References
- H. N. Han, C. G. Lee, C.-S. Oh, T.-H. Lee, and S.-J. Kim, "A Model for Deformation Behavior and Mechanically Induced Martensitic Transformation of Metastable Austenitic Steel," Acta Mater., 52 5203-14 (2004). https://doi.org/10.1016/j.actamat.2004.07.031
- K. Tao, H. Choo, H. Li, B. Clausen, J.-E. Jin, and Y.-K. Lee, "Transformation-induced Plasticity in an Ultrafine-grained steel: an in Situ Neutron Diffraction Study," Appl. Phys. Lett., 90 101911 (2007). https://doi.org/10.1063/1.2711758
- G. B. Olson and M. Cohen, "Stress-assisted Isothermal Martensitic Transformation: Application to TRIP Steels," Metall. Trans. A, 13 1907-14 (1982). https://doi.org/10.1007/BF02645934
- H.-H. Cho, Y.- G. Cho, Y.-R. Im, J. K. Lee, J.-H. Kwak, and H. N. Han, "A Finite Element Analysis for Asymmetric Contraction after Coiling of Hot-rolled Steel," J. Mater. Proc. Tech., 210 907-13 (2010). https://doi.org/10.1016/j.jmatprotec.2010.02.003
- T. Wu, M. Coret, and A. Combescure, "Numerical Simulation of Welding Induced Damage and Residual Stress of Martensitic Steel 15-5PH," Inter. J. Solids & Structures, 45 2973-89 (2008).
- Y.-G. Cho, Y.-R. Im, J. K. Lee, D.-W. Suh, S.-J. Kim, and H. N. Han, "A Finite Element Modeling for Dilatometric Nonisotropy in Steel," Metall. Mater. Trans. A, 42 2094-106 (2011). https://doi.org/10.1007/s11661-010-0598-3
- Y.-G. Cho, D.-W. Suh, J. K. Lee, and H. N. Han, "Finite Element Analysis of Dimensional Non-isotropy During Phase Transformation in Microstructurally Banded Steel," Scripta Mater., 65 569-72 (2011). https://doi.org/10.1016/j.scriptamat.2011.06.012
- T.-H. Ahn, C.-S. Oh, D. H. Kim, K. H. Oh, H. Bei, E. P. George, and H. N. Han, "Investigation of Strain-induced Martensitic Transformation in Metastable Austenite using Nanoindentation," Scripta Materialia, 63 540-3 (2010). https://doi.org/10.1016/j.scriptamat.2010.05.024
- G. W. Greenwood and R. H. Johnson, "The Deformation of Metals Under Small Stresses During Phase Transformations," Proc. R. Soc. (Lond) A, 283 403-22 (1965). https://doi.org/10.1098/rspa.1965.0029
- J. B. Leblond, G. Mottet, and J. C. Devaux, "A Theoretical and Numerical Approach to the Plastic Behavior of Steels During Phase Transformation: I Derivation of General Relations," J. Mech. Phys. Solids, 34 395-409 (1986). https://doi.org/10.1016/0022-5096(86)90009-8
- J. B. Leblond, "Mathematical Modeling of Transformation Plasticity in Steels-II. Coupling with Strain Hardening Phenomena," Int. J. Plast., 5 573-91 (1989). https://doi.org/10.1016/0749-6419(89)90002-8
- L. Taleb, N. Cavallo, and F. Waeckel, "Experimental Analysis of Transformation Plasticity," Int. J. Plast., 17 1-20 (2001). https://doi.org/10.1016/S0749-6419(99)00090-X
- L. Taleb and F. Sidoroff, "A Micromechanical Modeling of the Greenwood-Johnson Mechanism in Transformation Induced Plasticity," Int J. Plast., 19 1821-42 (2003). https://doi.org/10.1016/S0749-6419(03)00020-2
- L. Taleb and S. Petit, "New Investigations on Transformation Induced Plasticity and its Interaction with Classical Plasticity," Int. J. Plast., 22 110-30 (2006). https://doi.org/10.1016/j.ijplas.2005.03.012
- F. D. Fischer and G. Reisner, "A Criterion for the Martensitic Transformation of a Microregion in an Elastic-plastic Material," Acta Mater., 46 2095-102 (1998). https://doi.org/10.1016/S1359-6454(97)00374-1
- F. D. Fischer, T. Antretter, F. Azzouz, G. Cailletaud, A. Pineau, K. Tanaka, and K. Nagayama, "The Role of Backstress in Phase Transforming Steels," Arch. Mech., 52 569-88 (2000).
- F. D. Fischer, G. Reisner, E. Werner, and K. Tanaka, "A New View on Transformation Induced Plasticity (TRIP)," Int. J. Plast., 16 723-48 (2000). https://doi.org/10.1016/S0749-6419(99)00078-9
- R. Mahnken, A. Schneidt, and T. Antretter, "Macro Modeling and Homogenization for Transformation Induced Plasticity of a Low-alloy Steel," Int. J. Plast., 25 183-204 (2009). https://doi.org/10.1016/j.ijplas.2008.03.005
- C. L. Magee, "Transformation Kinetics, Microplasticity and Ageing of Martensite in Fe-3l-Ni," Ph.D. Thesis, Carnegie Institute of Technology University, Pittsburgh, PA, USA, 1966.
- G. B. Olson and M. Cohen, "Kinetics of Strain-induced Martensitic Nucleation," Metall. Trans. A, 6 791-5 (1975). https://doi.org/10.1007/BF02672301
- R. G. Stringfellow, D. M. Parks, and G. B. Olson, "A constitutive Model for Transformation Plasticity Accompanying Straininduced Martensitic Transformations in Metastable Austenitic Steels," Acta Metall. Mater., 40 1703-16 (1992). https://doi.org/10.1016/0956-7151(92)90114-T
- Y. Tomita and T. Iwamoto, "Constitutive Modeling of TRIP Steel and its Application to the Improvement of mEchanical Properties," Int. J. Mech. Sci., 37 1295-305 (1995). https://doi.org/10.1016/0020-7403(95)00039-Z
- Y. Tomita and T. Iwamoto, "Computational Prediction of Deformation Behavior of TRIP Steels Under Cyclic Loading," Int. J. Mech. Sci., 43 2017-34 (2001). https://doi.org/10.1016/S0020-7403(01)00026-1
- Y. Tomita and Y. Shibutani, "Estimation of Deformation Behavior of TRIP Steels-smooth/ringed-notched Specimens Under Monotonic and Cyclic Loading," Int. J. Plast., 16 769-89 (2000). https://doi.org/10.1016/S0749-6419(99)00080-7
- F. Marketz and F. D. Fischer, "A Mesoscale Study on the Thermodynamic Effect of Stress on Martensitic Transformation," Metall. Mater. Trans. A, 26, 267-78 (1995). https://doi.org/10.1007/BF02664665
- A. V. Idesman, V. I. Levitas, and E. Stein, "Elastoplastic Materials with Martensitic Phase Transition and Twinning at Finite Strains: Numerical Solution with the Finite Element Method," Comput. Methods Appl. Mech., 173, 71-98 (1999). https://doi.org/10.1016/S0045-7825(98)00258-8
- V. I. Levitas, A. V. Idesman and D. Preston, "Microscale Simulation of Evolution of Martensitic Microstructure," Phys. Rev. Lett., 93 105701-1 (2004). https://doi.org/10.1103/PhysRevLett.93.105701
- V. I. Levitas and I. B. Ozsoy, "Micromechanical Modeling of Stress-induced Phase Transformations. Part I. Thermodynamics and Kinetics of Coupled Interface Propagation and Reorientation," Int. J. Plast., 25 239-80 (2009). https://doi.org/10.1016/j.ijplas.2008.02.004
- V. I. Levitas and I. B. Ozsoy, "Micromechanical Modeling of Stress-induced Phase Transformations. Part 2. Computational Algorithms and Examples," Int. J. Plast., 25 546-83 (2009). https://doi.org/10.1016/j.ijplas.2008.02.005
- S. Turteltaub, and A. S. J. Suiker, "Transformation-induced Plasticity in Ferrous Alloys," J. Mech. Phys. Solids, 53 1747-88 (2005). https://doi.org/10.1016/j.jmps.2005.03.004
- V. G. Kouznetsova and M. G. D. Geers, "A Multi-scale Model of Martensitic Transformation Plasticity," Mech. Mater., 40 641-57 (2008). https://doi.org/10.1016/j.mechmat.2008.02.004
- P. J. Jacques, Q. Furnemont, F. Lani, T. Pardoen, and F. Delannay, "Multiscale Mechanics of TRIP-assisted Multiphase Steels: I. Characterization and Mechanical Testing," Acta Mater., 55 3681-93 (2007). https://doi.org/10.1016/j.actamat.2007.02.029
- V. I. Levitas and D. -W. Lee, "Athermal Resistance to an Interface Motion in Phase Field Theory of Microstructure Evolution," Phys. Rev. Lett., 99 245701 (2007). https://doi.org/10.1103/PhysRevLett.99.245701
- H. N. Han, J. K. Lee, D.-W. Suh, and S.-J. Kim, "Diffusioncontrolled Transformation Plasticity of Steel Under Externally Applied Stress," Phil. Mag., 87 159-76 (2007). https://doi.org/10.1080/14786430600953731
- K. Kitazono, E. Sato, and K. Kuribayashi, "Unified Interpretation of Internal Stress Superplasticity Models Based on Thermally- Activated Kinetics," Acta Mater., 47 1653-60 (1999). https://doi.org/10.1016/S1359-6454(98)00431-5
- C. Schuh and D. C. Dunand, "Non-isothermal Transformation-mismatch Plasticity: Modeling and Experiments on Ti-6Al-4V," Acta Mater., 49 199-210 (2001). https://doi.org/10.1016/S1359-6454(00)00318-9
- H. N. Han, K. J. Lee, and S.-J. Kim, "An Observation of Permanent Strain During Recrystallization and Growth of Steel Under Externally Applied Stress," Mater. Lett., 59 158-61 (2005). https://doi.org/10.1016/j.matlet.2004.07.030
- J.-H. Kang, D.-W. Suh, J.-Y. Cho, K. H. Oh, and H. -C. Lee, "Effect of External Stress on the Orientation Distribution of Ferrite," Scripta Mater., 48 91-5 (2003). https://doi.org/10.1016/S1359-6462(02)00352-4
- D.-W. Suh, S.-J. Kim, and H. N. Han, "Effect of External Stress During Transformation on Orientation Characteristics of Ferrite," CAMP-ISIJ, 18 1331-4 (2005).
- R. L. Coble, "Sintering Crystalline Solids. II. Experimental Test of Diffusion Models in Powder Compacts," J. Appl. Phys., 32 793-9 (1961). https://doi.org/10.1063/1.1736108
- P. Zwigl and D. C. Dunand, "A Non-linear Model for Internal Stress Superplasticity," Acta Mater., 45 5285-94 (1997). https://doi.org/10.1016/S1359-6454(97)00186-9
- H. N. Han and D.-W. Suh, "A Model for Transformation Plasticity During Bainite Transformation of Steel Under External Stress," Acta Mater., 51 4907-17 (2003). https://doi.org/10.1016/S1359-6454(03)00333-1
- D. P. Koistinen and R. E. Marburger, "A General Equation Prescribing the Extent of the Austenite-martensite Transformation in Pure Iron-carbon Alloys and Plain Carbon Steels," Acta Metall., 7 59-60 (1959). https://doi.org/10.1016/0001-6160(59)90170-1
- J. R. Patel and M. Cohen, "Criterion for the Action of Applied Stress in the Martensitic Transformation," Acta Metall., 1 531-8 (1953). https://doi.org/10.1016/0001-6160(53)90083-2
- D.-W. Suh, C.-S. Oh, H. N. Han, and S. -J. Kim, "Dilatometric Analysis of Austenite Decomposition Considering the Effect of Non-isotropic Volume Change," Acta Mater., 55 2659-69 (2007). https://doi.org/10.1016/j.actamat.2006.12.007
- T. A. Kop, J. Sietsma, and S. Van der Zwaag, "Dilatometric Analysis of Phase Transformation in Hypo-eutectoid Steels," J. Mater. Sci., 36 519-26 (2001). https://doi.org/10.1023/A:1004805402404
- R. A. Jaramillo, M. T. Lusk, and M. C. Mataya, "Dimensional Anisotropy During Phase Transformations in a Chemically Banded 5140 Steel. Part I: Experimental Investigation," Acta Mater., 52 851-8 (2004). https://doi.org/10.1016/j.actamat.2003.11.017
- R. A. Jaramillo and M. T. Lusk, "Dimensional Anisotropy During Phase Transformations in a Chemically Banded 5140 Steel. Part II: Modeling," Acta Mater., 52 859-67 (2004). https://doi.org/10.1016/j.actamat.2003.10.020
- D.-W. Suh, C.-S. Oh, H. N. Han, and S.-J. Kim, "Dilatometric Analysis of Phase Fraction During Austenite Decomposition into Banded Microstructure in Low-carbon Steel," Metall. Mater. Trans. A, 38 2963-73 (2007). https://doi.org/10.1007/s11661-007-9361-9
- S.-J. Park, B.-H. Hong, S. C. Baik, and K. H. Oh, "Finite Element Analysis of Hot Rolled Coil Cooling," ISIJ Int., 38 1262-9 (1998). https://doi.org/10.2355/isijinternational.38.1262
- A. Saboonchi and S. Hassanpour, "Heat Transfer Analysis of Hot-rolled Coils in Multi-stack Storing," J. Mater. Process. Technol., 182101-6 (2007). https://doi.org/10.1016/j.jmatprotec.2006.07.017
- H. N. Han, J. K. Lee, H. J. Kim, and Y. -S. Jin, "A model for Deformation, Temperature and Phase Transformation Behavior of Steels on Run-out Table in Hot Strip Mill," J. Mater. Process. Technol., 128 216-25 (2002). https://doi.org/10.1016/S0924-0136(02)00454-5
- C. M. Park, J. T. Choi, H. K. Moon, and G. J. Park, "Thermal Crown Analysis of the Roll in the Strip Casting Process," J. Mater. Process. Technol., 209 3714-23 (2009). https://doi.org/10.1016/j.jmatprotec.2008.08.029
- S. H. Lee, J.-Y. Kang, H. N. Han, K. H. Oh, H.-C. Lee, D.-W. Suh, and S.-J. Kim, "Variant Selection in Mechanically-induced Martensitic Transformation of Metastable Austenitic Steel," ISIJ Inter., 45 1217-9 (2005). https://doi.org/10.2355/isijinternational.45.1217
- Y.-G. Cho, J.-Y. Kim, P.-R. Cha, D.-W. Suh, J. K. Lee, and H. N. Han, "Analysis of Transformation Plasticity in Steel using a Finite Element Method Coupled with a Phase Field Model," (2011), to be published.