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ON THE CANONICAL CUSPS IN COMPLEX

HYPERBOLIC SURFACES

Joonhyung Kim

Abstract. In this paper, we consider the canonical cusps in complex
hyperbolic surfaces. We will classify canonical cusps in complex hyper-
bolic surfaces and find correspondence between them and 3-dimensional

nilpotent groups. This paper is a sequel of our paper [6].

1. Introduction

Estimating the volumes of cusped complex hyperbolic manifolds has been
studied for many years. Many people approached this problem in different
ways. See [3], [4], [5], [6], [9]. One intrinsic method to estimate the volumes
of cusped complex hyperbolic manifolds is using the fact that canonical cusps
are disjoint. In other words, by estimating the volumes of canonical cusps
in complex hyperbolic manifolds, one can estimate the volumes of complex
hyperbolic manifolds. Especially, in the case of (complex) dimension 2, i.e.,
in complex hyperbolic surfaces, J. R. Parker got nice results by considering
canonical cusps in [9]. In [6], I. Kim and J. Kim, generalized J. R. Parker’s
method and found better constant in the case of one-ended complex hyperbolic
surfaces.

In this paper, we focus on the canonical cusps in cusped complex hyper-
bolic surfaces. Moreover we also find correspondence between them and 3-
dimensional nilpotent groups. More concretely, we combine the classification
of three dimensional nilmanifolds by K. Dekimpe in [1] with the computation
of volumes of canonical cusps for complex hyperbolic manifolds following S.
Hersonsky, F. Paulin and J. R. Parker in [3], [6] and [9].

The rest of this paper is organized as follows: In §2, we briefly discuss some
definitions and properties related to the complex hyperbolic space. In §3, we
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introduce nil geometry briefly, which we use in next chapter. Finally in §4, we
state our main results.

2. Preliminary

In this chapter, we introduce some basic materials on complex hyperbolic
geometry. We will restrict our attention only in the case of dimension 2 since
that is enough in this paper. For more study, we recommend [2].

2.1. Complex hyperbolic space

Let C2,1 be a complex vector space of dimension 3 with a Hermitian form
of signature (2, 1). An element of C2,1 is a column vector z = (z1, z2, z3).
Throughout this paper, we choose the second Hermitian form on C2,1 given by
the matrix J

J =

0 0 1
0 1 0
1 0 0

 .
Thus ⟨z, w⟩ = w∗Jz = z1w3+z2w2+z3w1, where w

∗ is the Hermitian transpose
of w.

One model of a complex hyperbolic space H2
C, which matches the second

Hermitian form and we will use throughout this paper, is the Siegel domain S.
It is defined by identifying points of S with their horospherical coordinates,
z = (ζ, v, u) ∈ C × R × R+. For each u > 0, the horosphere of height u is
the subset of S given by Hu = C × R × {u} and the horoball of height u is
Bu = C×R× (u,∞). The boundary of S is given by H0 ∪ {q∞}, where q∞ is
a distinguished point at infinity and H0 = C× R× {0}.

For each z = (ζ0, v0) ∈ C × R, (ζ0, v0) × R+ is a geodesic with the other
endpoint is q∞. Then there is a canonical projection from S to C × R by
(ζ, v, u) 7→ (ζ, v) arising from geodesic perspective.

Define a map ψ : S → PC2,1 by

ψ : (ζ, v, u) 7→

(− | ζ |2 −u+ iv)/2
ζ
1

 for (ζ, v, u) ∈ S−{q∞}; ψ : q∞ 7→

10
0

 .
Then ψ maps S homeomorphically to the set of points z in PC2,1 with ⟨z, z⟩ <
0, and maps ∂S homeomorphically to the set of points z in PC2,1 with ⟨z, z⟩ =
0. We write ψ(z̃) = z.

The metric on S is called the Bergman metric which is given by the distance
formula

cosh2
(
ρ(z̃, w̃)

2

)
=

⟨z, w⟩⟨w, z⟩
⟨z, z⟩⟨w,w⟩

.
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2.2. Heisenberg group

The boundary of a complex hyperbolic space is identified with the one point
compactification of the Heisenberg group. The 3-dimensional Heisenberg group
N is C× R with the group law

(ζ1, v1) ⋄ (ζ2, v2) = (ζ1 + ζ2, v1 + v2 + 2Im(ζ1ζ2)).

There is a canonical projection from N to C called the vertical projection given
by Π : (ζ, v) 7→ ζ.

The Heisenberg group carries a natural norm, the Heisenberg norm

| q |= (| ζ |4 +v2)1/4.

The Heisenberg group acts on itself by Heisenberg translation. For (τ, t) ∈ N,
this translation is

T(τ,t) : (ζ, v) 7→ (ζ + τ, v + t+ 2Im(τζ)) = (τ, t) ⋄ (ζ, v).

A Heisenberg translation by (0, t) for any t ∈ R is called the vertical translation
by t. It is easy to check that the commutator of Heisenberg translations by
(τ, t) and (σ, s) is a vertical translation by 4Im(στ). This fact will be used
later.

In the case of dimension 2, the Heisenberg rotation is just eiθ (In general, the
unitary group U(n− 1) acts on the Heisenberg group by Heisenberg rotation).

2.3. Holomorphic isometries

The holomorphic isometry group of S with respect to the Bergman metric
is isometric to the projective unitary group PU(2, 1) and it acts on PC2,1 by
matrix multiplication.

The action of Heisenberg isometries extends to the Siegel domain, preserving
each horosphere and fixing q∞. Some examples of Heisenberg isometries are as
follows: The Heisenberg rotation corresponds to the matrix f ∈ PU(2, 1), and
the Heisenberg translation T(τ,t) to the matrix g ∈ PU(2, 1), where

f =

1 0 0
0 eiθ 0
0 0 1

 and g =

1 −τ∗ − | τ |2 /2 + it/2
0 I τ
0 0 1

 .
When viewed as elements of PU(2, 1), Heisenberg translations are known
as pure-parabolic maps and Heisenberg rotations as boundary-elliptic maps.
Since every elliptic element in discrete subgroups of PU(2, 1) is of finite or-
der, torsion-free discrete groups cannot contain elliptic elements. A Heisenberg
isometry is called screw-parabolic if it is the product of a vertical translation
and a Heisenberg rotation. It preserves the fixed-point set of the Heisenberg
rotation, called the axis, and acts as a vertical translation there. The screw-
parabolic map fixing q∞ with axis (0, v) ⊂ N, rotation multiplier eiθ, and
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translation length t is

f =

1 0 it/2
0 eiθ 0
0 0 1

 .
2.4. Canonical horoball

Let G be a discrete subgroup of PU(2, 1) so that the stabiliser G∞ of q∞
contains Heisenberg translations by (0, t) and (τ, t

′
), where t > 0 and τ ̸= 0.

The horoball B based at q∞ of height

min{t, | |τ |2 + it/2 |}
is called the canonical horoball at q∞ for G.

If G is a discrete, torsion-free subgroup of PU(2, 1) containing a vertical
translation by t > 0 in the stabiliser G∞ of q∞, the canonical horoball at q∞
for G is the horoball B based at q∞ of height t/2. We define the canonical cusp
to be B/G∞.

An interesting fact on canonical horoballs is the following:

Proposition 2.1 (Proposition 5.7 in [3] or Proposition 2.4 in [9]). Canonical
horoballs at distinct parabolic fixed points are disjoint.

3. Nil geometry

This chapter is devoted to introduce nil geometry. The 3-dimensional nil
geometry plays an prominent role in this paper, so we briefly introduce some
materials which is needed later. For a reference, we recommend [10].

3.1. Nil 3-manifolds

As introduced in previous chapter, the 3-dimensional Heisenberg group N is
C× R with the group law

(ζ1, v1) ⋄ (ζ2, v2) = (ζ1 + ζ2, v1 + v2 + 2Im(ζ1ζ2)).

Then it is easy to see that N is a simply connected 2-step nilpotent Lie group,
that is [N,N] = (0,R) = R, which is the center of N.

There is another way to describe the 3-dimensional Heisenberg group, which
is

N =


1 x t
0 1 y
0 0 1

 : x, y, t ∈ R

 .

We can identify them by

ζ = x+ iy, v = 2xy − 4t,

or conversely

x = Re(ζ), y = Im(ζ), t =
Im(ζ2)− v

4
.
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Definition 3.1. A Heisenberg infranilmanifold is a compact manifold N/π,
where π is a torsion-free discrete cocompact subgroup of N⋊C for some com-
pact subgroup C of Aut(N). Such a group π is called an almost Bieberbach
group.

Every almost Bieberbach group modelled on N is determined by the short
exact sequence

1 → L→ π → θ → 1,

where L = π ∩N and |θ| < ∞. We call θ the holonomy group of π. It is well
known that π contains a cocompact lattice of N with index bounded above by
a universal constant I, i.e., I is the maximal order of the holonomy groups.

Identifying S1 with the rotations in the xy-plane, since S1 = U(1) belongs
to the maximal compact subgroup C of Aut(N), N/Γ is an infranilmanifold,
where Γ is a discrete subgroup of N ⋊ S1 which acts freely. When the nil 3-
manifold is closed, N ∩ Γ must be finite index in Γ and N/(N ∩ Γ) must be
compact.

3.2. Presentation of nil 3-manifold groups

In this section, we present a complete list of closed nil 3-manifold groups.
Originally, this list was given by K. Dekimpe in [1], but here we follow the
notation used by D. B. McReynolds in [8].

(1)

⟨a, b, c : [b, a] = cp, [c, a] = [c, b] = 1⟩, with p ∈ N.

(2)

⟨a, b, c, α :[b, a] = cp, [c, a] = [c, b] = [α, c] = 1, αa = a−1α,

αb = b−1α, α2 = c⟩, with p ∈ 2N.

(3)

⟨a, b, c, α :[b, a] = c2p, [c, a] = [c, b] = [a, α] = 1, αc = c−1α,

αb = b−1αc−p, α2 = a⟩, with p ∈ N.

(4)

⟨a, b, c, α, β :[b, a] = c2p, [c, a] = [c, b] = [c, α] = [a, β] = 1,

βc = c−1β, αa = a−1αcp, αb = b−1αc−p,

α2 = c, β2 = a, βb = b−1βc−p,

αβ = a−1b−1βαc−p−1⟩, with p ∈ N.

(5-1)

⟨a, b, c, α :[b, a] = cp, [c, a] = [c, b] = [c, α] = 1, αa = bα,

αb = a−1α, α4 = c⟩, with p ∈ 2N.
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(5-2)

⟨a, b, c, α :[b, a] = c2p, [c, a] = [c, b] = [c, α] = 1, αa = bα,

αb = a−1α, α4 = c3⟩, with p ∈ 2N.

(6-1)

⟨a, b, c, α :[b, a] = c3p, [c, a] = [c, b] = [c, α] = 1, αa = bα,

αb = a−1b−1α, α3 = c⟩, with p ∈ N.

(6-2)

⟨a, b, c, α :[b, a] = c3p, [c, a] = [c, b] = [c, α] = 1, αa = bα,

αb = a−1b−1α, α3 = c2⟩, with p ∈ N.

(6-3)

⟨a, b, c, α :[b, a] = cp, [c, a] = [c, b] = [c, α] = 1, αa = bαc,

αb = a−1b−1α, α3 = c⟩, with p ∈ N and p ≡ 1, 2 (mod 3).

(7-1)

⟨a, b, c, α :[b, a] = cp, [c, a] = [c, b] = [c, α] = 1, αa = abα,

αb = a−1α, α6 = c⟩, with p ∈ N and p ≡ 0, 4 (mod 6).

(7-2)

⟨a, b, c, α :[b, a] = cp, [c, a] = [c, b] = [c, α] = 1, αa = abα,

αb = a−1α, α6 = c5⟩, with p ∈ N and p ≡ 0, 2 (mod 6).

4. Main results

Let G be a discrete, torsion-free, cofinite-volume group of isometries of H2
C,

q∞ a parabolic fixed point of G, G∞ its stabiliser in G, B the canonical horoball
based at q∞, and g the shortest vertical translation by t > 0 in G∞. Suppose
that G∞ contains a Heisenberg lattice L as a subgroup of index m. Then
Π(L) becomes a lattice in C. Suppose that τ has the shortest length among
all nontrivial elements of Π(L) and that σ has the shortest length among all
elements of Π(L) that are not real multiples of τ . Then {τ, σ} becomes a basis
for Π(L) and σ/τ is in the standard fundamental region for the modular group.
If we pullback the translations by τ and σ under Π, they become Heisenberg
translations in L by (τ, t

′
) and (σ, s

′
) for some t

′
, s

′ ∈ R. Hence, as mentioned
in §2.2, their commutator is a vertical translation by 4Im(στ) = tp for some
p ∈ N. Then the volumes of canonical cusps of complex hyperbolic surfaces are
expressed as a function of m and p. That is,

VolS(B/G∞) =
2p

m
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(For the proof, see [6] or [9]). Therefore finding relations between m and p
contributes to improve the volume constants.

On the other hand, S. Hersonsky and F. Paulin prove that I2 = 6 (Proposi-
tion 5.8 in [3]), so m ∈ {2, 3, 4, 6} because after a vertical projection, the order
of the symmetry of the Heisenberg lattice is the same as the plane lattice. That
is, the number m is just the order of the rotational symmetry of a lattice in C.
It is the so-called crystallographic restriction. Hence VolS(B/G∞) ≥ 1/3 (The
equality holds when m = 6 and p = 1).

In [9], J. R. Parker proves the following theorem, which says that if m = 4
or 6, then p ̸= 1.

Theorem 4.1 (Proposition 5.5 in [9]). Let G be a discrete, torsion-free, cocom-
pact group of Heisenberg isometries. Suppose that G contains a screw-parabolic
map f whose rotational part has order m = 4 or 6. Let k be the shortest vertical
translation in G, and let g be a shortest translation in Π(G). Now [fgf−1, g]
is a vertical translation, and so [fgf−1, g] = k±p, where p is a positive integer.
Then p ≥ 2.

Then, as corollaries of above theorem, we can estimate the volumes of canon-
ical cusps of complex hyperbolic surfaces and the volumes of cusped complex
hyperbolic surfaces. More concretely, we can enlarge the volume constant from
1/3 to 2/3.

Corollary 4.2 (Theorem 5.1 in [9]). Let G be a discrete, torsion-free, cofinite-
volume group of isometries of H2

C, q∞ a parabolic fixed point of G, and G∞ its
stabiliser in G. Let B be the canonical horoball based at q∞. Then

VolS(B/G∞) ≥ 2/3.

Corollary 4.3 (Corollary 5.2 in [9]). LetM be a complex hyperbolic 2-manifold
with k ends. Then VolS(M) ≥ 2k/3.

J. R. Parker proves above theorem using the following two lemmas. We will
also use them.

Lemma 4.4 (Lemma 5.3 in [9]). Let G be a discrete, torsion-free group of
Heisenberg isometries containing the screw-parabolic map f with rotational part
of order m = 2, 3, 4, or 6. Let k, the vertical translation by t > 0, be the shortest
vertical translation in G. Then there is an integer r so that the screw-parabolic
map fk−r is also in G, has the same rotation multiplier as f , and has the
property that (fk−r)m = k±1. In other words, the translation length of fk−r

is ±t/m.

Proof. Since fm is a vertical translation, fm = kl for some l. Then the trans-
lation length of f becomes lt/m. Let l = rm + d, where −m/2 < d ≤ m/2.
Then the translation length of fk−r becomes lt/m−rt = dt/m, which is in the
interval (−t/2, t/2] and the rotational part is the same as that of f . Since G is
torsion-free, b cannot be zero. Now consider possible values of b case by case.
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1) m = 2 ⇒ d = 1.
2) m = 3 ⇒ d = ±1.
3) m = 4 ⇒ d = ±1, 2.
4) m = 6 ⇒ d = ±1,±2, 3.
It suffices to show that when m = 4, d cannot be 2 and when m = 6, d

cannot be ±2 or 3. In all of these cases, d divides m, so we may say m = dq.
Then the map (fk−r)q is a screw-parabolic with rotational part of order d and
the translation length t(= dqt/m). Thus (fk−r)qk−1 is a Heisenberg rotation,
which contradicts to the assumption that G is torsion-free. Hence d = ±1. □

Remark 4.5. Thanks to above lemma, for a given screw-parabolic map f with
rotational part of order m, we may assume that the translation length of f is
±t/m.

Lemma 4.6 (Lemma 5.4 in [9]). Let f be a screw-parabolic Heisenberg isometry
with axis (o, v) ⊂ N, rotation multiplier eiθ, and translation length r ∈ R. Let
g be the Heisenberg translation by (σ, s) ∈ N. Then gf is a screw-parabolic
map with axis (σ/(1− eiθ), v), rotational multiplier eiθ, and translation length
r′ = r + s− | σ |2 sin θ/(1− cos θ).

In [6], I. Kim and J. Kim prove that if m ∈ {2, 4, 6}, then p must be even in
the above situation. Especially, it contributes to improve the volume estimate
of one-ended complex hyperbolic surfaces (See [6]). Their results are as follows.

Theorem 4.7 (Theorem 4.12 in [6]). Let G be a discrete, torsion-free, cocom-
pact group of Heisenberg isometries. Suppose that G contains a screw-parabolic
map f whose rotational part has order m = 2. Then p must be an even integer,
where p is defined as above.

Theorem 4.8 (Theorem 4.13 in [6]). Let G be a discrete, torsion-free, cocom-
pact group of Heisenberg isometries. Suppose that G contains a screw-parabolic
map f whose rotational part has order m = 4 or 6. Let k be the shortest vertical
translation in G, and let g be a shortest translation in Π(G). Now [fgf−1, g]
is a vertical translation, and so [fgf−1, g] = k±p, where p is a positive integer.
Then p must be an even integer.

From now on, we investigate the relations between m and p more concretely
and classify all possible cases.

4.1. m = 2

By Lemma 4.4, we may assume that G contains g, a Heisenberg translation
by (σ, s) and f , a screw-parabolic with axis (o, v) ⊂ N, rotation multiplier −1,
and translation length r = ±t/2. We know that, in fact, r = t/2, not −t/2
by seeing the proof of Lemma 4.4. We may also assume that G contains h, a
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Heisenberg translation by (τ, s
′
) so that

[g, h] =

1 0 −σ∗τ + τ∗σ
0 1 0
0 0 1

 ,
which is a vertical translation by 4Im(στ) = 2i(στ − στ) = pt.

Since m = 2, Π(G∞) is a (2, 2, 2, 2)-group and order 2 elliptic conjugacy
classes are projections of f , gf , hf , and hgf (See Section 5.5, Table 2 in [11]
and Section V. D. 9 in [7]). Using Lemma 4.6, we can calculate the translation
lengths of them (See the proofs of Theorem 4.12 in [6]). As a summary, the
translation length of f is t/2, that of gf is (1/2+n1)t, that of hf is (1/2+n2)t,
and that of hgf is (1/2 + n1 + n2 − p/2)t for some integers n1, n2 and p ∈ 2N.

In this case, we may express the group G as

⟨f, g, h, k :[g, h] = kp, [k, f ] = [k, g] = [k, h] = 1, (gf)2 = k1+2n1 ,

(hf)2 = k1+2n2 , (hgf)2 = k1+2n1+2n2−p, f2 = k⟩, with p ∈ 2N,

where k is the shortest vertical translation by t, and hence [k, f ] = [k, g] =
[k, h] = 1. Conjugating G by a Heisenberg translation if necessary, we may
assume that n1 = n2 = 0. We will show that this group is exactly the same
as the nil 3-manifold group (2) in §3.2. First, replace (f, g, h, k) by (α, b, a, c)
respectively. Then [b, a] = ck, α2 = c and [c, a] = [c, b] = [α, c] = 1 are direct.
From (gf)2 = (hf)2 = f2 = k, we get (bα)2 = (aα)2 = α2 = c. Hence,
bαb = aαa = α, that is αa = a−1α and αb = b−1α. In the above group
presentation of G, we notice that (hgf)2 = k1+2n1+2n2−p is induced from other
relations since (hgf)2 = hg(fh)(gf) = hg(h−1k1+2n1f−1)(k1+2n2f−1g−1) =
hgh−1k1+2n1+2n2g−1= hgh−1g−1k1+2n1+2n2 =k−pk1+2n1+2n2 =k1+2n1+2n2−p.

Before working in the cases of m = 3, 4, or 6, we set a piece of notation.
In those cases, Π(G∞) is a triangle group, so they have some properties in
common. Suppose that g is a Heisenberg translation by (σ, s), the axis of f is
(o, v) ⊂ N, the rotational multiplier of f is e2iπ/m, and the translation length of
f is r. Then fgf−1 is a Heisenberg translation by (e2iπ/mσ, s), so [fgf−1, g] is
a vertical translation by 4|σ|2 sin(2π/m) = pt (where t is the translation length
of k). By Lemma 4.4, we may assume that r = ±t/m = ±4|σ|2 sin(2π/m)/pm.

4.2. m = 3

Suppose that m = 3, i.e., 2
√
3|σ|2 = pt. Then Π(G∞) is a (3, 3, 3)-triangle

group and the generators are f , gf , and fg−1, where the orders of them are all
3 (See Section 5.5, Table 2 in [11] and Section V. D. 9 in [7]). We already know
that f has a rotational multiplier e2πi/3, and a translation length r = ±t/3.
Using Lemma 4.6, we get the rotational multipliers and the translation lengths
of screw-parabolic maps gf and fg−1. The generator gf has a rotational mul-
tiplier e2πi/3, and a translation length r′ = r+ s− |σ|2 sin( 2π3 )/(1− cos( 2π3 )) =
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±t/3 + s − |σ|2/
√
3 = ±t/3 + s − pt/6. On the other hand, fg−1 has a rota-

tional multiplier e2πi/3, and a translation length r′′ = ±t/3 − s − pt/6. Since
the orders of gf and fg−1 are 3, 3r′ = ±t+3s−pt/2 and 3r′′ = ±t−3s−pt/2
are integer multiple of t. Furthermore, for G to be torsion free, r′, 2r′, r′′ and
2r′′ cannot be integer multiples of t. If p = 1, by the facts that 3r′ and 3r′′ are
integer multiples of t, s = nt/6 (mod t), where n is an odd integer. If r = t/3,
since r′ = t/3 + nt/6 − t/6 cannot be an integer multiple of t, n must be 3
(mod 6). Hence s = t/2 (mod t). Similarly, if r = −t/3, then s = t/6 or 5t/6
(mod t). When p = 2, 3, 4, 5, or 6 (mod 6), one can calculate similarly. We
write down all cases below.

r = t/3 r = −t/3
p = 1 s = t/2 s = t/6 or 5t/6
p = 2 s = t/3 or 2t/3 s = t
p = 3 s = t/2 s = t/2
p = 4 s = t s = t/3 or s = 2t/3
p = 5 s = t/6 or 5t/6 s = t/2
p = 6 s = t s = t

(mod t)

Like in the case of m = 2, we may express the group G as

⟨f, g, k :[fgf−1, g] = kp, [k, f ] = [k, g] = 1, f3 = k±1,

(gf)3 = k±1+3s/t−p/2, (fg−1)3 = k±1−3s/t−p/2⟩, with p ∈ N,

where k is the shortest vertical translation by t, and hence [k, f ] = [k, g] = 1.
Then we can identify the group G with the nil 3-manifold groups (6-1), (6-2)
or (6-3) in §3.2. Precisely, (6-1) is the same as G with r = t/3, p = 3 or 6, (6-2)
is the same as G with r = −t/3, p = 3 or 6, and (6-3) is the same as G with
the other cases. For example, if we set s = −t/2, then we can identify (6-1)
with G for r = t/3 and p = 3 by replacing (a, b, c, α) with (g, fgf−1, k, f). In
this case, we may write G as

⟨f, g, k :[fgf−1, g] = k3, [k, f ] = [k, g] = 1, f3 = k,

(gf)3 = k−2, (fg−1)3 = k⟩.

Then except the relation αb = a−1b−1α, the other relations are obtained di-
rectly from G. From [k, g] = f3gf−3g−1 = 1, gf2 = f3gf−1. Hence,

aαbα−1b = gf(fgf−1)f−1(fgf−1)

= (gf2)(gf−1)2

= (f3gf−1)(gf−1)2

= f3(gf−1)3

= f3k−1 = 1.

We notice that (gf)3 = k−2 is obtained from other relations because

k−2 = k−3k = [fgf−1, g]−1f3
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= (gfgf−1g−1fg−1f−1)f3

= (gfg)(f−1g−1fg−1f2)

= (gfg)(fgf)

= (gf)3.

Here, we used the equality f−1g−1fg−1f2 = fgf , which is induced from k =
f3 = (fg−1)3.

Similarly, if we set s = −t, then we can identify (6-1) with G for r = t/3
and p = 6. For one more example, we consider the case p = 1 and r = t/3.
In this case, if we set s = −t/2 and replace (a, b, c, α) by (g−1fg−1f−1, g, k, f)
respectively, then we can match G to (6-3) with p ≡ 1 (mod 3).

4.3. m = 4

Suppose that m = 4, i.e., 4|σ|2 = pt. Then Π(G∞) is a (2, 4, 4)-triangle
group and the generators are f , gf , and gf2, where the orders are 4, 4, and 2,
respectively (See Section 5.5, Table 2 in [11] and Section V. D. 9 in [7]). Using
Lemma 4.6, we can calculate the translation lengths of them (See the proof of
Theorem 4.13 in [6]). Then, the translation length of f is ±t/4, that of gf is
±t/4 + nt− pt/4, and that of gf2 is ±t/2 + nt for some integer n and p ∈ 2N.
In this case, we may express the group G as the following two cases. They
correspond to the case r = t/4 and r = −t/4(≡ 3t/4 mod t), respectively.

⟨f, g, k :[fgf−1, g] = kp, [k, f ] = [k, g] = 1, (gf)4 = k1+4l−p,

(gf2)2 = k1+2l, f4 = k⟩, with p ∈ 2N.

⟨f, g, k :[fgf−1, g] = kp, [k, f ] = [k, g] = 1, (gf)4 = k3+4l−p,

(gf2)2 = k3+2l, f4 = k3⟩, with p ∈ 2N.
ConjugatingG by a Heisenberg translation if necessary, we may assume that l =
0. Then we can identify these two groups with the nil 3-manifold groups (5-1)
and (5-2) respectively, by replacing (a, b, c, α) in (5-1) or (5-2) by (g, fgf−1, k, f)
in G. Let’s check it precisely for the first case. First of all, (gf)4 = k1−p is
induced from other relations since

(gf)4 = gfg(fg)(fg)f = gfg(f−1g−1f2)(f−1g−1f2)f

= (gfgf−1g−1fg−1f−1)f4

= [fgf−1, g]−1f4

= k−pk = k1−p.

We used fg = f−1g−1f2 from (gf2)2 = k = f4. Furthermore [fgf−1, g] = kp,
[k, f ] = [k, g] = 1 and f4 = k are obtained directly from (5-1), and αa = bα
is just fg = fg. Finally, αb = a−1α is changed by f2gf−1 = g−1f , which is
(gf2)2 = f4 = k. For the second case, it is almost the same, but we have to
notice that [b, a] = c2p, not [b, a] = cp. Hence to match exactly in second case,
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p must be changed by the integer multiple of 4, not the integer multiple of 2.
Therefore we can conclude that if the translation length of f is −t/4, p must
be an integer multiple of 4.

4.4. m = 6

Finally suppose that m = 6, i.e., 2|σ|2
√
3 = pt. Then Π(G∞) is a (2, 3, 6)-

triangle group and the generators are f , gf2, and gf3, where the orders are 6, 3,
and 2, respectively (See also Section 5.5, Table 2 in [11] and Section V. D. 9 in
[7] as above). As we see the proof of Theorem 4.13 in [6], the translation length
of f is ±t/6, that of gf2 is ±t/3+nt−pt/6, and that of gf3 is ±t/2+nt for some
integer n and p ∈ 2N. Furthermore, for G to be torsion free, ±t/3 + nt− pt/6
and 2(±t/3 + nt− pt/6) = ±2t/3 + 2nt− pt/3 cannot be integer multiple of t.
Hence, if r = t/6, then p = 0 or 4 (mod 6), and if r = −t/6, then p = 0 or 2
(mod 6).

Like above cases, we may express the group G as following two cases.
They correspond to the case r = t/6 and r = −t/6(≡ 5t/6 mod t), respec-

tively.

⟨f, g, k :[fgf−1, g] = kp, [k, f ] = [k, g] = 1, (gf2)3 = k1+3l−p/2,

(gf3)2 = k1+2l, f6 = k⟩, with p ≡ 0, 4 (mod 6),

⟨f, g, k :[fgf−1, g] = kp, [k, f ] = [k, g] = 1, (gf2)3 = k5+3l−p/2,

(gf3)2 = k5+2l, f6 = k5⟩, with p ≡ 0, 2 (mod 6).

Conjugating G by a Heisenberg translation if necessary, we may assume that
l = 0. Then we can identify these two groups with the nil 3-manifold groups
(7-1) and (7-2) respectively, by replacing (a, b, c, α) by (fg−1f−1, g, k, f). For
the first case, first of all, [b, a] = cp is changed by [g, fg−1f−1] = kp. Here
[g, fg−1f−1] = kp is equivalent to [fgf−1, g] = kp because

[g, fg−1f−1] = gfg−1f−1g−1fgf−1 = kp

⇔ (gfg−1f−1g−1)(fgf−1)k−p = 1

⇔ (gfg−1f−1g−1)k−p(fgf−1) = 1

⇔ (gfg−1f−1g−1)−1 = k−p(fgf−1)

⇔ (fgf−1)(gfg−1f−1g−1) = kp

⇔ [fgf−1, g] = kp.

Next, [k, f ] = [k, g] = 1 and f6 = k are direct from [c, a] = [c, b] = [c, α] = 1 and
α6 = c. Furthermore αb = a−1α is just changed by fg = fg. Finally we have
only to consider αa = abα, which is changed by f(fg−1f−1) = (fg−1f−1)gf ,
that is g−1fgfg−1 = f2. Before considering it, we consider relations in G. By
relations in G, we get the following equality.

kp = (gf2)−6(gf3)6f−6
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= (f−2g−1)5(f−2g−1gf3)gf3(gf3g)f3(gf3g)f3f−6

= (f−2g−1)5(f)gf3(f3)f3(f3)f3f−6

= (f−2g−1)5fgf9

= f4(g−1f−2)4g−1f(gf3)

= f4(f−3gf)4g−1f(f3g−1)

= fg(f−2g)3fg−1f4g−1

= f7g(f−2g)3fg−1f−2g−1

= [fgf−1, g] = fgf−1gfg−1f−1g−1.

Hence,

f6gf−2gf−2gf−2gfg−1f−1 = gf−1gfg−1

⇔ f−1gf−2gf−2gfg−1f5 = gfg−1

⇔ g(f−2g)f−2gfg−1f5 = fgfg−1

⇔ g(fg−1f−3)f−2gfg−1f5 = fgfg−1

⇔ gfg−1f−5gfg−1f5 = fgfg−1

⇔ g(fg−1fgfg−1)f−1gf−1g−1f−1 = 1

⇔ f(g−1fgfg−1) = (g−1fgfg−1)f.

Therefore, from g−1fgfg−1 = f2, this equality holds.

Remark 4.9. In the list of closed nil 3-manifold groups, (1) corresponds to
the case m = 1. That is, there is no screw-parabolic element in G, or G is
composed of only Heisenberg translations. Moreover, (3) and (4) correspond
to the cases whose holonomy groups are not in U(n), but in Z2 × Z2, and we
need not consider them here (See [5]).

Remark 4.10. In [5], Y. Kamishima proves that m must be 1 on one-ended
complex hyperbolic surfaces. That is, there is no lattice subgroup.
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