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ROLLING STONES WITH NONCONVEX SIDES I:
REGULARITY THEORY

Ki-AuM LEE AND EUNJAI RHEE

ABSTRACT. In this paper, we consider the regularity theory and the exis-
tence of smooth solution of a degenerate fully nonlinear equation describ-
ing the evolution of the rolling stones with nonconvex sides:

M(h) =ht — F(t,2,2%;,) in{0<z2<1}x]0,T]

hi(z,t) = H(h:(z,t), h) on{z=0}

We establish the Schauder theory for C?“-regularity of h.

1. Introduction

In this work, we are going to consider the wearing process of a rolling stone
on a plane. Since the collision of a rolling stone on the plane causes the erosion
of the surface, the speed of the erosion is proportional to the number of outward
normal directions on a given surface area element, namely the Gauss curvature
of the convex surface. Let us denote ¥ be the surface evolving by the Gauss
curvature flow and X* be the convex envelope of ¥ which is the smallest convex
surface containing . Then any point P on the rolling stone ¥ will propagate
with the speed of 3,

oP .
(GCF) T KN,
in the inward normal direction IV, where K7 is the Gauss curvature of ¥* for
P ¢ ¥ N ¥* and otherwise zero. We denote by g;; the metric and a second
fundamental form of ¥ and by g;; and h;;. We also denote the inverse of g;;

and h;; by g% and (h™')¥. The Weingarten map is given by
W = g?*hy,
and the eigenvalues, A1,...,A,, of hf are called principle curvatures. Then

the Gauss curvature flow was introduced by Firey [14] and he showed that the
smooth compact, strictly convex hypersurfaces with some symmetry shrinks to
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266 KI-AHM LEE AND EUNJAI RHEE

a round point. We will consider the case where the initial radial symmetric
surface has a non-convex side and as a result the parabolic equation becomes
degenerate along the interface of the non-convex surface and the convex surface.
In this paper, we discuss the existence and regularity of the solution, and
regularity of the free boundary.

Let us assume that initially we have surface
Y =%gU2Xq,

where Y is the non-convex side and X7 is the strictly convex part of the surface,
3. The junction between the two sides is the (n — 1)-dimensional surface

I'=%yNY,.

Now we assume Y is a concave graph z = ¢(x) over a hyper plane.

Since the equation is invariant under the rotation, we may assume the hyper
plane is z = 0 plane and that ; lies above this plane. The the lower part of
Y, can be written as the graph of a function

z=f(x)

over a compact domain {2 C R™ on which the non-convex part can be written as
a graph z = ¢(x). Suppose z = f*(z) be the convex envelope of the non-convex
surface z = f(x). We can choose the domain {2 to be the set

N={xeR":|Vfx) < oo}

so that f* turns vertical at the boundary I'. Let us denote by T, the time
when the area of the non-convex side X, of the surface shrinks to zero. Since
we only consider the surface symmetric with respect to z-axis, we may denote
the lower part of ¥ by z = f(r,t) for |x| = r and the non-convex part Xy by
z = ¢(r) for |z| = r. Note that f(r,0) = ¢(r) on Xy. Suppose z = f*(r,t)
be the convex envelope of the non-convex surface z = f(r,¢). Then under the
Gauss curvature flow, the envelope evolves as
2 rx*
(L.1) [ Ci o
(L+[Df?)=

Let 2(f) = {(z,t) : |z| = r, f(r,t) = f*(r,t)} and 2(f) = {z : (z,t) €
2(f)}. The free boundary is denoted by I'(f) = 992(f) and I (f) = {z :
(x,t) € I'(f)}. In particular, we denote 2; = §2,(f) and I}, = I}(f).

To understand the local behavior, we consider a simple model near the free
boundary r = (¢). (1.1) will be

-1
f = e (SN
t— Jn+1 r ’
where I = (14 (f7)?)2z. Now we want to investigate whether the speed of
propagation of the free boundary is non-degenerate and finite as it does in
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the flat spot case, [11]. f, will be zero on the free boundary otherwise it will
propagate with infinite speed. Notice that on the free boundary I'(f), we have

Fr(v(®),t) = p(v(1), 1)
Then
fi 4+ £ (1) = o/ (1),

OE

Pr — f: ’
and f;" = f; on £2(t). These imply
()"

(1.2) Y(t) = gy — fR) P

fr = 0 otherwise it will propagate with infinite speed. If lim, )+ fr(2,t) > 0,
then we have f.(v(t),t) = oo which implies the speed of the propagation of
the free boundary is co. If we expect the speed of the free boundary to be
finite, f: (’Y(t)v t) = limra'y(t)Jr fr(xa t) =0.

To find the behavior of f,. away from the free boundary, let us try f, =
(r —~(t))* for some «,. From the fact that 4/(¢), ¢, (7(t)), and I are of order
one, it is easy to see a, = % and that we expect the optimal regularity of f to

be C# . However, if we let the pressure g(r,t) = Lin~ (r—~(t),

1
= 2
9" 9r
pn—1[n+3’

9 Grr 9“9r
—(n—1)

gt = Tn—l[n-&-l B (7’L + 1)

where v = %=1 T = (1+ (ng)%)% and we may expect better regularity for g as
for the pressure of the porous medium equation [5]. Let us return back to the
original equation with free boundary condition

* w1\ n—1
(1.3 v =2 (L) woerm
since I = (1 + f2)("+1/2 =1 on I'(f). Since g(y(t),t) = 0,
") = 9t
V) ==

With (1.2), we conclude

___ 9
gt = o1
and
o o % 5 .
(GCFP) 9 = e {gr"grlr — (=1 —(n+ 1)7mg11g7f+3} in 2(g)
2
gi(r, ) = _wg;—l on I'(g)

and regularity of the free boundary Iy = 0{x : g(r,t) = 0} with finite speed
2\ ntl

of propagation where o = "T_l and I = (1+ (ng)»)" = .
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Inspired by [5], [10], [11], the proof of the existence of smooth solution of g
is based on the idea of global change of coordinates by setting g(h(z,t),t) = z
where {x : © = h(z,t)} is the level set of g. This transformation enables us to
change the free boundary problem into an fixed boundary value problem

(1.4) {M(h) =h— F(t,z,2%h;,) in{0<z<1}x][0,T]

hi(z,t) = H(h,(z,t), h) on{z=0}.

This equation is governed by metric s where

dz?
d?s = ——
5 2x%
and
Agh =2%hgy

which is no longer degenerating with respect to this new metric s. In this
paper, we are going to prove the regularities of h at (1.4) and the existence
of smooth solution. We establish Schauder estimate with respect to s for the
model equation in Sections 2 and 3. To prove the existence of solution, we apply
the inverse function theorem between certain Banach spaces in Section 4. The
key lemma is the Schauder estimates for the degenerate equation which is a
perturbation theory from the model equation when the coefficient are Holder
continuous. First let us summarize the notations.

Notations:

(1) The convex surface ¥ = ¥y U X; where X is the non-convex side and
> is the strictly convex part of the surface, X.

(2) f* is the convex envelope of f which the supremum of all linear func-
tions below f.

(3) The domains will be defined as the followings:
Q) ={z € R": |Df*(z,t)] < oo},
2g)={(z,t) :x € 2t),0<t < T, g(x,t) > 0},
Oy ={xz e Q) : g(x,t) >0},
O ={ze2t):0<g(xt) <k},
20 x [0, 7] = Uo<e<r (2 x {t}) = £2(g),
2l % [0,T] = Uprer(2F  {t}),
Ig) = {(0,1) : gw,t) = OL, Iy = {a : (2,1) € I(g)} = O : gla,t) =
0} and I} is the graph of r = ~(t),
So ={z >0} and S =S x [0, 0).
Notice that 2(t) = {z : g(z,t) = 0} U £, and 2(0) = £2.

F={(z,t):0<z<R1-R*>™<t<1}.

(4) The parabolic distance between two points P = (z1,%;) and Q =

(CEQ, tQ) is

Tr1 — X
PQ = el T

jaf + 5 |
1 2
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(5) D,f = f, and Ea:f =z%fs.
D* f = (D,D,)*f and D**1f = D, (D,D,)*f.
(6) The Holder norms of f in a set A:
P —
1Flcoca)y = subgen [F @) 1l ) = supprgea LERLDL,
1l ) = I2° Faallr cay + 151
I fllczcay = [ fllcoca +7H_fm|\c_g(A) + |2 feellcocay + + fillcoays
£ llezrcay = 2ipj<i 1D% D fllco(a,
||f||H§+W(A) = ZZiJrj:k HD;DZﬂ HY(A)> ||f|‘c§’“+7(,4) = Hf|
||f||H§,’“+W(A)~
(7) Tog(x7t) = 9(07 ]-)a
Tlf(mat) = f(ov 1) + fx(ov 1)%,
Toaaf(@,t) = £(0,1) + f2(0,1)2 + Gegyamay@® fez (0, D)2~ + £1(0,1)(t = 1),
Rif =f-Tiffori=0,1and Ro_n1f=f—To_a1f
Let us start with showing the existence of the solution for short time by
introducing a simple model equation in the following section.

HJ(A) »

ozi(4) T

2. Linear degenerate model equations

In this section we are going to prove the regularity of the solutions of

(2.1) {ﬁlf =fi—1%foa=g forz>0
Bif=fi—fz=0 on z =0.

2.1. Linearized equations

To find the model equation above, let us introduce a new variable z repre-
senting the level of g and then the value r will be a function h(z,t) of (z,t)
satisfying g(h(z,t),t) = z. Then, by taking the derivatives with respect to z
and t respectively, we have

_ 1 _ hzz _ ht
g'r‘_E grr—_hg gt—_Fz~

The equation (1.4) will transfer into

L(h) = hy — [1{ @he. (=1t H =0 for z > 0,

2pn—1 n
(2.2) J | h2h h )
B(h)th—WZOonZ:O,
where J = (1 +n'/"2'/7)3/2 Then the linearization £ of £ around h is
5 ol 1 = 1 22%h,, -

2y =hu= [ g e = 5 g

1 (2%, (n—1nz*) -
—J{ 122 + s h| for z > 0,
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o e (n—1)h
B(h)=h

()= het Chtie * o

Let us consider the following equation our model equation

Elf = ft _xafxx -9

=0 onz=0.

with a boundary condition

Blf:ftffm*h~

Since the diffusion is governed by metric s, the parabolic distance between two
points P = (x1,t1) and Q = (x9,t2) is

SIPQ) = 1l
lzf + 23 |
Denote the box B, = {0 <z < 2= 0 <t <n}. We will denote by C7 the

space of Holder continuous functions with respect to this metric s and C2+7
the space of function f such that 2 f,, f: and f in C7 with norm

/1

2.2. Existence of smooth solution

cz+i(p,) = Ifllczs,) + I fellcrs,) + 12 fazllcz (s,)-

Theorem 2.1 (Existence and Uniqueness of Smooth Solutions). Assume that g
is a smooth function with compact support on S = Sp X [0,00), which vanishes
at t = 0. Then, there exists a unique smooth solution f of the initial value
problem

Bif=ft—fa=nh onx =0.

Moreover, for any T > 0 there exists a constant C(T) depending only on T so
that

{ﬁ1f=ft—x°‘fm:g forz >0

[ fllcocsry < C(T) (lglleosy + [IRllcosy))-

Proof. Let’s first apply the Fourier-Laplace transform to convert the equation
Lif = fi —x%frr = g to an ordinary differential equation with regular singular
point at x = 0. Then

2 fow — (2% + 1) f +§ =0,
where

fla,7) :/ e T f(x,t)dt
t=0
and
o0
glz,7) = / e Tg(z, t)dt.
t=0
Next we convert the boundary condition B(-,0) = f; — f, = h and obtain

7£(0,7) = f2(0,7) — h(0,7) = 0,
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where
o0

Mﬂzle*m@ﬁ

=0
To show that the inverse Laplace transform is well defined, let us write fv =
p+iq, g = g1 +ig2, h = h1 +ihy and 7 = p + io, the ordinary differential
equation satisfied by f becomes equivalent to the system

T%Pee —pp+0q =g
{ TGpe — pq — TP = g2
with
Pe=pp—0qg—h
{ Gz = 0p+pq—hy
at = 0. Then F = (p? + ¢?)/2 satisfies the differential inequality
2% Fyp — 2pF 2 pg1 + qg2
with
Fy =2pF — (hip + h2q)
at x = 0. By Young’s inequality,

2 2
p°+q C C
pgl+quz—p< 5 )—p(ngrgS)Z—pF—pA(T)
and
2 2
+ C C
~or+an) = —p (P55 ) = Sz = —pr - Sae)

with A(T) = sup,-o(97 + 93)(z,7) + (h} + h3)(7). Hence, since p = z*&% +
Re(7) > Re(7) the function

satisfies the differential inequality
2% Fpy — Re(r) F >0
and
F, > Re(r) F.

Moreover F is smooth and bounded on z > 0, for all real § and complex 7 with
Re(r) > 0. It follows from the maximum principle that F < 0, for all z > 0
which gives us the bound

- c
.l < gy

@g@@ﬂﬂwm
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with C' an absolute, positive constant. Since sup,-, [g](z,7) and |h|(7) decay
rapidly as || — oo with Re(r) > 0, it follows from this estimate that the
function f given by
+ioco+e .
f(z,t) = lim el f(z,7)dr

=0 icote
is well defined and therefore a smooth solution of the equation £, f = g with
Bif =hatx=0. N B
For largs enough 7, F < 0 and F < C%. As [€] = oo, |T| = o0, f decays
rapidly as h decays. It is also easy to see that
[ fllco(sy) < o0

for all T > 0. In addition, for any positive integer n, we have

+ioco+e .
Dy f(z,t) = lim e f(x, T)dT.

e—0 —iooe

Therefore, denoting by L the Laplace transform, we have
LD} f)(@,7) = 7" L(f)(x, 7)
for all 7 > 0. This immediately implies that
Dy f(2,0)=0
for all positive integers n, making f a smooth function on S with f(-,0) = 0.
This answers the existence question. O
2.3. Local derivative estimates

In this section, we will prove certain local estimates on the derivatives of f.

Lemma 2.2. If f is a smooth solution of (2.1) and if | f|+R?*~%|g|+R'~%|g.| <
B in Qi then |f.| < 2 in Qf ={(z,t): 0< 2z <R, 1-R** <t <1}

Proof. Let us scale the function f(z,t) = f(Rxz, R*~“t) and then f satisfies

F_f _ paf  _ pP2-a
(2.3) {ﬁlfft 2 fre = R*7% for x >0

fi—R'Y"f, =0 onz =0.

For the simplicity, we will replace f by f from now on. Let X = B(1+ f2)+nf,
and let us assume that the maximum of X on [0, 7] has been achieved at (z,, o).
When (z,,t,) is an interior point, we have

X, = QBffw +772fzx +"790fw =0

at (2,,1,).
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X will have the following contradiction.
0 S Xt - .’L‘aXxx

1
= — —fo[2Bz" T fy — anmy
xn

(2.4) + 2% ((—4B(1 + f)z + an)n, — 2202 + 1 (2B(1+ f)a + z1,.4))]
+2B(1+ f)g +n9.
C
< — o (Bz'"tnf2 + az*Bn — ' Bn,) <0

for large B > 0 by choosing n such that n, < 0. When z, = 0,

0>2°X, = Rnf, >0.
Similarly we can find the lower bound of X. O
Lemma 2.3. If f is a smooth solution of (2.1) and if |f| + R|f.| + R*~%|g| +

RY™%g| + [2%g20| < B in Qi then 2% frs| < 752 in QF = {(z,1) : 0 <
r<R1-R¥>><t<1}.

Proof. As the lemma above, f(z,t) = f(Rx, R*~*t) satisfies (2.3). For the
simplicity, we will replace f by f for now. Let us consider the quantity
X = A(B+ 22 f,)% + 0?2 frz)?

and assume that the maximum of X on [0,7] has been achieved at (z,,t0).
For (z,,t,) € (%QE, fi: = R'=f, which means X is bounded by a uniform
constant from Lemma 2.2. When (z,,%,) is an interior point, we have

1
(2.5) . 02 fon

— fox (ABz'P + 22 (am + an,) fo )]

from X, = 0. From a simple computation, we will have

v AR — Aal fy (BO 4 )

« 1 2—a, 2 y2
(2.6) + AanzX3/? — Ax®?2X — A%2aX1/? — %02 A?]
. 1 .
< m[—A(nxl X - ()

— Az (X2 0y)? — 2%(a?A? — C3xA®)]
which will be negative for 0 < x < ¢ by selecting a large A and a small § > 0

and which will be also negative for 0 < z < 2 for large X. Therefore we have
a contradiction. (]

Now let us introduce higher derivatives. Set D.f = f, D,f = z°D,,
and Dy, f = DyD,f = 2%D,,f. By applying Lemmas 2.2 and 2.3 on DFu
inductively, we have following estimate.
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Corollary 2.4. Let us assume that f is a smooth solution of (2.1) and that
|f| < B on QF,.. Then we have

_ CB
k
|Dgo fI < k)

3. Polynomial approximation

To obtain Schauder estimates for
Elf:ft_xafmv:g fOI‘l‘>O,
Bif=fi—f.=0 onz =0,

we need to prove some polynomial approximation theories.

(3.1)

Theorem 3.1 (Cycloidal Polynomial Approximation Theorem). There
exists a constant C' with the following property. For every smooth function
f on the box Bs such that Bif = 0 on x = 0, we can find a polynomial
p(z,t) =a+bt+bx+ WIM 227 of degree 2 — o in space and one in time
so that for everyr < s

r\3—«a 9
17 =sl <€ |(5) W+ 2l

Proof. Now we set h to be a replacement of f satisfying a homogenous equation:
Lih=hy — 2%, =0 for x > 0,
(3.2) Bih=ht—hy; =0 on x =0,
h=f on {z > 0} N9, B;.
To find the different between f and h, let & = f — h and then k satisfies the

equation (3.1) with zero on {z > 0} N J,Bs;.
A comparison k with a super-solution kT = (s

Iklls < Cs>~lglls.-
Let p be a 2nd order Taylor polynomial of &,

p (f) =h ((1)> + hy <(1)) T+ (%) (2) T + hy (?) (t—1)

at the point (). Then

oo g2, tells us

r 3—«a
Ie=pll-<c (%) Il
Since f = h + k, we have
If = pllr < 1k = pllr + £l

33) <c[(5)"" tp+ -l

3—«a
<[ ()"l + 1 .
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Theorem 3.2 (Schauder Estimate). For each 8 in 0 < 8 < 1 there exists
a constant S with the following property. If f is a smooth function on the box
By such that To_q 1 f =0inx >0 and Bif =0 onx =0, then

o Mo (11 mp 1LY
0<r<1

0<r<i r2—at+B — r

Proof. Since f is smooth and T5_,1 f = 0, we have

Y

Th_r)l% r2—atp 0
and

sl

r—0 7P

at (0,1). When we apply the approximation lemma on f, we have

3—a
17 sl =€ |(5) Wl + 2l

and similarly

U =ole o [(B00) Moy S0 1],

7’:2—a+ﬁ - 51+B 82_0¢+B f2_04+ﬂ SB

Keeping the estimate, we can select p(0,1) = 0, p,(0,1) = 0, which means p is
invariant under the scaling

1

52—a

p(ex,e27°).

Therefore
2—« 2—«

r r
Il < =g ol < e (15 = 2l + 1171)
By using estimates above, we have

LAl 1L =2l + Il
7'-2*06+6 - 712*01“1’6

C[(r1‘6> Iflls 527+ ||£1f||s}+f5 Pl

sl-B ) g2—a+B ' p2—atB 4B B F2—atp

go[(r1ﬁ> Iflls . 527" ||£1f||s}

1B | s2—a+B | ;2—atB 4B
3.4 ~ 1 _ -
oy LB [P e, 0 e Pl
7/'6 31*6 82*014’6 772*04+B 56 rﬁ 772*044’5

s170 T pBs1=8 T B ) ooy r2math
2—a+B B 2-atf
r2—a+p + B F2—a+p

1-5 2 76
<C (r + r + ! ) sup 11l

L1l
rb

o]

]0<r<1
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There is a small uniform constant 6(C') depending only on C' such that for any
0 <7 < d there are 0 < 7 < r < s < 1 satisfying

o ri=Fh 7 i
S8 T pEss T pp) S

/1]
rg,ai[g <C ”f”l’

Since, for § < r < 1,

we have

Il 1 £ 1l 1£1f]l
<5 sw S TC ||f|\1+0ig§17 ;

which implies the conclusion. ([

o<r<1 278 T 2 g0

Corollary 3.3. For any smooth function f on the box By such that Bif =0
onz =0

el RoLy [
Hyi—iaiﬂ” <C (”R2—a,1f||1 + 0Sup |()7“ﬂl|> )

<r<1

sup
0<r<1

Recall that now for cycloidal diffusion
1fllr = Ifllcoes,) = sup [f(P)]
PEB,

and (P — 1(Py)]
1) — 2
I fllcy .y = llfllcos,) Pirep, S|Py, Po)P
with
((3): ()] -t v
1 2
and
|z1 — 29| |z1 — 22|

¢ ———= < 5[11,22) L C ——=x=

Voe o el SO UTe=g
for constants ¢ > 0 and C. When one of the points is P = ({), we have the
simpler comparison

c(\m|1*a/2+ |t—1|)§s{<f),<?>}§0(|x|lo‘/2—|— |t—1|)

so for points (7) in B,
x 0 1—a/2
1)) =

for constants ¢ > 0 and C < oco. Since (7“1_"/2)7 = rP, our estimates in terms
of r1=2/2 produce Hoélder estimates of exponent v(1 = §) = B. For example,
for all smooth g on B

| Rogll»
5= Cligllez Byy-

0<r<1
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Now we can bound the Taylor polynomial 75 f, and hence the derivatives of
f at the point ({) of degree 2 — «v in space and 1 in time.

Theorem 3.4. For every smooth function f on the box By such that Bif =0
onzx =0,

[To—aflloosy < C (I flloosy + 1£1fllezs))
for every B in 0 < 5 < 1.

Proof. From the equation (3.2), we can find, at Py = (),
RoL1f(Py)
C-a)-a)

for a = f,(Pp) and ¢q(z,t) = at + ax + mxzf‘l.

2—«

Toanf = f(Po) +aqlz,t) +

N
- " 2-a)(1-a) !

lallr = lalr*=[|t +
(3.5) r

> 727 gl

Now we have

1T flle < [Ifllx + llglls + [[Ro L1 fl1

1
< W+ =z llalls + 1 BoLaflla

1 1
(3.6) < (U =) Ul B Laflh) + 5= 1 Te—an fllr

1
< (4 =) f 1k +r\L1fllez(sy)

1
E(anr + | Ro—a,1 flr)-
From the previous corollary, for all 7 in 0 < < 1 and with y(1 - §) =

|Ro—aifllr < Cr2= P (|Ry_a 1 fll + [ L1 f]

+

c1(By)) -
Then

o c —a
ITo-a1fll < Cr= ot | Taman fll + —lfl+Cr 1L f]

CI(B1) -

Choose r so small that Cr?=**# < 1/2, and the bound on || To—a1f|lco(s,) =
|To—q 1f]]1 follows. O

Corollary 3.5. Ifi+j<1

s ()

Corollary 3.6. We also have

‘|R27a,1f||r
021:21 S < C(Ifllcosyy + I1£1f]

or all smooth f on By with Bif =0 onz =0, with 0 <y = £+ < 1.
f ; ¥

3

<0 (Ifllovisn + 11 Iz )

c1(81))
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3.1. Schauder estimates in the interior

Given a point P = (7)) we define the parabolic cylinder C,(P) of radius r
around P to be the set

C.(P) = {(”Lf) Do — a2 <%t —r?TY <t < to} .
If P € Cyg, then Cy/5(P) C Cy. If I = (4,7) is a multi-index we let
D'f=DiD/f .

For the convenience of the reader, let us state the classical Schauder esti-
mates for the heat operator

Hf: ft _faca:~

Theorem (Classical Schauder Estimate). For anyr < 1 there exists a constant
C < oo depending on v with the following property. If f is any smooth function
on the cylinder Cy, then

I fllczrecy < C (Ifllcoen) + 1H fllescyy) -

Note that a smooth function f(x,t) can be expressed as
flz,t) = Z aiﬁjykxi(zfo‘)“ tk.
0,5,k
One can obtain the interior Schauder estimates for the diffusion operator £
by following the details in Theorem I1.8.2 in [5]

Lif=ft— zafa:x
in a small cylinder around the interior point Q@ = {x =1,¢ = 1}.

Theorem 3.7. There exist a number A > 0 and a constant C' with the following
property. For every function f with support in the cylinder Cx(Q) with Q@ = (1)
we have,

[ fllczscn@) < C (Ifller+sen@) + 1£1fllescy@))) -

Going through the details of Theorem 1.8.5 in [5], one can prove on the
cylinder C(Q) the metric
2 dx?

- 2@
is equivalent to the Euclidean metric since |x — 1| < A and A\ is small. This
gives the following restatement, replacing 8 by v and H” by HY in Theorem
3.7.

ds

Corollary 3.8.
1/

@) < C (Ifllosen@) + 11 fllazcona) -
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For dilation purposes we introduce the semi-norm H2*" on a set A

Hf||H§+'Y(A) = ||z faxll gz ay + I fell 7 a)-

Clearly H2%7 is weaker than C277, so

112+ cian < € (1 leoienian + 161 a2 onia) -

Each of these norms behaves well under dilation. If we dilate space and time
by a constant factor r, then £ f dilates by =, the C° norm is unchanged, the
H? norm dilates by s7 = r? with v = l_ig, and the H2T7 norm dilates by
2
p2magY = p2-oth
Let @, be the point

Qr={z=rt=1}
and let
A (@) = {(z =) < X% 1 =N <t <1}
be the cylinder obtained by scaling the cylinder
CA\Q) ={(z—-1)2 < 1- N <t <1}
by x — r? %, (1 —t) — r(1 —t).

Corollary 3.9. There exists a A > 0 such that for every p < A\ and every ~
im0 < B <1 we can find a constant C' with the following property. For every
r >0 and every smooth function f on the cylinder Ay (Q;)

1
”fHHSQ‘M(AW(QT)) <C <7“2_0‘+6 [fllcocar @y + I1£1f] HZ(AM(QT))> ‘

From this Schauder estimate we can work backwards to get a Taylor remain-
der estimate. Let T. f{ f denote the Taylor polynomial of f of degree 2 — v in

space and 1 in time at the point @,, and let RQQE f=r- TQC?{ f be the Taylor

r

remainder at @,. By the remainder formula we can express Rg%l f in terms of
the differences of derivatives = f,., f+ between @), and the nearly points, so
that, as we see by dilating from A,(Q),

” 2
IBS 3 flleocan @) < O Pl gzt a,, (.-
Combining this with the previous estimate gives this corollary.

Corollary 3.10. We also have

IRSs flloo@an @y < C (Iflcocann@ny + 2 TPILLflar (ann @) -



280 KI-AHM LEE AND EUNJAI RHEE

3.2. Schauder estimates near the boundary

le:ft_xafzx_g

We can obtain Schauder estimates near the boundary comparing z¢ f,, at a
point P = (¢) on the boundary with the second derivatives at a point Q, = (1)
near the boundary, by comparing the Taylor remainder estimates near P and
near Q,. Let T} o1/ denote the Taylor polynomial of f at P of degree 2 — «

in space and 1 in time, and let TQ%T f denote the Taylor polynomial of f at Q,
of degree 2 in space and 1 in time, and consider the remainders

RY 1 f=f-Tf f and R f=f-T55f.

For A small the cylinder Ay, (Q,) is entirely contained in the box Ba,.(P). Our
remainder estimate at the boundary gives

IR w1 fllcoBanry < Cr* TP ([ fllcocs,py) + I1£1]]

03(31(1’)))
when0<'y:17%<1andr§1/2.
2

Corollary 3.11. For every smooth function f on the box By such that By f =0
onz =0,

|2% fou(Qr) — &% fou(P)| + | ft(Qr) — f:(P)]
< Os[Qr, PI” (Ifllcoesy) + 1£1£]

Proof. Let f = f — T;ia,lf'

c1(By)) -

IR Fllcoga,, @y < C (Ifllcocas @y + > FPUL1Fll a2 (an @)

(3.7) —a
< Cp2-ats (Hf||co(31(p)) + H£1f||cz(Bl(P))) )

Hence we have

T3 o f = T fll = |RY_ o1 f — RS f

) < Cr*= T (| fllcosypy + 11 F ez Bury) -
By applying Lemma 2.3 on T;ia,lf - Tf{f, we have
(3.9) |2 fae (Qr) — 2% foa(P)| + [ f1(@r) — fe(P)]
< s[Qr, P 1f 24+ (4, 0y
The conclusion comes from the inequalities above. (I

Similarly, we have the following corollary.
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Corollary 3.12. For every smooth function f on the box Bs such that Bif =0

onx =0,
2% frn <“;f> . (?)‘ + | ft (f) —fi (?)‘
y
<cs|(5).(0)] (tercan + s

Now it can be summarized in the following Schauder estimates.

C;’(Bl)) :

Theorem 3.13. For every smooth function f on the box By such that Byf =0
onx =0,

1fllcz sy < € (Ifllcoa) + 1£1 ]

3.3. Main Schauder estimate

c1(By)) -

Combining the results in the previous sections we can prove now our main
Schauder estimate.

Theorem 3.14. For any f in 0 < 8 <1 and any r < 1 there is a constant C
so that

1205,y < € (Il + 1£1Fllcsm,))
for all C*° smooth functions f on By with Byf =0 on x =0.

Proof. The result follows directly; since for any r < 1 we can cover a neighbor-
hood of the part of the box B, along the boundary {x = 0} with little boxes
that translate and dilate to Bs as before. O

Corollary 3.15. For any 8 in 0 < <1 and any 0 <r < p <1 there is a
constant C' so that

1fllezoem,y < € (IFlez, + 1£1Flles (5, + 181 flozo,m,))
for all C*° smooth functions f on Bj.

Proof. Set By f = h(t) and f=f- fot h(s)ds and then apply Theorem 4.3 on
f. O

Theorem 3.16. Let k be a nonnegative integer and let 0 < 8 < 1. Then, for
any r < 1 there exists a constant C' depending on k, 8 and r so that

1l ge o,y < € (1]
for all C* smooth functions f in Bywith Byf =0 on x = 0.

ce(By) T Hﬁlch_gkﬁ(Bl))

Proof. Assume first that k = 1. Let f be a smooth function in the box B; and
set Lf = g. The derivatives f; satisfy the equations

El(ft) =Gt
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in the box B;. From the estimates in Theorem 3.15 and Corollary 3.16, we
conclude

Life = (ft)t —2%(ft)ze = Gt for x > 0,
Bifi = (ft): — (ft)= =0 onz =0,
which is the desired estimate for £ = 1. The same proof, with a bit more

involved notation, generalizes for all £k > 1. The constant C' in this case depends
on the integer k. O

(3.10)

Corollary 3.17 (Schauder Estimate). Let k be a nonnegative integer and let
0 < B < 1. Then, for any r < 1 there exists a constant C' depending on k, 8
and r so that

1 fllgzeseo sy < € (111

for all C*° smooth functions f in By.

oz + L1 flzns () + 181 fllgzrn o))

3.4. Smoothing operators and extension

Through a regularizing argument which will involve appropriate smoothing
operators with respect to the metric s, we prove one of our main results. We
begin by defining these operators as in [5].

Let P be a point on the half space z > 0 and @ any point in the unit box
B, = {|u] < 1}. For ¢ > 0 we define the point M.(P;Q) as follows. Starting
from the point = + 2¢ we first move by a distance ¢!~*/2|u| (in the s metric)
in the direction parallel to z-axis and to the right or left of x + 2¢ if w > 0 or
u < 0 respectively.

Let ¢ be a standard smooth, nonnegative bump function, supported in the
box By, with [ ¢(u)du =1 and let h = h(x) be a function defined on the half
space Sp where x > 0. We define the spatial regularization of h be h.(P) =
Jp(u)h (Mc(P;u))du for P = x € S;. We can now give our regularization
result in the metric s.

Theorem 3.18. If h € CP(Sy), then h. is smooth on Sy,
Ihellos sy < € Ihlles s
and for all points = in Sy
|he() = h(x)] < C2 (IRl s s, -
Therefore he — h, uniformly on Sy.

We continue with an extension lemma on the new Holder spaces. Such a
result is standard for regular the Holder spaces. We denote by S the space
So X [0, OO)

The following two theorems can be easily shown with obvious modification
following the details in [5].
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Theorem 3.19. Assume that g € C2(S) and f° € C2%8(Sy), for some number
B in 0 < B < 1. Then, there exists a function h € C2TA(S) such that

hz) = f(x)  and 2(®:W<®

Illgzes sy < € (10 Noz+0(5,) + ooz s )

for some constant C depending only on .

and

We can extend the previous result to Holder spaces of higher order deriva-
tives.

Theorem 3.20. Assume that for some nonnegative integer k and some number
Bin0< B <1, that g € C*P(S) and f° € CH2+8(Sy). Then, there exists a
function h € CF2+B(S) such that

() e 26)-4()

HhHC.f’erB(S) S C (||f0||cfv2+/3(so) + ||g||C?’B(S))

for some constant C' depending only on B and k.

and

Before we finish this section we will introduce smoothing operators in space
and time. Let P = (%) be a point in § = Sy x [0,00) and Q = (%) any point
in the unit box B; = {Ju| < 1, |s] <1 }. For € > 0 let M, denote the spatial
regularization introduced in the beginning of this section. Starting from the
point ]3, we define now the new point

HEQ) = (%),

f = ME(I';U),

having

and
T =1+ 2e+es.
Now let g be a continuous function on S and let @ be a standard smooth,
nonnegative bump function, supported in EI, and such that

/ds/¢<z> dudv = 1.

We define the regularization g. of g as

/ds/ PQdudv—/ / )()QSZdC7

where R = M.(P;Q). As an immediate consequence of Theorem 3.20, we
obtain the following space-time regularizing result:
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Theorem 3.21. For any function g in C?(S) and any two points P and P'
in S, we have
”geHcf(s) <C ||9||c§(s)
and _ B
19:(P) = g(P')| < Ce*/? |||l
with C independent of €.

(8)

3.5. Existence and uniqueness

Theorem 3.22. Let k be a nonnegative even integer and 3 a number in 0 <
B < 1. Assume that g € CFP(S) and f° € C¥2+P(Sy), both g and fO compactly
supported in S and Sy respectively. Then, for any constant ¢ and any T > 0,
the initial value problem

Lf=g imn St
f(0)=f" on Sy
Bif=0 onx =0

admits a unique solution f € Cf’2+B(ST) which satisfies the estimate

Il spy < C@) (170 r2vogs, + Igllogo sy
for some constant C(T') depending on k, 8, ¢ and T.

Proof. We beginning with the existence question, we can assume without loss
of generality that f° =0 and that g is a function in C*#(S) such that

g(i)zo Vz € Sp.

Let g. be the space-time regularization of the function g, as defined at the end of
the previous section. Each g, is smooth, compactly supported in S = Sy x [0, 00)
and vanishes at ¢ = 0. In addition, it follows from Theorem 3.21, that

H96||c§vﬁ(s) <C ”g”C;?ﬁ(s)

and
ge = g as €e—0
uniformly on S. Let f. be the unique solution of the initial value problem

Lfe=ge in S
fe(-,0)=0 on Sy
Bife=0 onz =0

satisfying

[ fellcocsy < Cllgellcocs)
as constructed in theorem. The Schauder estimate and compactness implies
that for f belongs to the space C*2+5(S) and satisfies

[fllcrztacs) < Cllgllors s
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as desired.
The uniqueness of solutions follows from the classical maximum principle.
The maximum of a solution f of the equation

fe—2% foz =0
cannot occur at the boundary = = 0 since
fe—fz=0 at =0
for all functions f € Ck2+58(S). O
Theorem 3.23. Let k be a nonnegative even integer and 3 a number in 0 <
B < 1. Assume that g € CFP(S) and f° € C¥2+B(Sy), both g and f° compactly

supported in S and Sy respectively. Then, for any constant ¢ and any T > 0,
the initial value problem

Lf—cf=g in St
f(,0) = f° on So
Bif=0 onx =0

admits a unique solution f € C¥2+B(Sr) which satisfies the estimate

1l s spy < CT) (1l asns,y + g

for some constant C(T') depending on k, B8, ¢ and T.

Cf’ﬁ(ST))

Proof. For each f € C¥#(S) there is a solution f € C*2%58(S) such that

Lf=cf+g in St
f(ao):fo on SO
Blf:O onz =0.

Let

Ck={feC"P(S8)|f(-,0) = f®on Sy and By f =0on x = 0}
and then C* is convex. The Schauder estimate, Corollary 3.17, says T'f = f
maps C* to a precompact subset of C*. Now the Schauder fixed point theorem

says there is f € C* such that T'f = f, which is equivalent to the conclusion
above. (]

4. Degenerate equations with variable coefficients

In this section we extend the existence and uniqueness theorem to quasi
linear degenerate equations and linear degenerate equations. First we consider
the linear degenerate equations of the form

(1) {Ew:wt—(aaz Wy +bw) =g inxz >0

Bf = fe —c(t)fa = (1) on z =0
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on the cylinder 2 x [0,00), where (2 is a compact domain in R with smooth
boundary. We assume the coefficient a strictly positive and all coefficients a
and b belong to appropriate Holder spaces which will be defined later.

When the boundary is flat and the coefficients are constants, this equation
takes the form of the model equation studied in Section 2
{ft—xafm:g inx >0

(42) fi—fz=0 onz=0

on the half-space z > 0.

Imitating the model case where the operators are defined on the half space
{z > 0}, we define the distance function s in 2. In the interior of {2 the
cycloidal distance will be equivalent to the standard Euclidean distance, while
around any point P € I'; s is defined as the pull back of the cycloidal distance
on the half space S = {x > 0}, as defined in Section 1, via a map & : S — 2
that straightens the boundary of {2 near P.

The parabolic distance in the cycloidal metric is equivalent to the function

() (2)] - v

Now suppose that A is a subset of the cylinder {2 x [0,00) which is the
closure of its interior. As in Section 1, we denote by CY(A) the space of
Hélder continuous functions on A with respect to the metric s and by C277(A)
the space of all functions w on A such that w, w, w; and 2% w,,, extend
continuously up to the boundary of A and the extensions are Holder continuous
on A of class C7(A). They are both Banach spaces under the norms [|wl|¢7 (),
and

wll 244y = lwllozca) + 12 waallez (a) + welloz a)-

Also, we denote by C?%7(A) and C?2+7(A) the spaces of all functions w
whose 2k-th order derivatives D!, D w with D, w = 2* D> w and i + j = 2k
exist and belong to the spaces C7(A) and C27(A) respectively. Both spaces
equipped with the norms

[wllgoeray = Y ID5Dl wler ay+ Y IIVaDi wlico( a)
i+j<k i<k
and

Hw”cgk’HW(A): Z ||chzDgw||c§+7(A)
i+j<2k

respectively, are Banach spaces. We will denote by C7(A) and C2T7(A) the
spaces C97(A) and C%277(A) respectively.
Denoting by L the operator

Lw =w; — (a2%Wgy + bw)
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by (2., for o > 0, the set
R,={xecR: dist(z,]) >0}
by Qr, for T > 0, the cylinder 2 x [0, 7], we can now state:

Theorem 4.1 (Existence and Uniqueness). Let 2 be a compact domain in
R with smooth boundary and let k be a nonnegative integer, a a number in
0 <a<1andT a positive number. Assume that the coefficients a, b and
c of the operator L belong to the space C?*#(Qr) and satisfy the ellipticity
condition
a>A>0, ¢>A>0

and

1
CP N (00Qr) S
for some positive constants X. Then, given any function w® € C2*2+7(§2) and
any function g € C?*7(Q7) there exists a unique solution w € C?%:2+7(Qr) of
the initial value problem

lal

c2(@r) T IPllc2r gy + lle]

we(r,0) = wy(r,0) on 2
Bw = on dyQr = 0Qr N {z =0}

satisfying

ol ganr gy < CT) (0Pl gznaer gy + M9l 2ty + 191 2oy )

The constant C(T) depends only on the domain {2 and the numbers v, k, A\, o
and T.

Proof. For small enough § > 0, we begin by expressing the compact domain {2
as the finite union

=190y U (lg1 )
of compact domains in such a way that dist (£20,1") > £ > 0 and for [ > 1
.Ql = Bp(acl) N

with B,(x;) denoting the ball centered at x; € I" of radius p > 0. The number
p > 0 will be determined later.

Note that the operator L restricted on the interior domain 2y is £, and
non-degenerate. Therefore, the Schauder theory for linear parabolic equations
implies that £ is invertible when restricted on functions which vanish outside
{29. Here our Holder spaces with respect to the cycloidal metric s on the interior
domain (2 is the standard Holder spaces, where the Schauder theory holds.

Next, look into the domains 2;, [ > 1, close to the boundary of 2. Denoting
by B the half unit ball

B={x e B(0); x>0}
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and by Qs the cylinder

Qs =B x[0,0]
we select smooth charts Y; : B — (2, which flatten the boundary of £2, i.e.,
they map BN{x = 0} onto 2,Nd42 and have Y;(0) = z; for p chosen sufficiently
small. ([

Under the change of coordinates induced by the charts T;, the operators £
and B, restricted on each §2; x [0, 6], is transformed to operator £; and B of the
form

L1 = 0y — (G % Wee + byd)
defined on B x [0,§] and
By = W, — ¢ty
defined on (B N {x = 0}) x [0, §] respectively. Moreover, the charts T; can be
chosen appropriately so that the coefficients of £; are in C*7. The continuity
of the coeflicients then implies that the constant coefficient operator

L = Wy — [ 2% Way + by 0]
having o
a; = al(O), b = bl(O)
when defined on Qs = B x [0,6] has coefficients sufficiently close to the coef-
ficients of £; in the space C¥7(Qs), if p and & are chosen sufficiently small.
Combining theorem for the model equation with the perturbation argument,
we can give the generalization of the local Schauder estimates for variable co-
efficient equations. For simplicity we will assume that the operator £ has the
form R
Lw=w; — (ax%Wgy + bw)

defined on the half space z > 0

Biw = wy — cw,
defined on x = 0. As at the beginning of Section 2, we define the box of side

r around a point P = (77) and let B, be the box around the point P = (9).
We have the following theorem:

Theorem 4.2. Assume that the coefficients a and b of the operator L belong
to the space CY(By), for some number v in 0 < vy < 1 and satisfy

a>A>0, ¢>A>0

and

lallcz@r + 10llez(@r) + llellez @oar < 1/A

and for some positive constants A. Then, there exists a constant C' depending
only on v, A such that

1 llczen gy < € (Ifllcs )+ I£S]
for all functions f € C2T7( By).

CJ( By) + ||Bf| CJ (9o Bl))



ROLLING STONES WITH NONCONVEX SIDES 289

Proof. As in [5], we will assume that f is a C* function on B;. The case
f € C?™7(By) will then follow via a standard approximation argument, using
the smoothing operators. O

The next result follows from the Schauder estimate.

Theorem 4.3. Under the same hypotheses as in Theorem 3.2 and for any
number r < 1 there exists a constant C(r) so that

1 llczen s, < €@ (Iflle( 5o+ I1£F]
Now we consider the quasi-linear degenerate equations of the form
wy = % F(t, 2w, Dw) Wy, + G(t, 2, w, Dw)
on the cylinder Qr = 2 x [0,T], T > 0. Lets denote by P the operator Pw =
x F(t,z,w, Dw) wy, + G(t, 2, w, Dw) and by M the operator Mw = w; — Pw.
Then, if @ is a fixed point in C277(Qr), the linearization of the operator M
at the point w is the operator M (w) = DM (w)(w) = wy — DP(w)(w) with
DP(w)(w)
=2 F(t, 2,0, DW) Wyy + [ Fuy, (¢, 2,0, DO) Wyy + Gy, (t, , 0, D) | W,
+ [2% Fo(t, 2,0, DO) Wyp + Go (t, x, @, D) | 0.

cz<Br>> :

Using the Inverse Function Theorem with the theorem above, this implies
the following initial value problem is solvable:

Theorem 4.4. Assume that {2 is a compact domain in R with smooth boundary
and let k be a nonnegative integer, and 0 < v < 1, T > 0 positive numbers.
Also, let w® be a function in C¥*+7(02). Assume that the linearization DM ()
of the quasi-linear operator

Mw =w; — 2% F(t, z,w, Dw) Wy, — G(t, z,w, Dw)

defined on Qp = 2% [0, T, satisfies the hypotheses of Theorem 3.2 at all points
w € CH2H(Qr), such that ||w — U)O‘lcic,2+w(QT) <, > 0. Then, there exists
a number o in 0 < 79 < T depending on the constants v, k, A and p, for which
the boundary value problem

wy = 2 F(t, z,w, Dw) wyy + G(t, z,w, Dw) in 2 x10,70]
we(+,0) = H(t, z, ww,) on =0
admits a solution w in the space C*2+7(£2 x [0,79]). Moreover,
[wllcs2+(@xiomn < Clle’ller2e gy
for some positive constant C which depends only on v, k, A and o.
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