DOI QR코드

DOI QR Code

Dynamic CT Perfusion Imaging for the Detection of Crossed Cerebellar Diaschisis in Acute Ischemic Stroke

  • Jeon, Young-Wook (Department of Radiology, Wonju Christian Hospital, Yonsei University Wonju College of Medicine) ;
  • Kim, Seo-Hyun (Department of Neurology, Wonju Christian Hospital, Yonsei University Wonju College of Medicine) ;
  • Lee, Ji-Yong (Department of Neurology, Wonju Christian Hospital, Yonsei University Wonju College of Medicine) ;
  • Whang, Kum (Department of Neurosurgery, Wonju Christian Hospital, Yonsei University Wonju College of Medicine) ;
  • Kim, Myung-Soon (Department of Radiology, Wonju Christian Hospital, Yonsei University Wonju College of Medicine) ;
  • Kim, Young-Ju (Department of Radiology, Wonju Christian Hospital, Yonsei University Wonju College of Medicine) ;
  • Lee, Myeong-Sub (Department of Radiology, Wonju Christian Hospital, Yonsei University Wonju College of Medicine) ;
  • Brain Research Group, Brain Research Group (Brain Research Group)
  • Published : 2012.02.01

Abstract

Objective: Although the detection of crossed cerebellar diaschisis (CCD) by means of different imaging modalities is well described, little is known about its diagnosis by computed tomography perfusion (CTP) imaging. We investigated the detection rate of CCD by CTP imaging and the factors related to CCD on CTP images in patients with acute ischemic stroke. Materials and Methods: CT perfusion maps of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and time-to-peak (TTP) obtained from 81 consecutive patients affected by an acute ischemic stroke were retrospectively reviewed. Whole-brain perfusion maps were obtained with a multichannel CT scanner using the toggling-table technique. The criteria for CCD was a unilateral supratentorial ischemic lesion and an accompanying decrease in perfusion of the contralateral cerebellar hemisphere on the basis of CTP maps by visual inspection without a set threshold. Maps were quantitatively analyzed in CCD positive cases. Results: The criteria for CCD were fulfilled in 25 of the 81 cases (31%). Detection rates per CTP map were as follows: MTT (31%) > TTP (21%) > CBF (9%) > CBV (6%). Supratentorial ischemic volume, degree of perfusion reduction, and infratentorial asymmetry index correlated strongly (R, 0.555-0.870) and significantly (p < 0.05) with each other in CCD-positive cases. Conclusion: It is possible to detect CCD on all four of the CTP-based maps. Of these maps, MTT is most sensitive in detecting CCD. Our data indicate that CTP imaging is a valid tool for the diagnosis of CCD in patients affected by an acute hemispheric stroke.

Keywords

References

  1. Baron JC, Bousser MG, Comar D, Castaigne P. "Crossed cerebellar diaschisis" in human supratentorial brain infarction. Trans Am Neurol Assoc 1981;105:459-461
  2. Feeney DM, Baron JC. Diaschisis. Stroke 1986;17:817-830 https://doi.org/10.1161/01.STR.17.5.817
  3. Gold L, Lauritzen M. Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function. Proc Natl Acad Sci U S A 2002;99:7699-7704 https://doi.org/10.1073/pnas.112012499
  4. Chakravarty A. MR evaluation of crossed and uncrossed cerebral-cerebellar diaschisis. Acta Neurol Scand 2003;108:60-65 https://doi.org/10.1034/j.1600-0404.2003.00039.x
  5. Takasawa M, Watanabe M, Yamamoto S, Hoshi T, Sasaki T, Hashikawa K, et al. Prognostic value of subacute crossed cerebellar diaschisis: single-photon emission CT study in patients with middle cerebral artery territory infarct. AJNR Am J Neuroradiol 2002;23:189-193
  6. Sobesky J, Thiel A, Ghaemi M, Hilker RH, Rudolf J, Jacobs AH, et al. Crossed cerebellar diaschisis in acute human stroke: a PET study of serial changes and response to supratentorial reperfusion. J Cereb Blood Flow Metab 2005;25:1685-1691 https://doi.org/10.1038/sj.jcbfm.9600162
  7. Lin DD, Kleinman JT, Wityk RJ, Gottesman RF, Hillis AE, Lee AW, et al. Crossed cerebellar diaschisis in acute stroke detected by dynamic susceptibility contrast MR perfusion imaging. AJNR Am J Neuroradiol 2009;30:710-715 https://doi.org/10.3174/ajnr.A1435
  8. Yamada H, Koshimoto Y, Sadato N, Kawashima Y, Tanaka M, Tsuchida C, et al. Crossed cerebellar diaschisis: assessment with dynamic susceptibility contrast MR imaging. Radiology 1999;210:558-562 https://doi.org/10.1148/radiology.210.2.r99fe02558
  9. Wintermark M, Maeder P, Thiran JP, Schnyder P, Meuli R. Quantitative assessment of regional cerebral blood flows by perfusion CT studies at low injection rates: a critical review of the underlying theoretical models. Eur Radiol 2001;11:1220-1230 https://doi.org/10.1007/s003300000707
  10. Axel L. Tissue mean transit time from dynamic computed tomography by a simple deconvolution technique. Invest Radiol 1983;18:94-99 https://doi.org/10.1097/00004424-198301000-00018
  11. Furtado AD, Lau BC, Vittinghoff E, Dillon WP, Smith WS, Rigby T, et al. Optimal brain perfusion CT coverage in patients with acute middle cerebral artery stroke. AJNR Am J Neuroradiol 2010;31:691-695 https://doi.org/10.3174/ajnr.A1880
  12. Zilkha E, Ladurner G, Iliff LD, Du Boulay GH, Marshall J. Computer subtraction in regional cerebral blood-volume measurements using the EMI-Scanner. Br J Radiol 1976;49:330-334 https://doi.org/10.1259/0007-1285-49-580-330
  13. Wiesendanger M. Constantin von Monakow (1853-1930): a pioneer in interdisciplinary brain research and a humanist. C R Biol 2006;329:406-418 https://doi.org/10.1016/j.crvi.2006.03.011
  14. Garg G, Tripathi M, MM DS, Sharma R. Crossed cerebellar diaschisis demonstrated by (18)F- FDG-PET/CT. Hell J Nucl Med 2009;12:171-172
  15. Liu Y, Karonen JO, Nuutinen J, Vanninen E, Kuikka JT, Vanninen RL. Crossed cerebellar diaschisis in acute ischemic stroke: a study with serial SPECT and MRI. J Cereb Blood Flow Metab 2007;27:1724-1732 https://doi.org/10.1038/sj.jcbfm.9600467
  16. Kajimoto K, Oku N, Kimura Y, Kato H, Tanaka MR, Kanai Y, et al. Crossed cerebellar diaschisis: a positron emission tomography study with L-[methyl-11C]methionine and 2-deoxy-2-[18F]fluoro-D-glucose. Ann Nucl Med 2007;21:109-113 https://doi.org/10.1007/BF03033988
  17. Youn SW, Kim JH, Weon YC, Kim SH, Han MK, Bae HJ. Perfusion CT of the brain using 40-mm-wide detector and toggling table technique for initial imaging of acute stroke. AJR Am J Roentgenol 2008;191:W120-126 https://doi.org/10.2214/AJR.07.2519
  18. Lee IH, You JH, Lee JY, Whang K, Kim MS, Kim YJ, et al. Accuracy of the detection of infratentorial stroke lesions using perfusion CT: an experimenter-blinded study. Neuroradiology 2010;52:1095-1100 https://doi.org/10.1007/s00234-010-0689-2
  19. Yi CA, Na DG, Ryoo JW, Moon CH, Byun HS, Roh HG, et al. Multiphasic perfusion CT in acute middle cerebral artery ischemic stroke: prediction of final infarct volume and correlation with clinical outcome. Korean J Radiol 2002;3:163-170 https://doi.org/10.3348/kjr.2002.3.3.163
  20. Miura H, Nagata K, Hirata Y, Satoh Y, Watahiki Y, Hatazawa J. Evolution of crossed cerebellar diaschisis in middle cerebral artery infarction. J Neuroimaging 1994;4:91-96 https://doi.org/10.1111/jon19944291
  21. Yamauchi H, Fukuyama H, Kimura J. Hemodynamic and metabolic changes in crossed cerebellar hypoperfusion. Stroke 1992;23:855-860 https://doi.org/10.1161/01.STR.23.6.855
  22. Infeld B, Davis SM, Lichtenstein M, Mitchell PJ, Hopper JL. Crossed cerebellar diaschisis and brain recovery after stroke. Stroke 1995;26:90-95 https://doi.org/10.1161/01.STR.26.1.90
  23. Murayama K, Katada K, Nakane M, Toyama H, Anno H, Hayakawa M, et al. Whole-brain perfusion CT performed with a prototype 256-detector row CT system: initial experience. Radiology 2009;250:202-211 https://doi.org/10.1148/radiol.2501071809

Cited by

  1. A method for improving iodine contrast enhancement in abdominal computed tomography: experimental study in a pig model vol.23, pp.4, 2012, https://doi.org/10.1007/s00330-012-2668-y
  2. Apparent diffusion coefficient evaluation for secondary changes in the cerebellum of rats after middle cerebral artery occlusion vol.8, pp.31, 2012, https://doi.org/10.3969/j.issn.1673-5374.2013.31.007
  3. Vertebral Artery Hypoplasia : Frequency and Effect on Cerebellar Blood Flow Characteristics vol.45, pp.5, 2014, https://doi.org/10.1161/strokeaha.113.004188
  4. Imaging and Diseases of the Ascending and Descending Pathways vol.35, pp.5, 2012, https://doi.org/10.1053/j.sult.2014.06.006
  5. Whole-brain 320-detector row dynamic volume CT perfusion detected crossed cerebellar diaschisis after spontaneous intracerebral hemorrhage vol.57, pp.2, 2012, https://doi.org/10.1007/s00234-014-1456-6
  6. Crossed Cerebellar Diaschisis : Three Case Reports Imaging Using a Tri-Modality PET/CT–MR System vol.95, pp.2, 2016, https://doi.org/10.1097/md.0000000000002526
  7. Iterative reconstruction for CT perfusion with a prior-image induced hybrid nonlocal means regularization: Phantom studies : Hybrid nonlocal means regularization for CT perfusion reconstruction vol.43, pp.4, 2012, https://doi.org/10.1118/1.4943380
  8. Crossed cerebellar diaschisis in patients with acute middle cerebral artery infarction: Occurrence and perfusion characteristics vol.36, pp.4, 2012, https://doi.org/10.1177/0271678x15617953
  9. Detection of crossed cerebellar diaschisis in hyperacute ischemic stroke using arterial spin-labeled MR imaging vol.12, pp.3, 2017, https://doi.org/10.1371/journal.pone.0173971
  10. CT perfusion in predicting the morbidity and prognosis of hypoxic-ischemic encephalopathy after off-pump coronary artery bypass grafting vol.39, pp.6, 2012, https://doi.org/10.1080/01616412.2017.1315862
  11. Crossed cerebellar diaschisis in acute ischemic stroke: Impact on morphologic and functional outcome vol.37, pp.11, 2012, https://doi.org/10.1177/0271678x16686594
  12. PET Imaging of Crossed Cerebellar Diaschisis after Long-Term Cerebral Ischemia in Rats vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/2483078
  13. Pathological factors contributing to crossed cerebellar diaschisis in cerebral gliomas: a study combining perfusion, diffusion, and structural MR imaging vol.60, pp.6, 2012, https://doi.org/10.1007/s00234-018-2015-3
  14. Detection of Crossed Cerebellar Diaschisis by Intravoxel Incoherent Motion MR Imaging in Subacute Ischemic Stroke vol.28, pp.8, 2012, https://doi.org/10.1177/0963689719856290
  15. Characteristics of cerebral perfusion and diffusion associated with crossed cerebellar diaschisis after acute ischemic stroke vol.38, pp.2, 2012, https://doi.org/10.1007/s11604-019-00898-0
  16. Crossed cerebellar diaschisis: risk factors and prognostic value in focal cortical dysplasia by 18F-FDG PET/CT vol.35, pp.6, 2012, https://doi.org/10.1007/s12149-021-01613-8
  17. Characterizing Diaschisis-Related Thalamic Perfusion and Diffusion After Middle Cerebral Artery Infarction vol.52, pp.7, 2021, https://doi.org/10.1161/strokeaha.120.032464