. Since the ideal $I_{\mathbb{X}}$ has only r generators in degree d(r-1), we have

$$\mathbf{H}_{\mathbb{X}}(d(r-1)) = \binom{2+d(r-1)}{2} - r.$$

Now consider the set of r forms in $I_{\mathbb{X}}$ of degree d(r-1)

$$\bigcup_{i=1}^{\cdot} \{F_1 \cdots \hat{F}_i \cdots F_r\}.$$

Then the set $S := \bigcup_{i=1}^{r} \{x_0 F_1 \cdots \hat{F}_i \cdots F_r, x_1 F_1 \cdots \hat{F}_i \cdots F_r, x_2 F_1 \cdots \hat{F}_i \cdots F_r\}$ of 3r forms of degree d(r-1) + 1 in $I_{\mathbb{X}}$ is linearly independent. Assume that $x_0 F_1 \cdots \hat{F}_i \cdots F_r$ is a linear combination of the rest of 3r - 1 forms in S as follows:

$$\begin{aligned} x_0 F_1 \cdots \hat{F}_i \cdots F_r \\ &= (\alpha_{1,0} x_0 + \alpha_{1,1} x_1 + \alpha_{1,2} x_2) \hat{F}_1 F_2 \cdots F_r + \cdots \\ &+ (\alpha_{i-1,0} x_0 + \alpha_{i-1,1} x_1 + \alpha_{i-1,2} x_2) F_1 \cdots \hat{F}_{i-1} \cdots F_r \\ &+ (\alpha_{i,1} x_1 + \alpha_{i,2} x_2) F_1 \cdots \hat{F}_i \cdots F_r \\ &+ (\alpha_{i+1,0} x_0 + \alpha_{i+1,1} x_1 + \alpha_{i+1,2} x_2) F_1 \cdots \hat{F}_{i+1} \cdots F_r + \cdots \\ &+ (\alpha_{r,0} x_0 + \alpha_{r,1} x_1 + \alpha_{r,2} x_2) F_1 \cdots F_{r-1} \hat{F}_r, \end{aligned}$$

where $\alpha_{i,j} \in k$. Then,

$$F_i \mid (x_0 - \alpha_{i,1}x_1 - \alpha_{i,2}x_2)F_1 \cdots F_i \cdots F_r$$
, i.e., $F_i \mid (x_0 - \alpha_{i,1}x_1 - \alpha_{i,2}x_2)$,

which is impossible since deg $F_i = d > 1$. Similarly, we see that $x_1F_1 \cdots \hat{F}_i \cdots F_r$ and $x_2F_1 \cdots \hat{F}_i \cdots F_r$ cannot be a linear combination of the rest of 3r - 1 forms in S for every $1 \le i \le r$. Hence the Hilbert function of $R/I_{\mathbb{X}}$ has the form

$$1 \begin{pmatrix} 2+1 \\ 2 \end{pmatrix} \cdots \begin{pmatrix} 2+(d(r-1)-1) \\ 2 \end{pmatrix} \\ \left[\begin{pmatrix} 2+d(r-1) \\ 2 \end{pmatrix} - r \right] \left[\begin{pmatrix} 2+(d(r-1)+1) \\ 2 \end{pmatrix} - 3r \right] \cdots$$

By continuing the same process to the degree up to d(r-1) + (d-2), the Hilbert function of $R/I_{\mathbb{X}}$ is now of the form

$$\mathbf{H}_{\mathbb{X}}(i) = \begin{cases} \binom{2+i}{2}, & 0 \le i \le d(r-1) - 1, \\ \binom{2+i}{2} - r \cdot \binom{2+(i-d(r-1))}{2}, & d(r-1) \le i \le d(r-1) + (d-2). \end{cases}$$

The rest of this proof is the same as the previous proof, so we omit it here. $\hfill \Box$

Remark 3.4. Let X be as in Proposition 3.3. Since $d \ge 3$, we see that d(r-1) < d(r-1) + (d-2). Moreover, by Proposition 3.3,

$$\mathbf{H}_{\mathbb{X}}(d(r-1)) = \binom{2+d(r-1)}{2} - \binom{2}{2} < \binom{2+d(r-1)}{2} \quad \text{and} \quad$$

 $\deg(\mathbb{X}) = \mathbf{H}_{\mathbb{X}}(d(r-1) + (d-2))$

J. AHN AND Y. S. SHIN

$$= \binom{2+d(r-1)+(d-2)}{2} - \binom{2+(d(r-1)+(d-2)-d(r-1)}{2}$$
$$= \binom{2+d(r-1)+(d-2)}{2} - \binom{d}{2}.$$

Hence

$$\begin{split} & \deg(\mathbb{X}) - \mathbf{H}_{\mathbb{X}}(d(r-1)) \\ &= \left[\begin{pmatrix} 2+d(r-1)+(d-2)\\2 \end{pmatrix} - \begin{pmatrix} d\\2 \end{pmatrix} \right] - \left[\begin{pmatrix} 2+d(r-1)\\2 \end{pmatrix} - \begin{pmatrix} 2\\2 \end{pmatrix} \right] \\ &= \left[\begin{pmatrix} 2+d(r-1)+(d-2)\\2 \end{pmatrix} - \begin{pmatrix} d\\2 \end{pmatrix} \right] - \left[\begin{pmatrix} 2+d(r-1)\\2 \end{pmatrix} - \begin{pmatrix} 2\\2 \end{pmatrix} \right] \\ &= \left[\begin{pmatrix} 2+d(r-1)+(d-2)\\2 \end{pmatrix} - \begin{pmatrix} 2+d(r-1)\\2 \end{pmatrix} \right] - \left[\begin{pmatrix} d\\2 \end{pmatrix} - \begin{pmatrix} 2\\2 \end{pmatrix} \right] \\ &= \frac{(d-2)(2d(r-1)+d+1)}{2} - \left[\begin{pmatrix} d\\2 \end{pmatrix} - \begin{pmatrix} 2\\2 \end{pmatrix} \right] \\ &\geq \frac{(d-2)(5d+1)}{2} - \frac{d^2-d}{2} + 1 \quad (\text{since } r \ge 3) \\ &= 2d(d-2) \\ &> 0 \quad (\text{since } d \ge 3). \end{split}$$

This implies that

$$\mathbf{H}_{\mathbb{X}}(d(r-1)) < \min\left\{ \binom{2+d(r-1)}{2}, \deg(\mathbb{X}) \right\}.$$

Therefore, X does not have generic Hilbert function, as we wished.

4. The weak Lefschetz property

We start with a proposition on the weak Lefschetz property from [12] and provide an answer to Question 1.3 for d = 1.

Let \mathbb{X} be a finite set of points in \mathbb{P}^n and define

$$\sigma(\mathbb{X}) = \min\{i \mid \mathbf{H}_{\mathbb{X}}(i-1) = \mathbf{H}_{\mathbb{X}}(i)\}.$$

Proposition 4.1 (Proposition 5.15, [12]). Let \mathbb{X} be a finite set of points in \mathbb{P}^n and let A be an Artinian quotient of the coordinate ring of \mathbb{X} . Assume that $\mathbf{H}_A(i) = \mathbf{H}_{\mathbb{X}}(i)$ for all $0 \leq i \leq \sigma(\mathbb{X}) - 1$. Then A has the weak Lefschetz property.

Theorem 4.2. Let X and Y be linear star configurations in \mathbb{P}^2 of types t and s with $s \ge t \ge 3$, respectively. Then $R/(I_X + I_Y)$ is an Artinian ring with the weak Lefschetz property.

Proof. By Proposition 3.1, $R/I_{\mathbb{X}}$ and $R/I_{\mathbb{Y}}$ have generic Hilbert functions. Since $\sigma(\mathbb{X}) \leq \sigma(\mathbb{Y}) \leq \sigma(\mathbb{X} \cup \mathbb{Y})$, by Proposition 3.1 again, we have that

$$\mathbf{H}_{\mathbb{X}}(i) = \mathbf{H}_{\mathbb{Y}}(i) = \mathbf{H}_{\mathbb{X} \cup \mathbb{Y}}(i) = \binom{i+2}{2}$$

for $0 \leq i \leq \sigma(\mathbb{X}) - 1$. Using the following exact sequence

$$0 \quad \to \quad R/I_{\mathbb{X} \cup \mathbb{Y}} \quad \to \quad R/I_{\mathbb{X}} \bigoplus R/I_{\mathbb{Y}} \quad \to \quad R/(I_{\mathbb{X}} + I_{\mathbb{Y}}) \quad \to \quad 0,$$

we obtain that

$$\begin{aligned} \mathbf{H}_{R/(I_{\mathbb{X}}+I_{\mathbb{Y}})}(i) &= \mathbf{H}_{\mathbb{X}}(i) + \mathbf{H}_{\mathbb{Y}}(i) - \mathbf{H}_{\mathbb{X}\cup\mathbb{Y}}(i) \\ &= \mathbf{H}_{\mathbb{X}}(i) \end{aligned}$$

for $0 \leq i \leq \sigma(\mathbb{X}) - 1$. Furthermore, since

$$R/(I_{\mathbb{X}}+I_{\mathbb{Y}}) \simeq (R/I_{\mathbb{X}})/((I_{\mathbb{X}}+I_{\mathbb{Y}})/I_{\mathbb{X}})$$

is an Artinian quotient of the coordinate ring $R/I_{\mathbb{X}}$, by Proposition 4.1 $R/(I_{\mathbb{X}} + I_{\mathbb{Y}})$ has the weak Lefschetz property, as we wished.

Remark 4.3 (CoCoA, [26]). If X and Y are not linear star-configurations in Proposition 3.1, then Theorem 4.2 may not hold in general. For example, assume that X and Y are star-configurations defined by general forms of degree 2 of the same type 4. Then, by Proposition 3.1 (see also Corollary 2.5), the Hilbert functions of R/I_X and R/I_Y are

$$1 \ 3 \ 6 \ 10 \ 15 \ 21 \ 24 \rightarrow$$

and thus

$$\sigma(\mathbb{X}) = \sigma(\mathbb{Y}) = 7.$$

Furthermore, the Hilbert function of $R/I_{\mathbb{X}\cup\mathbb{Y}}$, obtained by CoCoA, is

1 3 6 10 15 21 28 36 45 48
$$\rightarrow$$
,

and thus

$$\begin{aligned} \mathbf{H}(R/I_{\mathbb{X}}+I_{\mathbb{Y}},6) &= \mathbf{H}(R/I_{\mathbb{X}},6) + \mathbf{H}(R/I_{\mathbb{Y}},6) - \mathbf{H}(R/I_{\mathbb{X}\cup\mathbb{Y}},6) \\ &= 24 + 24 - 28 \\ &= 20 \\ &\neq \mathbf{H}(R/I_{\mathbb{X}},6). \end{aligned}$$

This does not satisfy the conditions in Proposition 4.1, and thus we do not know if Theorem 4.2 still holds for this case when \mathbb{X} and \mathbb{Y} are star-configurations in \mathbb{P}^2 defined by general forms of degree d with d = 2.

5. Comments

Theorem 2.1 gives the complete answer to Question 1.2 and Theorem 4.2 gives an answer to Question 1.3 for d = 1. In other words, Question 1.3 for d > 1 is still open. Thus, we restate Question 1.3 as follows.

Question 5.1 (Restated Question 1.3). Let X and Y be star-configurations in \mathbb{P}^2 defined by general forms of degree d > 1. Does the Artinian ring $R/(I_X + I_Y)$ have the weak Lefschetz property?

Acknowledgement. The authors are truly grateful to the reviewer, whose comments and suggestions allowed us to make improvements to the paper.

References

- H. Abo, G. Ottaviani, and C. Peterson, Induction for secant varieties of Segre varieties, Trans. Amer. Math. Soc. 361 (2009), no. 2, 767–792.
- [2] J. Ahn, A. V. Geramita, and Y. S. Shin, Points set in \mathbb{P}^2 associated to varieties of reducible curves, Preprint.
- [3] J. Ahn and Y. S. Shin, Generic initial ideals and graded Artinian-level algebras not having the weak-Lefschetz property, J. Pure Appl. Algebra 210 (2007), no. 3, 855–879.
- [4] J. Alexander and A. Hirschowitz, Polynomial interpolation in several variables, J. Algebraic Geom. 4 (1995), no. 2, 201–222.
- [5] E. Arrondo and A. Bernardi, On the variety parametrizing completely decomposable polynomials, Preprint.
- [6] M. Boij and F. Zanello, Some algebraic consequences of Green's hyperplane restriction theorems, J. Pure Appl. Algebra 214 (2010), no. 7, 1263–1270.
- [7] W. Bruns and J. Herzog, *Cohen-Macaulay Rings*, Cambridge studies in Advances Mathematics, Cambridge University Press, 1998.
- [8] E. Carlini, L. Chiantini, and A. V. Geramita, Complete intersection points on general surfaces in P³, Michigan Math. J. 59 (2010), no. 2, 269–281.
- [9] M. V. Catalisano, A. V. Geramita, and A. Gimigliano, Secant varieties of Grassmann varieties, Proc. Amer. Math. Soc. 133 (2005), no. 3, 633–642.
- [10] _____, Secant varieties of $\mathbb{P}^1 \times \cdots \times \mathbb{P}^1$ (n-times) are not defective for $n \geq 5$, J. Algebraic Geom. **20** (2011), no. 2, 295–327.
- [11] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics, 150. Springer-Verlag, New York, 1995
- [12] A. V. Geramita, T. Harima, J. C. Migliore, and Y. S. Shin, *The Hilbert function of a level algebra*, Mem. Amer. Math. Soc. **186** (2007), no. 872, vi+139 pp.
- [13] A. V. Geramita, T. Harima, and Y. S. Shin, An alternative to the Hilbert function for the ideal of a finite set of points in Pⁿ, Illinois J. Math. 45 (2001), no. 1, 1–23.
- [14] _____, Extremal point sets and Gorenstein ideals, Adv. Math. 152 (2000), no. 1, 78– 119.
- [15] _____, Decompositions of the Hilbert function of a set of points in \mathbb{P}^n , Canad. J. Math. **53** (2001), no. 5, 923–943.
- [16] _____, some special configurations of points in \mathbb{P}^n , J. Algebra **268** (2003), no. 2, 484–518.
- [17] A. V. Geramita, H. J. Ko, and Y. S. Shin, The Hilbert function and the minimal free resolution of some Gorenstein ideals of codimension 4, Comm. Algebra. 26 (1998), no. 12, 4285–4307.
- [18] A. V. Geramita, J. C. Migliore, and S. Sabourin, On the first infinitesimal neighborhood of a linear configuration of points in P², J. Alg. 298 (2008), 563–611.

THE MINIMAL FREE RESOLUTION AND THE WEAK LEFSCHETZ PROPERTY 417

- [19] A. V. Geramita and Y. S. Shin, k-configurations in \mathbb{P}^3 all have extremal resolutions, J. Algebra **213** (1999), no. 1, 351–368.
- [20] M. Green, Generic initial ideals, Six lectures on commutative algebra (Bellaterra, 1996), 119–186, Progr. Math., 166, Birkhauser, Basel, 1998.
- [21] T. Harima, Characterization of Hilbert functions of Gorenstein Artin algebras with the weak stanley property, Proc. Amer. Math. Soc. 123 (1995), no. 12, 3631–3638.
- [22] T. Harima, J. C. Migliore, U. Nagel, and J. Watanabe, The weak and strong Lefschetz properties for Artinian k-algebras, J. Algebra. 262 (2003), no. 1, 99–126.
- [23] C. Mammana, Sulla varietà delle curve algebriche piane spezzate in un dato modo, Ann. Scuola Norm. Super. Pisa (3) 8 (1954), 53–75.
- [24] J. Migliore and R. Mirò-Roig, Ideals of general forms and the ubiquity of the weak Lefschetz property, J. Pure Appl. Algebra 182 (2003), no. 1, 79–107.
- [25] J. C. Migliore and F. Zanello, The strength of the weak-Lefschetz property, Preprint.
- [26] L. Robbiano, J. Abbott, A. Bigatti, M. Caboara, D. Perkinson, V. Augustin, and A. Wills, CoCoA, a system for doing computations in commutative algebra, Available via anonymous ftp from cocoa.unige.it. 4.7 edition.
- [27] A. Terracini, Sulle V_k per cui la varietà degli S_h (h+1)-seganti ha dimensione minore dell'ordinario, Rend. Circ. Mat. Palermo **31** (1911), 392–396.

JEAMAN AHN DEPARTMENT OF MATHEMATICS EDUCATION KONGJU NATIONAL UNIVERSITY KONGJU 314-701, KOREA *E-mail address*: jeamanahn@kongju.ac.kr

Yong Su Shin Department of Mathematics Sungshin Women's University Seoul 136-742, Korea *E-mail address*: ysshin@sungshin.ac.kr