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HOLOMORPHIC FUNCTIONS

ON ALMOST COMPLEX MANIFOLDS

Chong-Kyu Han and Hyeseon Kim

Abstract. Given an almost complex structure (Cm, J), m ≥ 2, that is

defined by setting θα = dzα + aαβdz̄
β , α = 1, . . . ,m, to be (1, 0)-forms,

we find conditions on (aαβ ) for the existence of holomorphic functions and

classify the almost complex structures by type (ν, q). Then we determine

types for several examples in C2 and C3 including the natural almost
complex structure on S6.

Introduction

Let (M,J) be a smooth (C∞) almost complex manifold of dimension 2m,
m ≥ 2. We are concerned in this paper with the problem of deciding the max-
imal number of independent holomorphic functions on M . Our viewpoint is
purely local, thus M must be regarded as a small neighborhood of a reference
point and we may shrink the neighborhood finitely many times as our argument
proceeds. We work in C∞ category; all manifolds and maps are assumed to
be of differentiability class C∞ unless stated otherwise. There can be at most
m independent holomorphic functions, which is the case that the integrabil-
ity condition of the Newlander-Nirenberg theorem [14] holds. A generalization
due to L. Nirenberg and F. Treves (cf. [15] or [2]) states that there exist q
(1 ≤ q ≤ m) independent holomorphic functions if and only if there exists
a closed sub-bundle W of rank q of the bundle of (1, 0)-forms, which we shall
discuss in §1. In [13] O. Muškarov showed that a closed sub-bundleW of (1, 0)-
forms corresponds in a natural one-to-one manner to a certain sub-bundle of
the real tangent bundle TM that contains the image of the Nijenhuis tensor
and satisfies the Frobenius integrability condition. Given an almost complex
manifold (M,J) we shall construct in this paper the closed sub-bundle W of
differentials of the maximal set of independent holomorphic functions following

Received February 8, 2011; Revised July 30, 2011.
2010 Mathematics Subject Classification. 32Q60, 32E99, 35J99.
Key words and phrases. almost complex manifolds, J-holomorphic functions, Nijenhuis

tensor, Newlander-Nirenberg theorem.
First author was partially supported by NRF-Korea 2009-0070971. Second author was

supported by NRF-Korea 2010-0001985.

c⃝2012 The Korean Mathematical Society

379



380 CHONG-KYU HAN AND HYESEON KIM

the method of deciding the maximal number of first integrals due to E. Car-
tan [4] and R. B. Gardner [8]. Instead of the Nijenhuis tensor we use the
torsion tensor dθ mod θ, where θ := (θ1, . . . , θm) are independent (1, 0)-forms,
to analyze the degree of non-integrability of J . We prove:

Theorem 0.1. Let M2m, m ≥ 2, be a C∞ manifold with C∞ almost complex
structure J . Let (T ∗M)1,0 be the bundle of (1, 0)-forms. Then, under a generic
assumption of non-degeneracy in each step of the construction, there exists a
sequence of sub-bundles (T ∗M)1,0 := I(0) ⊃ I(1) ⊃ I(2) ⊃ · · · and a non-
negative integer ν such that for k = 0, 1, 2, . . . ,

i) I(k+1) & I(k), if k < ν,
ii) I(k+1) = I(k), if k ≥ ν,
iii) dI(k+1) ≡ 0 mod I(k).

Moreover, for each point x ∈ M , a function u defined near x, is holomorphic
if and only if du ∈ I(ν), thus the number of independent holomorphic functions
is equal to the rank of I(ν).

If I(ν) has rank q, then we shall say (M,J) has type (ν, q) (Definition 2.1).
It is of type q in the sense of O. Muškarov [13]. Then W := I(ν) is the desired
closed sub-bundle. Locally, an almost complex structure is obtained by a small
perturbation of the standard complex structure of Cm: Let akj , j, k = 1, . . . ,m,
be C∞ complex-valued functions defined on a small neighborhood of the origin
0 of Cm such that akj (0) = 0. Let

(0.1) θℓ = dzℓ +

m∑
k=1

aℓkdz̄
k, ℓ = 1, . . . ,m.

Then θ := (θ1, . . . , θm) uniquely determines an almost complex structure J on
Cm so that θ are (1, 0)-forms. We prove:

Theorem 0.2. Suppose that ajk, j, k = 1, . . . ,m, are C∞ complex-valued func-
tions defined on a neighborhood of the origin 0 of Cm, m ≥ 2, and that
ajk(0) = 0. Let J be the uniquely determined almost complex structure that
has (0.1) as (1, 0)-forms. Suppose that J has type (ν, q). Then there exist q
independent holomorphic functions ζ1, . . . , ζq. The condition that J has type
(ν, q) with q ≥ 1 is given as a system of non-linear partial differential equations

of order ν + 1 on (ajk).

We use the method of prolongation of exterior differential systems as in [1],
[9] and [10]: The proof of Theorem 0.2 is a complex version of the classical
method of prolongation to involutive systems. In Section 3, we shall present
examples of almost complex structures of various types that are obtained by
small perturbations of the standard complex structures on C2 and on C3, re-
spectively. In C2, we construct two examples of different types by computing
torsion matrices. Using the classical technique of finding first integrals, we find
independent holomorphic functions for each case.
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1. Preliminaries

Let M be a smooth (C∞) manifold of dimension 2m, m ≥ 2, with smooth
almost complex structure J . Then the complexified tangent bundle CTM has
decomposition

CTM = T 1,0(M)⊕ T 0,1(M),

where T 1,0(M) (T 0,1(M), respectively) is the sub-bundle of rank m of eigen-
vectors of J associated with the eigen-value i (−i, respectively). Dually, the
complexified cotangent bundle CT ∗M has decomposition:

CT ∗M = (T ∗M)1,0 ⊕ (T ∗M)0,1.

We can find real vector fields Xj , j = 1, . . . ,m, so that

X1, JX1, . . . , Xm, JXm

span the real tangent bundle TM . Let Zj = 1
2 (Xj − iJXj) and Zj = 1

2 (Xj +

iJXj) for each j = 1, . . . ,m. Then {Z1, . . . , Zm} spans T 1,0(M) and {Z1, . . . ,

Zm} spans T 0,1(M). Let θ1, . . . , θm, θ̄1, . . . , θ̄m be the dual 1-forms. Then the
sub-bundles (T ∗M)1,0 and (T ∗M)0,1 of the complexified cotangent bundle are
the linear spans of {θ1, . . . , θm} and {θ̄1, . . . , θ̄m}, respectively.

A complex-valued function ζ is said to be holomorphic if

(1.1) Zjζ = 0, j = 1, . . . ,m.

(1.1) is an over-determined system of linear PDEs, and thus in general, there
are no solutions other than constants. Holomorphic functions ζ1, . . . , ζq are
said to be independent if

dζ1 ∧ · · · ∧ dζq ̸= 0.

(1.1) is equivalent to saying that dζ is a section of (T ∗M)1,0, so that there exist
at most m independent holomorphic functions. J is said to be integrable if

(1.2) [T 1,0(M), T 1,0(M)] ⊂ T 1,0(M),

which means that the bracket of any two sections of T 1,0(M) is again a section
of T 1,0(M).

We consider the exterior algebra of differential forms with complex coeffi-
cients:

Ω∗ = Ω0 ⊕ Ω1 ⊕ · · · ⊕ Ω2m,

where Ω0 is the ring of smooth complex-valued functions and Ωr (r = 1, . . . , 2m)
is the module over Ω0 of complex-valued smooth r-forms on M .

Definition 1.1. A subalgebra I of Ω∗ is called an algebraic ideal if the following
conditions hold:

i) I ∧ Ω∗ ⊂ I,
ii) If ϕ =

∑2m
r=0 ϕr ∈ I, where ϕr ∈ Ωr, then each ϕr ∈ I (homogeneity

condition).
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The homogeneity condition implies that I is two-sided, that is, Ω∗ ∧ I ⊂ I.
In this paper we consider ideals generated by finitely many 1-forms: Let ϕ =
(ϕ1, . . . , ϕq) be a system of elements of Ω1. We denote by I(ϕ), or simply by
(ϕ), the algebraic ideal generated by ϕ, which is the set of all elements of Ω∗

of the form
q∑

k=1

ϕk ∧ ψk

for some ψk ∈ Ω∗. For two elements α and β of Ω∗

α ≡ β mod (ϕ)

means that α− β ∈ I(ϕ).
Then the integrability condition (1.2) can be written as

(1.3) [Zj , Zk] ∈ Γ(T 1,0(M)), ∀j, k = 1, . . . ,m,

where Γ denotes the set of all smooth sections. (1.3) is equivalent to

dθℓ ≡ 0 mod (θ), ∀ℓ = 1, . . . ,m,

where θ = (θ1, · · · , θm).

Theorem 1.2 (Newlander-Nirenberg [14]). Let (M2m, J) be a C∞ almost com-
plex manifold. If J is integrable, then there exist m independent holomorphic
functions.

The converse is also true, which is rather obvious. Now we fix notations: For
any sub-bundle I ⊂ (T ∗M)1,0 we denote by I the module over Ω0 of smooth
sections of I and by (I) the algebraic ideal of Ω∗ generated by the smooth
sections of I. By using Theorem 1.2 and the Frobenius theorem the following
was proved in [15]:

Theorem 1.3. Suppose that T ′ is a sub-bundle of (T ∗M)
1,0

of rank q, q < m,
and that T ′ is closed, that is, dT′ ⊂ (T ′). Then there exist q independent
holomorphic functions ζ1, . . . , ζq whose differentials dζ1, . . . , dζq span T ′.

For any real vector fields X and Y the integrability condition is that

[X − iJX, Y − iJY ]

is a vector field of (1, 0)-type, or equivalently,

(1.4) [X,Y ]− [JX, JY ] = −J{[JX, Y ] + [X,JY ]}.
The Nijenhuis tensor N is defined as the difference between two sides of (1.4),
namely,

N(X,Y ) := [X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ], ∀X,Y ∈ Γ(TM).

J is integrable if and only if N = 0. The following are easy to check:
i) N(X,Y ) = −N(Y,X),
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ii) N(X, JY ) = N(JX, Y ) = −JN(X,Y ),
iii) If we extend N complex linearly to CTM we have N(X1,0, Y1,0) =

N(X,Y )0,1, where X1,0 = 1
2 (X − iJX), X0,1 = 1

2 (X + iJX), and so forth.
It follows from ii) that the image of Nijenhuis tensor is J-invariant subset of

TM , and therefore, at each point x ∈M , the linear span LN(x) of the images
of the Nijenhuis tensor is even dimensional. LN(x) is the obstruction to the
existence of holomorphic functions (cf. [11]).

Definition 1.4. rank N is the map: x 7→ dimRLN(x).

This map is lower semi-continuous (cf. [12]). If rank N is constant, then LN
is a sub-bundle of TM . Based on Theorem 1.3 Muškarov proved the following.

Theorem 1.5 ([13]). Let (M2m, J) be a C∞ almost complex manifold with
Nijenhuis tensor N . Suppose that rank N = 2(m − q) is constant. Then
the number of independent holomorphic functions is at most q. There exist
q independent holomorphic functions ζ1, . . . , ζq if and only if the sub-bundle
LN ⊂ TM has the following properties:

i) LN is involutive,
ii) [X,Y ] + J [X, JY ] ∈ Γ(LN) for all X ∈ Γ(LN) and all Y ∈ Γ(TM).

2. Nullity of torsion tensor and type of almost complex structures

We study the existence of holomorphic functions in the framework of Cartan-
Gardner theory [4] and [8] on first integrals (cf. [3]). We also make use of
Theorem 1.3. First of all we prove Theorem 0.1.

Proof of Theorem 0.1. We shall find the largest closed sub-bundle of (T ∗M)1,0

starting with I = I(0) = (T ∗M)1,0: The exterior derivative d : I → Ω2 is not a
module homomorphism, but composition with the projection

I
d−→ Ω2 π−→ Ω2/(I)

is a Ω0-module homomorphism. Let δ = π ◦ d. Consider the submodule I(1) :=

ker δ of I. We assume that I(1) has constant rank on M , hence defines a
sub-bundle I(1) of (T ∗M)1,0. We have a short exact sequence of Ω0-modules

0 → I(1) → I
δ−→ dI/(I) → 0.

The sub-bundle I(1) is called the first derived system of (T ∗M)1,0. Assuming

that I(k−1) has constant rank, we define inductively the k-th derived system
I(k) by

0 → I(k) → I(k−1) δ−→ dI(k−1)/(I(k−1)) → 0.

Let ν be the smallest integer with I(ν) = I(ν+1). Then we have a sequence of
sub-bundles

(2.1) (T ∗M)1,0 := I := I(0) ⊃ I(1) ⊃ · · · ⊃ I(ν−1) ⊃ I(ν).
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Notice that dI(ν) ⊂ (I(ν)), that is, I(ν) is closed. Assume that I(ν) has constant
rank q. Then by Theorem 1.3 there exist independent holomorphic functions
ζ1, . . . , ζq such that dζ1, . . . , dζq generates I(ν). For a complex-valued function
f defined on M we recall that

f is holomorphic ⇐⇒ df ∈ I(0), by definition

⇐⇒ df ∈ I(k), ∀k = 1, 2, . . . , since df is a closed 1-form

⇐⇒ df ∈ I(ν).

Hence, the number of independent holomorphic functions is same as the rank
of I(ν), which completes the proof of Theorem 0.1. □

Definition 2.1. (M,J) is said to be of type (ν, q) if I(ν) has rank q.

Given (M,J) we now construct the sequence (2.1) of sub-bundles and decide
the type (ν, q). Let θ = (θ1, . . . , θm) be independent (1, 0)-forms. We set

(2.2) dθℓ ≡
∑
j<k

T ℓ
jkθ̄

j ∧ θ̄k mod (θ),

where ℓ, j, k = 1, . . . ,m. In matrices (2.2) can be written as

(2.3)

 dθ
1

...
dθm

 ≡

T
1
12 T 1

13 · · · T 1
m−1,m

...
...

. . .
...

Tm
12 Tm

13 · · · Tm
m−1,m


︸ ︷︷ ︸

T


θ̄1 ∧ θ̄2
θ̄1 ∧ θ̄3

...
θ̄m−1 ∧ θ̄m

 mod (θ).

The m×
(
m
2

)
matrix T is called the torsion of J with respect to the coframe θ.

Like the Nijenhuis tensor the torsion also measures the non-integrability of J :
If T has rank zero, that is, all the entries of T are zeros, then J is integrable.
Relation between T and N is

N(Zj , Zk) = −4
m∑
ℓ=1

T ℓ
jkZℓ,

which is easy to check.

Proposition 2.2. If there exist independent holomorphic functions ζ1, . . . , ζq,
then rank T ≤ m− q.

Proof. For each λ = 1, . . . , q, that ζλ is holomorphic implies

(2.4) dζλ =
m∑
ℓ=1

bλℓ θ
ℓ



HOLOMORPHIC FUNCTIONS ON ALMOST COMPLEX MANIFOLDS 385

for some functions bλℓ . Now by applying d to (2.4) and by substituting (2.3)
for dθℓ we have

0 ≡
m∑
ℓ=1

bλℓ dθ
ℓ mod (θ)

≡
m∑
ℓ=1

∑
j<k

bλℓ T
ℓ
jkθ̄

j ∧ θ̄k mod (θ),

so that
(2.5)0...

0

 ≡

b
1
1 · · · b1m
...

...
bq1 · · · bqm


︸ ︷︷ ︸

B

T
1
12 T 1

13 · · · T 1
m−1,m

...
...

. . .
...

Tm
12 Tm

13 · · · Tm
m−1,m


︸ ︷︷ ︸

T


θ̄1 ∧ θ̄2
θ̄1 ∧ θ̄3

...
θ̄m−1 ∧ θ̄m

 mod (θ).

Since the 2-forms θ̄j ∧ θ̄k, j < k, are independent, we have

BT = 0.

Since dζ1 ∧ · · · ∧ dζq ̸= 0 the rows of B are independent and each row of B is
a null vector of T . Therefore, dimension of the null space of T is at least q,
which implies that rank T ≤ m− q. □

Now assume rank T = r, r < m, is constant. Then by Proposition 2.2 there
exist at most m− r independent holomorphic functions.

Proposition 2.3. Construction of I(1) : Suppose the dimension of the null

space of the matrix T is q1 and that the row vectors b⃗λ = (bλ1 , . . . , b
λ
m), λ =

1, . . . , q1, are independent null vectors of T as the rows of B in (2.5). Let

ϕλ =
m∑
ℓ=1

bλℓ θ
ℓ, λ = 1, . . . , q1.

Then I(1) is spanned by {ϕλ}.

Proof. For each λ = 1, . . . , q1

dϕλ ≡
m∑
ℓ=1

bλℓ dθ
ℓ mod (θ)

≡
m∑
ℓ=1

∑
j<k

j,k=1,...,m

bλℓ T
ℓ
jkθ̄

j ∧ θ̄k mod (θ)

≡ 0 mod (θ),

(2.6)

and therefore, ϕλ ∈ I(1). Conversely, if ϕ :=
∑m

ℓ=1 bℓθ
ℓ is in I(1), then by the

same calculation as in (2.6) the row vector (b1, . . . , bm) is a null vector of T . □
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Inductively, we have:

Proposition 2.4. Construction of I(k+1) from I(k) : Suppose I(k) has rank qk.

Let ψ := (ψ1, . . . , ψqk) be a set of generators of I(k). Complete ψ to a coframe
(ψ1, . . . , ψqk , ω1, . . . , ωr), where r = 2m − qk. We find the torsion τ for the
Pfaffian system ψ by setting dψ

1

...
dψqk

 ≡

τ
1
12 τ113 · · · τ1r−1,r
...

...
. . .

...
τ qk12 τ qk13 · · · τ qkr−1,r


︸ ︷︷ ︸

τ


ω1 ∧ ω2

ω1 ∧ ω3

...
ωr−1 ∧ ωr

 mod (ψ).

Here, the torsion matrix τ has size qk ×
(
r
2

)
. Let qk+1 be the nullity of the

matrix τ and let

c⃗µ = (cµ1 , . . . , c
µ
qk
), µ = 1, . . . , qk+1

be the null vectors of τ , namely, cµλ satisfies

qk∑
λ=1

cµλτ
λ
ij = 0

for each pair i, j = 1, . . . , r with i < j. Then qk+1 1-forms

qk∑
λ=1

cµλψ
λ, µ = 1, . . . , qk+1,

span I(k+1).

Locally, an almost complex structure is obtained by a small perturbation
of the standard complex structure of Cm: Let akj , j, k = 1, . . . ,m, be C∞

complex-valued functions defined on a small neighborhood of the origin 0 of
Cm such that akj (0) = 0. Consider the system of linear PDEs

(2.7) Zjζ = 0, j = 1, . . . ,m,

where

Zj =
∂

∂z̄j
−

m∑
k=1

akj
∂

∂zk

are the perturbed Cauchy-Riemann operators. Then solving (2.7) is equivalent
to finding a complex-valued function ζ such that dζ ∈ I(θ1, . . . , θm), where

(2.8) θℓ = dzℓ +

m∑
k=1

aℓkdz̄
k.

Now let M = Cm and let J be the uniquely determined almost complex struc-
ture whose (1, 0)-forms are (2.8). Let (ν, q) be the type of the almost complex

structure determined by perturbation (ajk). If ν = 0, then dI ⊂ (I), which is
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the integrability condition of the Newlander-Nirenberg theorem. We see that
ν = 0 if and only if

(2.9) dθℓ ≡ 0 mod (θ).

(2.9) is a system of non-linear partial differential equations of first order on (ajk).

If (M,J) has type (ν, q), the system of functions (ajk) undergoes a process of
algebraic operation and differentiation ν + 1 times. In particular, δ = π ◦ d is
applied ν + 1 times to θ’s. Thus we proved Theorem 0.2.

3. Cases (C2, J) and (C3, J) and examples

Let a := (ajk) be as in (2.8). Solving (2.8) and its complex conjugate for dzj

and dz̄j we have

(3.1) dzj =
m∑

k=1

cjkθ
k +

m∑
k=1

ϵjkθ̄
k,

where cjk and ϵjk are rational functions in ajk and their complex conjugates such
that

cjk(0) = δjk (Kronecker delta),

ϵjk(0) = 0.

Applying d to (2.8) we have

dθℓ =
m∑

k=1

daℓk ∧ dz̄k

=

m∑
k=1

m∑
j=1

(
∂aℓk
∂zj

dzj +
∂aℓk
∂z̄j

dz̄j
)
∧ dz̄k

substitute (3.1) and its complex-conjugate for dzj and dz̄j , respectively,

≡
∑
j<k

j,k=1,...,m

T ℓ
jkθ̄

j ∧ θ̄k mod (θ),

where T ℓ
jk are linear in the first order partial derivatives of (ajk) with coefficients

that are rational in (ajk) and

T ℓ
jk(0) =

(
∂aℓk
∂z̄j

−
∂aℓj
∂z̄k

)
(0).

3.1. Case m = 2

(2.3) with m = 2 is [
dθ1

dθ2

]
≡
[
T 1

T 2

]
θ̄1 ∧ θ̄2 mod (θ).
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J is integrable if and only if both T 1 and T 2 are identically zero. If T :=
[
T 1

T 2

]
has constant rank 1, let b := T 2

T 1 assuming T 1 ̸= 0. Then I(1) is generated by

ϕ := bθ1 − θ2.

I(1) is integrable if and only if dϕ ≡ 0 mod(ϕ), that is,

(3.2) dϕ ∧ ϕ = 0.

Notice that (3.2) involves first order derivatives of T j , j = 1, 2, and therefore,

a system of second order partial differential equations on (ajk). If (ajk) sat-
isfy (3.2), then ν = 1 and q = 1. In this case, there exists one independent

holomorphic function. If (ajk) do not satisfy (3.2), then there is no holomorphic

function other than constants. Assuming that I(1) has constant rank, there are
four possibilities as in the following table.

dim I dim I(1) dim I(2) type
number of

holomorphic functions
PDE for (ajk)

case 1 2 2 (0, 2) 2 1st order
case 2 2 1 1 (1, 1) 1 2nd order
case 3 2 1 0 (2, 0) 0
case 4 2 0 0 (1, 0) 0

Example 3.1. Consider (C2, J) where J is defined by declaring

θ1 = dz1 + z1dz̄2,

θ2 = dz2

to be (1, 0)-forms.

By computing dθ mod (θ), we see that T 1 = T 2 = 0, so that J has type
(0, 2). Hence, there exist two independent holomorphic functions. Obviously,
z2 is a holomorphic function. Using the classical technique of finding first
integrals as in [5] the other one can be found as follows: The (0, 1)-vector fields
are

Z1 =
∂

∂z̄1
,

Z2 =
∂

∂z̄2
− z1

∂

∂z1
.

A first integral of Z2 is obtained by solving

dz̄2

1
=

dz1

−z1
,

whose solution is z̄2 + log z1 = constant. To avoid singularity at the origin we
exponentiate z̄2 + log z1, to obtain

ζ(z1, z̄1, z2, z̄2) = z1ez̄
2

as another holomorphic function.
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Example 3.2. Consider (C2, J) with (1, 0)-forms

θ1 = dz1 + z1dz̄2,

θ2 = dz2 + z̄2dz̄1.

Then we have [
dθ1

dθ2

]
≡
[

0
−|1− z1z2|−2

]
θ̄1 ∧ θ̄2 mod (θ).

Then the first derived system I(1) is generated by θ1 and the number of inde-
pendent holomorphic functions is at most one. Since

dθ1 ≡ 0 mod (θ1),

J has type (1, 1). As in Example 3.1 ζ(z1, z̄1, z2, z̄2) = z1ez̄
2

is a holomorphic
function.

3.2. Case m = 3

(2.3) with m = 3 isdθ1dθ2

dθ3

 ≡

T 1
12 T 1

13 T 1
23

T 2
12 T 2

13 T 2
23

T 3
12 T 3

13 T 3
23


︸ ︷︷ ︸

T

θ̄1 ∧ θ̄2θ̄1 ∧ θ̄3
θ̄2 ∧ θ̄3

 mod (θ).

J is integrable if and only if T is identically zero. Let T j be the j-th row
of T for j = 1, 2, 3. Assuming rank T is constant we shall find generators of
I(1). If rank T = 3, there is no holomorphic function other than constants by
Proposition 2.2. If rank T = 2, we may assume that T 3 = b1T 1 + b2T 2 for
some complex-valued functions b1 and b2. Then

ϕ := b1θ
1 + b2θ

2 − θ3

generates I(1). I(1) is integrable if and only if dϕ ∧ ϕ = 0, which is the case
that ν = 1 and q = 1. If rank T = 1, then there exist at most 2 independent
holomorphic functions by Proposition 2.2. Assuming the third row of T is
non-zero, we let

T 1 = b1T 3, T 2 = b2T 3.

Then I(1) is generated by two 1-forms

ϕ1 := θ1 − b1θ
3,

ϕ2 := θ2 − b2θ
3.

I(1) is integrable if and only if{
dϕ1 ∧ ϕ1 ∧ ϕ2 = 0,

dϕ2 ∧ ϕ1 ∧ ϕ2 = 0.

This is the case that ν = 1 and q = 2.
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Assuming I(k), k = 1, 2, 3, are of constant dimensions there are eight possible
cases as the following table shows.

dim I dim I(1) dim I(2) dim I(3) type
number of

holomorphic functions
PDE for (ajk)

case 1 3 3 (0, 3) 3 1st order
case 2 3 2 2 (1, 2) 2 2nd order
case 3 3 2 1 1 (2, 1) 1 3rd order
case 4 3 2 1 0 (3, 0) 0
case 5 3 2 0 (2, 0) 0
case 6 3 1 1 (1, 1) 1 2nd order
case 7 3 1 0 (2, 0) 0
case 8 3 0 (1, 0) 0 .

4. Non-integrability of S6

Let S6 be the unit sphere in the real Euclidean space E(7) = {(x1, . . . , x7)}.
In this section we discuss the natural almost complex structure on S6 that
has been studied in [7] and [6]. This almost complex structure is defined by
the Cayley product of E(7) and turned out to be non-integrable as shown in
[13]. We present another proof of the non-integrability: we shall prove that
even locally there are no holomorphic functions other than constants by using
Theorem 0.1 and Theorem 0.2. In E(7) consider an ortho-normal frame

(4.1) ej =

7∑
λ=1

aλj
∂

∂xλ
, j = 1, . . . , 7.

Then the dual 1-forms are

(4.2) ϕk =
7∑

µ=1

aµkdx
µ, k = 1, . . . , 7.

Since e1, . . . , e7 may be considered as pure imaginary Cayley numbers, the
vector cross product is naturally defined by

V ×W =
7∑

j,k=1,j ̸=k

vjwkej · ek,

where V = v1e1 + · · · + v7e7, W = w1e1 + · · · + w7e7, and · is the Cayley
product (cf. [6] or [7]). At a point x ∈ S6, the tangent space TxS

6 is identified

with the subspace ⟨x⟩⊥ of E(7). Assume e1, . . . , e6 are tangent to S6 at x.
Then an almost complex structure J at x ∈ S6 is defined by JxX = x × X
for X ∈ Γ(TxS

6). For x = (x1, . . . , x7) in a neighborhood of (0, . . . , 0, 1) we
express Jx as a matrix with respect to the basis e1, . . . , e6 so that Jxej is the



HOLOMORPHIC FUNCTIONS ON ALMOST COMPLEX MANIFOLDS 391

j-th column of the following matrix:
(4.3)

(
Jν
µ

)
(x) :=



−x1x6

x7 −x3 − x2x6

x7 x2 − x3x6

x7 −x5 − x4x6

x7 x4 − x5x6

x7 −x7 − (x6)
2

x7

x3 − x1x5

x7 −x2x5

x7 −x1 − x3x5

x7 x6 − x4x5

x7 −x7 − (x5)
2

x7 −x4 − x5x6

x7

−x2 − x1x4

x7 x1 − x2x4

x7 −x3x4

x7 −x7 − (x4)
2

x7 −x6 − x4x5

x7 x5 − x4x6

x7

x5 + x1x3

x7 −x6 + x2x3

x7 x7 + (x3)
2

x7
x3x4

x7 −x1 + x3x5

x7 x2 + x3x6

x7

−x4 + x1x2

x7 x7 + (x2)
2

x7 x6 + x2x3

x7 x1 + x2x4

x7
x2x5

x7 −x3 + x2x6

x7

x7 + (x1)
2

x7 x4 + x1x2

x7 −x5 + x1x3

x7 −x2 + x1x4

x7 x3 + x1x5

x7
x1x6

x7


.

We note that

(
Jν
µ

)
(0, . . . , 0, 1) =


0 0 0 0 0 −1
0 0 0 0 −1 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

 ,

so that Je1 = e6, Je2 = e5, Je3 = e4 at the reference point. Therefore,
(0, 1)-vector fields of this J are generated by

Z1 = e1 + iJe1, Z2 = e2 + iJe2, and Z3 = e3 + iJe3.

Let J∗ : T ∗M → T ∗M be the dual transformation of J . Then

(4.4) θ1 = ϕ1 − iJ∗ϕ1, θ2 = ϕ2 − iJ∗ϕ2, and θ3 = ϕ3 − iJ∗ϕ3

annihilate Z̄j , j = 1, 2, 3. Therefore, θ = (θ1, θ2, θ3) are independent (1, 0)-
forms. Now we shall show that the torsion, dθ mod θ, has full rank, which
implies there are no holomorphic functions other than constants. Since Jeµ =∑6

ν=1 J
ν
µeν we have

(4.5) J∗ϕη =
6∑

λ=1

Jη
λϕ

λ.

By applying d to (4.4) after substituting (4.5) for J∗ϕη we have

(4.6) dθη = dϕη − i
6∑

λ=1

dJη
λ ∧ ϕλ − i

6∑
λ=1

Jη
λ dϕλ.

To compute dϕη’s of the right hand side of (4.6) write (4.2) in matrices as

(4.7)

ϕ
1

...
ϕ7


︸ ︷︷ ︸

ϕ

=

a
1
1 · · · a71
...

. . .
...

a17 · · · a77


︸ ︷︷ ︸

A

dx
1

...
dx7


︸ ︷︷ ︸

dX
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and then apply d to (4.7), to obtain

dϕ = dA ∧ dX
= dAA−1ϕ

= dAATϕ, since A ∈ O(7).

(4.8)

Now coming back to (4.1), we make a special choice of frame (e1, . . . , e7) as
follows:

(i) e7 is normal and e1, . . . , e6 are tangent to S6.

(ii) For each k= 1, . . . , 6, let Ak :=
(∑7

i=k (x
i)

2
)1/2

. Then e7=
1
A1

(
x1, . . . ,

x7
)
. Let e6 = (0, . . . , 0, x7

A6 ,− x6

A6 ). Then e6 is a unit vector that is
perpendicular to e7.

(iii) For each k=1, . . . , 5, let ek=

0, . . . , 0︸ ︷︷ ︸
k−1

, A
k+1

Ak ,− xkxk+1

AkAk+1 , . . . ,− xkx7

AkAk+1

.

Then ek is a unit vector that is perpendicular to ek+1, . . . , e7.

Thus we have

(4.9) A =



A2

A1 − x1x2

A1A2 − x1x3

A1A2 − x1x4

A1A2 − x1x5

A1A2 − x1x6

A1A2 − x1x7

A1A2

0 A3

A2 − x2x3

A2A3 − x2x4

A2A3 − x2x5

A2A3 − x2x6

A2A3 − x2x7

A2A3

0 0 A4

A3 − x3x4

A3A4 − x3x5

A3A4 − x3x6

A3A4 − x3x7

A3A4

0 0 0 A5

A4 − x4x5

A4A5 − x4x6

A4A5 − x4x7

A4A5

0 0 0 0 A6

A5 − x5x6

A5A6 − x5x7

A5A6

0 0 0 0 0 x7

A6 − x6

A6

x1

A1
x2

A1
x3

A1
x4

A1
x5

A1
x6

A1
x7

A1


.

Note that the k-th row of A is ek. Since dAAT is skew-symmetric and at the
reference point A is the identity matrix, dA is skew-symmetric at the reference
point. Writing (4.9) in blocks as

A =

[
Ã B
C D

]
,

where Ã is a 6 × 6 matrix, we have that dÃ is skew-symmetric and upper
triangular, hence dÃ = 0 at the reference point. Let ı : S6 ↪→ E(7) be the
inclusion map. Then ı∗(dx7) = 0 at the reference point. From (4.8), we havedϕ

1

...
dϕ6

 =
[
dÃ dB

] dx
1

...
dx7

 .
Since dÃ = 0 and ı∗

(
dx7
)
= 0 at the reference point, we have

(4.10) ı∗
(
dϕj
)
= 0, j = 1, . . . , 6,
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at the reference point. Therefore, from (4.6) and (4.10), we have at the reference
point

(4.11) dθη = −i
6∑

λ=1

dJη
λ ∧ ϕλ.

To evaluate the right hand side of (4.11) at the reference point, first we apply
d to (4.3) and evaluate at the reference point (0, . . . , 0, 1), to obtain

(
dJν

µ

)
=


0 −dx3 dx2 −dx5 dx4 −dx7
dx3 0 −dx1 dx6 −dx7 −dx4
−dx2 dx1 0 −dx7 −dx6 dx5

dx5 −dx6 dx7 0 −dx1 dx2

−dx4 dx7 dx6 dx1 0 −dx3
dx7 dx4 −dx5 −dx2 dx3 0

 ,
which implies

(4.12) ı∗ (dJη
λ) =


0 −ϕ3 ϕ2 −ϕ5 ϕ4 0
ϕ3 0 −ϕ1 ϕ6 0 −ϕ4
−ϕ2 ϕ1 0 0 −ϕ6 ϕ5

ϕ5 −ϕ6 0 0 −ϕ1 ϕ2

−ϕ4 0 ϕ6 ϕ1 0 −ϕ3
0 ϕ4 −ϕ5 −ϕ2 ϕ3 0


at the reference point. Substituting (4.12) in (4.11) we have

(4.13)

dθ1 = −2iϕ2 ∧ ϕ3 − 2iϕ4 ∧ ϕ5,
dθ2 = 2iϕ1 ∧ ϕ3 + 2iϕ4 ∧ ϕ6,
dθ3 = −2iϕ1 ∧ ϕ2 − 2iϕ5 ∧ ϕ6,

at the reference point. Since θ1 = ϕ1 + iϕ6, θ2 = ϕ2 + iϕ5, and θ3 = ϕ3 + iϕ4

at the reference point, by expressing the right hand side of (4.13) in terms of
θj , θ̄j , j = 1, 2, 3, we have

(4.14)

dθ1dθ2

dθ3

 ≡

 0 0 −i
0 i 0
−i 0 0


︸ ︷︷ ︸

T

θ̄1 ∧ θ̄2θ̄1 ∧ θ̄3
θ̄2 ∧ θ̄3

 mod (θ)

at (0, . . . , 0, 1), and hence the torsion matrix has full rank. Since the rank of a
torsion matrix T of (4.14) is lower semi-continuous, we conclude that (S6, J)
has type (1, 0) and therefore, there are no holomorphic functions other than
constants.
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