DOI QR코드

DOI QR Code

Degradation of Functional Materials in Temperature Gradients - Thermodiffusion and the Soret Effect

  • Janek, Jurgen (Physikalisch-Chemisches Institut, Justus Liebig University) ;
  • Sann, Joachim (Physikalisch-Chemisches Institut, Justus Liebig University) ;
  • Mogwitz, Boris (Physikalisch-Chemisches Institut, Justus Liebig University) ;
  • Rohnke, Marcus (Physikalisch-Chemisches Institut, Justus Liebig University) ;
  • Kleine-Boymann, Matthias (Physikalisch-Chemisches Institut, Justus Liebig University)
  • Received : 2012.01.03
  • Accepted : 2012.02.02
  • Published : 2012.01.31

Abstract

Functional materials are often exposed to high temperatures and inherent temperature gradients. These temperature gradients act as thermodynamic driving forces for the diffusion of mobile components. The detailed consequences of thermodiffusion depend on the boundary conditions of the non-isothermal sample: Once the boundaries of the sample are inert and closed for exchange of the mobile components, thermodiffusion leads to their pile-up in the stationary state (the so called Soret effect). Once the system is open for an exchange of the mobile component, chemical diffusion adds to the Soret effect, and stationary non-zero component fluxes are additionally observed in the stationary state. In this review, the essential aspects of thermodiffusion and Soret effect in inorganic functional materials are briefly summarized and our current practical knowledge is reviewed. Major examples include nonstoichiometric binary compounds (oxides and other chalcogenides) and ternary solid solutions. The potential influence of the Soret effect on the long term stability of high temperature thermoelectrics is briefly discussed. Typical Soret coefficients for nonstoichiometric compounds are found to be of the order of (d${\delta}$/dT) ${\approx}$ 1%/K.

Keywords

References

  1. A.R. Allnatt and A.V. Chadwick, "Thermal Diffusion in Crystalline Solids," Chem. Rev., 67 681-705 (1967). https://doi.org/10.1021/cr60250a005
  2. W. Jost, Diffusion in Solids, Liquids and Gases, Academic Press, New York, 1964
  3. A.R. Allnatt and A.B. Lidiard, Atomic Transport in Solids, Cambridge University Press, Cambridge, 1993
  4. H. Reinhold, "The Thermolysis of Solid Salts (Ludwig-Soret Phenomenon)," Z. Phys. Chem. A, 141 137-40 (1929).
  5. C. Wagner and W. Schottky, "Theorie der Geordneten Mischphasen (in German)," Z. Phys. Chem. B, 11 163-210 (1930).
  6. R.E. Howard and A.B. Lidiard, "Thermoelectric Power of Ionic Conducting Crystals," Phil. Mag., 2 1462-67 (1957). https://doi.org/10.1080/14786435708241191
  7. R.W. Christy, "Thermoelectric Power of Silver Halides," J. Chem. Phys., 34 1148-55 (1961). https://doi.org/10.1063/1.1731713
  8. E. Haga, "Theory of Thermoelectric Power of Ionic Crystals I," J. Phys. Soc. Jap., 13 1090-95 (1958) https://doi.org/10.1143/JPSJ.13.1090
  9. E. Haga, "Theory of Thermoelectric Power of Ionic Crystals II," J. Phys. Soc. Jap., 14 992-96 (1959) https://doi.org/10.1143/JPSJ.14.992
  10. E. Haga, "Theory of Thermoelectric Power of Ionic Crystals IV," J. Phys. Soc. Jap., 15 1949-54 (1960). https://doi.org/10.1143/JPSJ.15.1949
  11. C. Wagner, "The Thermoelectric Power of Cells with Ionic Compounds Involving Ionic and Electronic Conduction," Prog. Solid State Chem., 7 1-37 (1972). https://doi.org/10.1016/0079-6786(72)90003-9
  12. H. Wever, Elektro- und Thermotransport in Metallen, Julius Ambrosius Barth, Leipzig, 1973.
  13. J.-L. Bocquet, G. Bribec, and Y. Limoge, in: Physical Metallurgy 3rd ed., vol. 1, p. 385, ed. by R.W. Cahn, P. Haasen, North-Holland, Amsterdam, 1983.
  14. F. Faupel, "Atomic Transport - A Review with Perspectives," Phil. Mag. A, 65 1287-308 (1992). https://doi.org/10.1080/01418619208205605
  15. M. Bober and G. Schumacher, "Material Transport in the Temperature Gradient of Fast Reactor Fuels," Adv. Nucl. Sci. Technol., 7 121-79 (1973).
  16. F. Millot, P. Gerdanian, "Measurement of Thermo- and Electrotransport in Fluorite Oxides," J. Nucl. Mater., 92 257-61 (1980). https://doi.org/10.1016/0022-3115(80)90111-7
  17. J. Janek and H. Timm, "Thermal Diffusion and Soret Effect in $(U_5Me)_{2+{\delta}$: The Heat of Transport of Oxygen," J. Nucl. Mater., 255 116-127 (1998) https://doi.org/10.1016/S0022-3115(98)00037-3
  18. H. Schmalzried: Chemical Kinetics of Solids, VCH, Weinheim, 1995.
  19. H. Timm and J. Janek, "On the Soret Effect in Binary Nonstoichiometric Oxides - Kinetic Demixing of Cuprite in a Temperature Gradient," Solid State Ionics, 176 1131-43 (2005). https://doi.org/10.1016/j.ssi.2005.01.010
  20. H.-I. Yoo and J.H. Hwang, "Thermoelectric Behavior of Single Crystalline $ZrO_2(+8m/o Y_2O_3)$," J. Phys. Chem. Solids, 53 973-81 (1992). https://doi.org/10.1016/0022-3697(92)90126-X
  21. J. Janek, C. Korte and A. B. Lidiard, in: Thermal Nonequilibrium Phenomena in Fluid Mixtures, pp. 146-183, ed. by W. Kohler and S. Wiegand, series: Lecture Notes in Physics, Springer-Verlag, Berlin, 2002.
  22. S. R. de Groot, Thermodynamik irreversibler Prozesse, vol. 18/18a, Bibliographisches Institut, Mannheim, 1960.
  23. C. Korte, "Nichtisotherme Transportprozesse in Gemischtleitenden Ionenkristallen," Ph. D. Thesis, University of Hannover, 1997.
  24. C. Wagner, "Equations for Transport in Solid Oxides and Sulfides of Transition Metals," Prog. Solid State Chem. (Part 1), 10 3-16 (1975). https://doi.org/10.1016/0079-6786(75)90002-3
  25. H.I. Yoo, H. Schmalzried, M. Martin, and J. Janek, "Cross Effect between Electronic and Ionic Flows in Semiconducting Transition Metal Oxides," Z. Phys. Chem. N. F., 168 129-42 (1990). https://doi.org/10.1524/zpch.1990.168.Part_2.129
  26. J. Janek, "Coupling between Ionic and Electronic Fluxes in Mixed Ionic/Electronic Conductors: Experiments on $Co_{1-{\delta}}O$," Ber. Bunsenges. Phys. Chem., 98 1213-23 (1994). https://doi.org/10.1002/bbpc.19940981002
  27. J. Janek and C. Korte, "Cross Effect between Heat and Matter Fluxes in Mixed Conducting Solids - Definition of the Heats of Transport," Z. Phys. Chem., 196 187-208 (1996). https://doi.org/10.1524/zpch.1996.196.Part_2.187
  28. R. Haase, "Thermodynamik der Irreversiblen Prozesse". In: Fortschritte der Physikalischen Chemie, Vol. 8, ed. by W. Jost, Verlag, Darmstadt, 1963
  29. C. Korte and J. Janek, "Nonisothermal Transport Properties of ${\alpha}-Ag_{2+{\delta}S$: Partial Thermopowers of Electrons and Ions, the Soret Effect and Heats of Transport," J. Phys. Chem. Solids, 58 623-37 (1997). https://doi.org/10.1016/S0022-3697(96)00172-2
  30. C. Korte, J. Janek, and H. Timm, "Transport Processes in Temperature Gradients: Thermal Diffusion and Soret Effect in Crystalline Solids," Solid State Ionics, 101-103 465-70 (1997). https://doi.org/10.1016/S0167-2738(97)84069-6
  31. F. Millot and P. Gerdanian, "A New Method for the Study of Thermomigration Using a Nonisothermal Electrolytic Cell," J. Phys. Chem. Solids, 43 [6] 501-6 (1982). https://doi.org/10.1016/0022-3697(82)90100-7
  32. F. Millot and P. Gerdanian, "Thermomigration dans $CeO_{2-x}$," J. Nucl. Mater., 116 55-62 (1983). https://doi.org/10.1016/0022-3115(83)90291-X
  33. S. Miyatani, "${\alpha}-Ag_2S$ as a Mixed Conductor," J. Phys. Soc. Jap., 24 328-35 (1968). https://doi.org/10.1143/JPSJ.24.328
  34. J. Janek, "Thermal Diffusion in Crystalline Binary Compounds with Narrow Range of Homogeneity: I. A New Experiment for the Determination of the Heat of Transport," Ber. Bunsenges. Phys. Chem., 99 920-31 (1995). https://doi.org/10.1002/bbpc.199500005
  35. J. Janek and C. Korte, "Thermal Diffusion in Crystalline Binary Compounds with Narrow Range of Homogeneity: II. Stationary Thermal Diffusion in ${\alpha}-Ag_{2+{\delta}}S$," Ber. Bunsenges. Phys. Chem., 99 932-39 (1995). https://doi.org/10.1002/bbpc.199500006
  36. C. Korte and J. Janek, "Thermal Diffusion in Crystalline Binary Compounds with Narrow Range of Homogeneity: III. Experimental Study of the Soret Effect in ${\alpha}-Ag_{2+{\delta}}S$," Ber. Bunsenges. Phys. Chem., 100 425-32 (1996). https://doi.org/10.1002/bbpc.19961000405
  37. W. Koch, H. Rickert, and G. Schlechtriemen, "Non-isothermal Stationary States, Thermoelectric Powers and Transport Processes in ${\alpha}-Ag_{2+{\delta}}Se$ in a Temperature Gradient," Solid State Ionics, 9/10 1197-204 (1983).
  38. T. Ohachi and I. Taniguchi, "Measurement of the Thermal Diffusion Coefficient of Ag Atoms in ${\alpha}-Ag_{2+{\delta}}Se$," Solid State Ionics, 3/4 89-92 (1981).
  39. C. Korte and J. Janek, "Ionic Conductivity, Partial Thermopowers, Heats of Transport and the Soret Effect of ${\alpha}-Ag_{2+{\delta}}Se$ - An Experimental Study," Z. Phys. Chem., 206 129-63 (1998). https://doi.org/10.1524/zpch.1998.206.Part_1_2.129
  40. D.-L. Kim and H.-I. Yoo, "Thermopower of an Asymmetric Cell, Ag|AgI|$Ag_2S$, Involving a Mixed Conductor $Ag_2S$ as an Information Transmitter," Solid State Ionics, 81 135-43 (1995). https://doi.org/10.1016/0167-2738(95)00167-5
  41. C. Jones, P.J. Grout, and A.B. Lidiard, "The Heat of Transport of Vacancies in Solid Argon," Phil. Mag. Lett., 74 217-23 (1996). https://doi.org/10.1080/095008396180380
  42. C. Jones, P.J. Grout, and A.B. Lidiard, "The Heat of Transport of Solute Atoms in Solid Argon," Ber. Bunsenges. Phys. Chem., 101 1232-37 (1997). https://doi.org/10.1002/bbpc.199700031
  43. C. Jones, P.J. Grout, and A.B. Lidiard, "The Heat of Transport of Vacancies in Model FCC Solids," Phil. Mag, A, 79 2051-70 (1999). https://doi.org/10.1080/13642819908223093
  44. P. J. Grout and A. B. Lidiard, "Computation of Heats of Transport in Crystalline Solids II," J. Phys. Cond. Matter, 20 425201 (2008). https://doi.org/10.1088/0953-8984/20/42/425201
  45. K. A. M. Dickens, P. J. Grout, and A. B. Lidiard, "Computation of Heats of Transport of Vacancies in Model Crystalline Solids III," J. Phys. Cond. Matter, 23 265401 (2011). https://doi.org/10.1088/0953-8984/23/26/265401
  46. C. Sari and G. Schumacher, "Oxygen Redistribution in Fast Reactor Oxide Fuel," J. Nucl. Mater., 61 192-202 (1976). https://doi.org/10.1016/0022-3115(76)90083-0
  47. A. Honders, E.W.H. Young, J.H.W. de Witt, and G.H.J. Broers, "The Thermoelectric Power in $Ag_xTiS_2$. Part I. The Electronic Component of the Thermoelectric Power," Solid State Ionics 8 115-19 (1983). https://doi.org/10.1016/0167-2738(83)90071-1
  48. A. Honders, A.J.H. Hintzen, J.M. der Kinderen, J.H.W. de Witt, and G.H.J. Broers, "The Thermoelectric Power in Solid Solution Electrodes: A Disregarded Phenomenon?," Solid State Ionics, 9/10 1205-11 (1983).
  49. W.T. Petuskey and H.K. Bowen, "Thermal Segregation of Cations in Iron-aluminate Spinels," J. Am. Cer. Soc., 64 611-17 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10227.x
  50. H. Timm, Thermodiffusion in binaren und ternaren Oxiden. Ph. D. Thesis, University of Hannover, Germany (1999).
  51. J. Janek and C. Korte, "Study of the Soret Effect in Mixed Conductors by the Measurement of Ionic and Electronic Thermopower," Solid State Ionics, 92 193-204 (1996). https://doi.org/10.1016/S0167-2738(96)00485-7

Cited by

  1. Formation of Corrosion-Resistant Thermal Diffusion Boride Coatings vol.18, pp.1, 2016, https://doi.org/10.1002/adem.201500102
  2. and Related Perovskite Oxides vol.25, pp.40, 2015, https://doi.org/10.1002/adfm.201500827
  3. An Essay on the Heat of Transport in Solids and a Partial Guide to the Literature vol.4, pp.2296-3642, 2015, https://doi.org/10.4028/www.scientific.net/DF.4.57