DOI QR코드

DOI QR Code

CT Radiation Dose Optimization and Estimation: an Update for Radiologists

  • Goo, Hyun-Woo (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine)
  • Published : 2012.02.01

Abstract

In keeping with the increasing utilization of CT examinations, the greater concern about radiation hazards from examinations has been addressed. In this regard, CT radiation dose optimization has been given a great deal of attention by radiologists, referring physicians, technologists, and physicists. Dose-saving strategies are continuously evolving in terms of imaging techniques as well as dose management. Consequently, regular updates of this issue are necessary especially for radiologists who play a pivotal role in this activity. This review article will provide an update on how we can optimize CT dose in order to maximize the benefit-to-risk ratio of this clinically useful diagnostic imaging method.

Keywords

References

  1. Mahnken AH, Muhlenbruch G, Gunther RW, Wildberger JE. Cardiac CT: coronary arteries and beyond. Eur Radiol 2007;17:994-1008 https://doi.org/10.1007/s00330-006-0433-9
  2. Goo HW. State-of-the-art CT imaging techniques for congenital heart disease. Korean J Radiol 2010;11:4-18 https://doi.org/10.3348/kjr.2010.11.1.4
  3. Johnson TR, Krauss B, Sedlmair M, Grasruck M, Bruder H, Morhard D, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol 2007;17:1510-1517 https://doi.org/10.1007/s00330-006-0517-6
  4. Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med 2007;357:2277-2284 https://doi.org/10.1056/NEJMra072149
  5. Mettler FA Jr, Bhargavan M, Faulkner K, Gilley DB, Gray JE, Ibbott GS, et al. Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources--1950-2007. Radiology 2009;253:520-531 https://doi.org/10.1148/radiol.2532082010
  6. Hricak H, Brenner DJ, Adelstein SJ, Frush DP, Hall EJ, Howell RW, et al. Managing radiation use in medical imaging: a multifaceted challenge. Radiology 2011;258:889-905 https://doi.org/10.1148/radiol.10101157
  7. Assessments on the 2006 state of CT claims reported by the Korea Health Insurance Review and Assessment Service. Available from URL: http://biz.hira.or.kr/ICSFiles/afieldfile/2008/01/21/2006_CT.pdf (Accessed on November 3, 2011)
  8. Kalra MK, Maher MM, Toth TL, Hamberg LM, Blake MA, Shepard JA, et al. Strategies for CT radiation dose optimization. Radiology 2004;230:619-628 https://doi.org/10.1148/radiol.2303021726
  9. Goo HW. Pediatric CT: understanding of radiation dose and optimization of imaging techniques. J Korean Radiol Soc 2005;52:105
  10. Singh S, Kalra MK, Moore MA, Shailam R, Liu B, Toth TL, et al. Dose reduction and compliance with pediatric CT protocols adapted to patient size, clinical indication, and number of prior studies. Radiology 2009;252:200-208 https://doi.org/10.1148/radiol.2521081554
  11. Ketelsen D, Horger M, Buchgeister M, Fenchel M, Thomas C, Boehringer N, et al. Estimation of radiation exposure of 128-slice 4D-perfusion CT for the assessment of tumor vascularity. Korean J Radiol 2010;11:547-552 https://doi.org/10.3348/kjr.2010.11.5.547
  12. Park EA, Lee W, Kang JH, Yin YH, Chung JW, Park JH. The image quality and radiation dose of 100-kVp versus 120-kVp ECG-gated 16-slice CT coronary angiography. Korean J Radiol 2009;10:235-243 https://doi.org/10.3348/kjr.2009.10.3.235
  13. Yang DH, Goo HW. Pediatric 16-slice CT protocol: radiation dose and image quality. J Korean Radiol Soc 2008;59:333-347 https://doi.org/10.3348/jkrs.2008.59.5.333
  14. Tatsugami F, Husmann L, Herzog BA, Burkhard N, Valenta I, Gaemperli O, et al. Evaluation of a body mass index-adapted protocol for low-dose 64-MDCT coronary angiography with prospective ECG triggering. AJR Am J Roentgenol 2009;192:635-638 https://doi.org/10.2214/AJR.08.1390
  15. Starck G, Lonn L, Cederblad A, Forssell-Aronsson E, Sjostrom L, Alpsten M. A method to obtain the same levels of CT image noise for patients of various sizes, to minimize radiation dose. Br J Radiol 2002;75:140-150 https://doi.org/10.1259/bjr.75.890.750140
  16. Boone JM, Geraghty EM, Seibert JA, Wootton-Gorges SL. Dose reduction in pediatric CT: a rational approach. Radiology 2003;228:352-360 https://doi.org/10.1148/radiol.2282020471
  17. Kalra MK, Maher MM, Prasad SR, Hayat MS, Blake MA, Varghese J, et al. Correlation of patient weight and cross-sectional dimensions with subjective image quality at standard dose abdominal CT. Korean J Radiol 2003;4:234-238 https://doi.org/10.3348/kjr.2003.4.4.234
  18. Jung YY, Goo HW. The optimal parameter for radiation dose in pediatric low dose abdominal CT: cross-sectional dimensions versus body weight. J Korean Radiol Soc 2008;58:169-175 https://doi.org/10.3348/jkrs.2008.58.2.169
  19. Nyman U, Ahl TL, Kristiansson M, Nilsson L, Wettemark S. Patient-circumference-adapted dose regulation in body computed tomography. A practical and flexible formula. Acta Radiol 2005;46:396-406 https://doi.org/10.1080/02841850510021193
  20. Reid J, Gamberoni J, Dong F, Davros W. Optimization of kVp and mAs for pediatric low-dose simulated abdominal CT: is it best to base parameter selection on object circumference? AJR Am J Roentgenol 2010;195:1015-1020 https://doi.org/10.2214/AJR.09.3862
  21. Menke J. Comparison of different body size parameters for individual dose adaptation in body CT of adults. Radiology 2005;236:565-571 https://doi.org/10.1148/radiol.2362041327
  22. Hur G, Hong SW, Kim SY, Kim YH, Hwang YJ, Lee WR, et al. Uniform image quality achieved by tube current modulation using SD of attenuation in coronary CT angiography. AJR Am J Roentgenol 2007;189:188-196 https://doi.org/10.2214/AJR.06.1201
  23. Qi W, Li J, Du X. Method for automatic tube current selection for obtaining a consistent image quality and dose optimization in a cardiac multidetector CT. Korean J Radiol 2009;10:568-574 https://doi.org/10.3348/kjr.2009.10.6.568
  24. Irie T, Inoue H. Individual modulation of the tube current-seconds to achieve similar levels of image noise in contrast-enhanced abdominal CT. AJR Am J Roentgenol 2005;184:1514-1518 https://doi.org/10.2214/ajr.184.5.01841514
  25. Goo HW. Individualized volume CT dose index determined by cross-sectional area and mean density of the body to achieve uniform image noise of contrast-enhanced pediatric chest CT obtained at variable kV levels and with combined tube current modulation. Pediatr Radiol 2011;41:839-847 https://doi.org/10.1007/s00247-011-2121-4
  26. Greess H, Wolf H, Baum U, Lell M, Pirkl M, Kalender W, et al. Dose reduction in computed tomography by attenuation-based on-line modulation of tube current: evaluation of six anatomical regions. Eur Radiol 2000;10:391-394 https://doi.org/10.1007/s003300050062
  27. Goo HW, Suh DS. Tube current reduction in pediatric non-ECG-gated heart CT by combined tube current modulation. Pediatr Radiol 2006;36:344-351 https://doi.org/10.1007/s00247-005-0105-y
  28. Rizzo S, Kalra M, Schmidt B, Dalal T, Suess C, Flohr T, et al. Comparison of angular and combined automatic tube current modulation techniques with constant tube current CT of the abdomen and pelvis. AJR Am J Roentgenol 2006;186:673-679 https://doi.org/10.2214/AJR.04.1513
  29. Lee CH, Goo JM, Ye HJ, Ye SJ, Park CM, Chun EJ, et al. Radiation dose modulation techniques in the multidetector CT era: from basics to practice. Radiographics 2008;28:1451-1459 https://doi.org/10.1148/rg.285075075
  30. Goo HW, Suh DS. The influences of tube voltage and scan direction on combined tube current modulation: a phantom study. Pediatr Radiol 2006;36:833-840 https://doi.org/10.1007/s00247-006-0177-3
  31. Israel GM, Herlihy S, Rubinowitz AN, Cornfeld D, Brink J. Does a combination of dose modulation with fast gantry rotation time limit CT image quality? AJR Am J Roentgenol 2008;191:140-144 https://doi.org/10.2214/AJR.07.3019
  32. Prakash P, Kalra MK, Gilman MD, Shepard JA, Digumarthy SR. Is weight-based adjustment of automatic exposure control necessary for the reduction of chest CT radiation dose? Korean J Radiol 2010;11:46-53 https://doi.org/10.3348/kjr.2010.11.1.46
  33. Goo HW. Cardiac MDCT in children: CT technology overview and interpretation. Radiol Clin North Am 2011;49:997-1010 https://doi.org/10.1016/j.rcl.2011.06.001
  34. Yu L, Bruesewitz MR, Thomas KB, Fletcher JG, Kofler JM, McCollough CH. Optimal tube potential for radiation dose reduction in pediatric CT: principles, clinical implementations, and pitfalls. Radiographics 2011;31:835-848 https://doi.org/10.1148/rg.313105079
  35. Kalender WA, Buchenau S, Deak P, Kellermeier M, Langner O, van Straten M, et al. Technical approaches to the optimisation of CT. Phys Med 2008;24:71-79 https://doi.org/10.1016/j.ejmp.2008.01.012
  36. Funama Y, Awai K, Miyazaki O, Nakayama Y, Goto T, Omi Y, et al. Improvement of low-contrast detectability in low-dose hepatic multidetector computed tomography using a novel adaptive filter: evaluation with a computer-simulated liver including tumors. Invest Radiol 2006;41:1-7 https://doi.org/10.1097/01.rli.0000188026.20172.5d
  37. von Falck C, Hartung A, Berndzen F, King B, Galanski M, Shin HO. Optimization of low-contrast detectability in thin-collimated modern multidetector CT using an interactive sliding-thin-slab averaging algorithm. Invest Radiol 2008;43:229-235 https://doi.org/10.1097/RLI.0b013e3181614f2d
  38. Bankier AA, Tack D. Dose reduction strategies for thoracic multidetector computed tomography: background, current issues, and recommendations. J Thorac Imaging 2010;25:278-288 https://doi.org/10.1097/RTI.0b013e3181eebc49
  39. Cohnen M, Fischer H, Hamacher J, Lins E, Kotter R, Modder U. CT of the head by use of reduced current and kilovoltage: relationship between image quality and dose reduction. AJNR Am J Neuroradiol 2000;21:1654-1660
  40. Mullins ME, Lev MH, Bove P, O'Reilly CE, Saini S, Rhea JT, et al. Comparison of image quality between conventional and low-dose nonenhanced head CT. AJNR Am J Neuroradiol 2004;25:533-538
  41. Kalender WA, Deak P, Kellermeier M, van Straten M, Vollmar SV. Application- and patient size-dependent optimization of x-ray spectra for CT. Med Phys 2009;36:993-1007 https://doi.org/10.1118/1.3075901
  42. Yu L, Li H, Fletcher JG, McCollough CH. Automatic selection of tube potential for radiation dose reduction in CT: a general strategy. Med Phys 2010;37:234-243 https://doi.org/10.1118/1.3264614
  43. van der Molen AJ, Geleijns J. Overranging in multisection CT: quantification and relative contribution to dose--comparison of four 16-section CT scanners. Radiology 2007;242:208-216 https://doi.org/10.1148/radiol.2421051350
  44. Tzedakis A, Damilakis J, Perisinakis K, Karantanas A, Karabekios S, Gourtsoyiannis N. Influence of z overscanning on normalized effective doses calculated for pediatric patients undergoing multidetector CT examinations. Med Phys 2007;34:1163-1175 https://doi.org/10.1118/1.2710331
  45. Deak PD, Langner O, Lell M, Kalender WA. Effects of adaptive section collimation on patient radiation dose in multisection spiral CT. Radiology 2009;252:140-147 https://doi.org/10.1148/radiol.2522081845
  46. Alkadhi H, Leschka S. Radiation dose of cardiac computed tomography - what has been achieved and what needs to be done. Eur Radiol 2011;21:505-509 https://doi.org/10.1007/s00330-010-1984-3
  47. Jakobs TF, Becker CR, Ohnesorge B, Flohr T, Suess C, Schoepf UJ, et al. Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 2002;12:1081-1086 https://doi.org/10.1007/s00330-001-1278-x
  48. McCollough CH, Primak AN, Saba O, Bruder H, Stierstorfer K, Raupach R, et al. Dose performance of a 64-channel dual-source CT scanner. Radiology 2007;243:775-784 https://doi.org/10.1148/radiol.2433061165
  49. Stolzmann P, Leschka S, Scheffel H, Krauss T, Desbiolles L, Plass A, et al. Dual-source CT in step-and-shoot mode: noninvasive coronary angiography with low radiation dose. Radiology 2008;249:71-80 https://doi.org/10.1148/radiol.2483072032
  50. Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG. Technical principles of dual source CT. Eur J Radiol 2008;68:362-368 https://doi.org/10.1016/j.ejrad.2008.08.013
  51. Lell MM, May M, Deak P, Alibek S, Kuefner M, Kuettner A, et al. High-pitch spiral computed tomography: effect on image quality and radiation dose in pediatric chest computed tomography. Invest Radiol 2011;46:116-123 https://doi.org/10.1097/RLI.0b013e3181f33b1d
  52. Geyer LL, Scherr M, Körner M, Wirth S, Deak P, Reiser MF, et al. Imaging of acute pulmonary embolism using a dual energy CT system with rapid kVp switching: initial results. Eur J Radiol 2011 [Epub ahead of print]
  53. Boll DT, Merkle EM, Paulson EK, Mirza RA, Fleiter TR. Calcified vascular plaque specimens: assessment with cardiac dual-energy multidetector CT in anthropomorphically moving heart phantom. Radiology 2008;249:119-126 https://doi.org/10.1148/radiol.2483071576
  54. Chae EJ, Seo JB, Goo HW, Kim N, Song KS, Lee SD, et al. Xenon ventilation CT with a dual-energy technique of dual-source CT: initial experience. Radiology 2008;248:615-624 https://doi.org/10.1148/radiol.2482071482
  55. Goo HW, Yang DH, Hong SJ, Yu J, Kim BJ, Seo JB, et al. Xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans: correlation of xenon and CT density values with pulmonary function test results. Pediatr Radiol 2010;40:1490-1497 https://doi.org/10.1007/s00247-010-1645-3
  56. Goo HW, Yang DH, Kim N, Park SI, Kim DK, Kim EA. Collateral ventilation to congenital hyperlucent lung lesions assessed on xenon-enhanced dynamic dual-energy CT: an initial experience. Korean J Radiol 2011;12:25-33 https://doi.org/10.3348/kjr.2011.12.1.25
  57. Fink C, Johnson TR, Michaely HJ, Morhard D, Becker C, Reiser M, et al. Dual-energy CT angiography of the lung in patients with suspected pulmonary embolism: initial results. Rofo 2008;180:879-883
  58. Goo HW. Initial experience of dual-energy lung perfusion CT using a dual-source CT system in children. Pediatr Radiol 2010;40:1536-1544 https://doi.org/10.1007/s00247-010-1759-7
  59. Fletcher JG, Takahashi N, Hartman R, Guimaraes L, Huprich JE, Hough DM, et al. Dual-energy and dual-source CT: is there a role in the abdomen and pelvis? Radiol Clin North Am 2009;47:41-57 https://doi.org/10.1016/j.rcl.2008.10.003
  60. Primak AN, Giraldo JC, Eusemann CD, Schmidt B, Kantor B, Fletcher JG, et al. Dual-source dual-energy CT with additional tin filtration: Dose and image quality evaluation in phantoms and in vivo. AJR Am J Roentgenol 2010;195:1164-1174 https://doi.org/10.2214/AJR.09.3956
  61. Chae EJ, Song JW, Seo JB, Krauss B, Jang YM, Song KS. Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology 2008;249:671-681 https://doi.org/10.1148/radiol.2492071956
  62. Kalra MK, Wittram C, Maher MM, Sharma A, Avinash GB, Karau K, et al. Can noise reduction filters improve low-radiationdose chest CT images? Pilot study. Radiology 2003;228:257-264 https://doi.org/10.1148/radiol.2281020606
  63. Mieville FA, Gudinchet F, Rizzo E, Ou P, Brunelle F, Bochud FO, et al. Paediatric cardiac CT examinations: impact of the iterative reconstruction method ASIR on image quality--preliminary findings. Pediatr Radiol 2011;41:1154-1164 https://doi.org/10.1007/s00247-011-2146-8
  64. Winklehner A, Karlo C, Puippe G, Schmidt B, Flohr T, Goetti R. Raw data-based iterative reconstruction in body CTA: evaluation of radiation dose saving potential. Eur Radiol 2011;21:2521-2526 https://doi.org/10.1007/s00330-011-2227-y
  65. Kalra MK, Dang P, Singh S, Saini S, Shepard JA. In-plane shielding for CT: effect of off-centering, automatic exposure control and shield-to-surface distance. Korean J Radiol 2009;10:156-163 https://doi.org/10.3348/kjr.2009.10.2.156
  66. Coursey C, Frush DP, Yoshizumi T, Toncheva G, Nguyen G, Greenberg SB. Pediatric chest MDCT using tube current modulation: effect on radiation dose with breast shielding. AJR Am J Roentgenol 2008;190:W54-61 https://doi.org/10.2214/AJR.07.2017
  67. Duan X, Wang J, Christner JA, Leng S, Grant KL, McCollough CH. Dose reduction to anterior surfaces with organ-based tube-current modulation: evaluation of performance in a phantom study. AJR Am J Roentgenol 2011;197:689-695 https://doi.org/10.2214/AJR.10.6061
  68. Watanabe H, Kanematsu M, Miyoshi T, Goshima S, Kondo H, Moriyama N, et al. Improvement of image quality of low radiation dose abdominal CT by increasing contrast enhancement. AJR Am J Roentgenol 2010;195:986-992 https://doi.org/10.2214/AJR.10.4456
  69. Deak PD, Smal Y, Kalender WA. Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 2010;257:158-166 https://doi.org/10.1148/radiol.10100047
  70. Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation. National Research Council. Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. Washington, DC: National Academies Press, 2006
  71. European Commission. European guidelines for quality criteria for computed tomography. EUR 16262 EN. Luxembourg: European Commission, 2000
  72. Shrimpton PC. Assessment of patient dose in CT: appendix C-European guidelines for multislice computed tomography. European Commission project MSCT: CT safety & efficacy-a broad perspective. 2004. Available at: http//www.msct.ed/PDF_FILES/Appendix%20paediatric%20CT%20Dosimetry.pdf (Accessed on November 3, 2011)
  73. Tsai HY, Tung CJ, Yu CC, Tyan YS. Survey of computed tomography scanners in Taiwan: dose descriptors, dose guidance levels, and effective doses. Med Phys 2007;34:1234-1243 https://doi.org/10.1118/1.2712412
  74. American College of Radiology (ACR) practice guidelines for diagnostic reference levels in medical X-ray imaging. 2008. Available at: http://www.acr.org/SecondaryMainMenuCategories/quality_safety/RadSafety/RadiationSafety/guideline-diagnostic-reference.aspx (Accessed on November 3, 2011)
  75. Korea Institute for Accreditation of Medical Image. National survey of radiation dose of computed tomography in Korea. 2009
  76. Bauhs JA, Vrieze TJ, Primak AN, Bruesewitz MR, McCollough CH. CT dosimetry: comparison of measurement techniques and devices. Radiographics 2008;28:245-253 https://doi.org/10.1148/rg.281075024

Cited by

  1. Dual-source coronary CT angiography in patients with high heart rates using a prospectively ECG-triggered axial mode at end-systole vol.28, pp.2, 2012, https://doi.org/10.1007/s10554-012-0142-1
  2. National Survey of Radiation Doses of Pediatric Chest Radiography in Korea: Analysis of the Factors Affecting Radiation Doses vol.13, pp.5, 2012, https://doi.org/10.3348/kjr.2012.13.5.610
  3. 흉부 CT촬영에서 저선량 프로토콜의 선량과 화질: 표준선량 프로토콜과 비교 vol.37, pp.2, 2012, https://doi.org/10.14407/jrp.2012.37.2.084
  4. Iterative reconstruction of dual-source coronary CT angiography: assessment of image quality and radiation dose vol.28, pp.7, 2012, https://doi.org/10.1007/s10554-011-0004-2
  5. Frequency and Collective Dose of Medical Procedures in Kenya vol.105, pp.6, 2012, https://doi.org/10.1097/hp.0b013e31829c35f4
  6. CT Venography for Deep Vein Thrombosis Using a Low Tube Voltage (100 kVp) Setting Could Increase Venous Enhancement and Reduce the Amount of Administered Iodine vol.14, pp.2, 2013, https://doi.org/10.3348/kjr.2013.14.2.183
  7. Bronchopulmonary Dysplasia: New High Resolution Computed Tomography Scoring System and Correlation between the High Resolution Computed Tomography Score and Clinical Severity vol.14, pp.2, 2012, https://doi.org/10.3348/kjr.2013.14.2.350
  8. Radiation Dose Reduction via Sinogram Affirmed Iterative Reconstruction and Automatic Tube Voltage Modulation (CARE kV) in Abdominal CT vol.14, pp.6, 2013, https://doi.org/10.3348/kjr.2013.14.6.886
  9. Left ventricle volume measured by cardiac CT in an infant with a small left ventricle: a new and accurate method in determining uni- or biventricular repair vol.43, pp.2, 2013, https://doi.org/10.1007/s00247-012-2464-5
  10. Dual-energy lung perfusion and ventilation CT in children vol.43, pp.3, 2012, https://doi.org/10.1007/s00247-012-2465-4
  11. Coronary artery abnormalities in Kawasaki disease: comparison between CT and MR coronary angiography vol.54, pp.2, 2013, https://doi.org/10.1258/ar.2012.120484
  12. Image quality of Adaptive Iterative Dose Reduction 3D of coronary CT angiography of 640-slice CT: comparison with filtered back-projection vol.29, pp.3, 2012, https://doi.org/10.1007/s10554-012-0113-6
  13. Role of plain radiography and CT angiography in the evaluation of obstructed total anomalous pulmonary venous connection vol.43, pp.7, 2013, https://doi.org/10.1007/s00247-012-2609-6
  14. Patient dose and image quality in low-dose abdominal CT: a comparison between iterative reconstruction and filtered back projection vol.54, pp.5, 2012, https://doi.org/10.1177/0284185113476019
  15. Free-breathing cine CT for the diagnosis of tracheomalacia in young children vol.43, pp.8, 2012, https://doi.org/10.1007/s00247-013-2637-x
  16. Current trends in cardiac CT in children vol.54, pp.9, 2012, https://doi.org/10.1258/ar.2012.120452
  17. Correlation between Bone Mineral Density Measured by Dual-Energy X-Ray Absorptiometry and Hounsfield Units Measured by Diagnostic CT in Lumbar Spine vol.54, pp.5, 2012, https://doi.org/10.3340/jkns.2013.54.5.384
  18. Multidetector Computed Tomography for the Assessment of Adnexal Mass: Is Unenhanced CT Scan Necessary? vol.15, pp.1, 2012, https://doi.org/10.3348/kjr.2014.15.1.72
  19. Adaptive Iterative Dose Reduction Algorithm in CT: Effect on Image Quality Compared with Filtered Back Projection in Body Phantoms of Different Sizes vol.15, pp.2, 2014, https://doi.org/10.3348/kjr.2014.15.2.195
  20. Effects of Dual-Energy CT with Non-Linear Blending on Abdominal CT Angiography vol.15, pp.4, 2014, https://doi.org/10.3348/kjr.2014.15.4.430
  21. Atresia of the bilateral pulmonary veins: a rare and dismal anomaly identified on cardiac CT vol.44, pp.8, 2014, https://doi.org/10.1007/s00247-014-2900-9
  22. Cardiac fusion and complex congenital cardiac defects in thoracopagus twins: diagnostic value of cardiac CT vol.44, pp.9, 2012, https://doi.org/10.1007/s00247-014-2931-2
  23. Quantification of the Fat Fraction in the Liver Using Dual-Energy Computed Tomography and Multimaterial Decomposition vol.38, pp.6, 2014, https://doi.org/10.1097/rct.0000000000000142
  24. 진폐요양환자의 흉부 CT촬영에 사용된 선량 - 국내외 진단 참고 준위와 비교 - vol.39, pp.4, 2012, https://doi.org/10.14407/jrp.2014.39.4.206
  25. Image quality of CT angiography with model-based iterative reconstruction in young children with congenital heart disease: comparison with filtered back projection and adaptive statistical iterative r vol.31, pp.1, 2015, https://doi.org/10.1007/s10554-014-0570-1
  26. Semiautomatic three-dimensional CT ventricular volumetry in patients with congenital heart disease: agreement between two methods with different user interaction vol.31, pp.2, 2012, https://doi.org/10.1007/s10554-015-0751-6
  27. Effect of radiation dose reduction on image quality in adult head CT with noise‐suppressing reconstruction system with a 256 slice MDCT vol.16, pp.3, 2012, https://doi.org/10.1120/jacmp.v16i3.5360
  28. The cancer risks of medical radiation exposure associated mainly with CT scans vol.38, pp.4, 2012, https://doi.org/10.14442/generalist.38.369
  29. Hybrid and model-based iterative reconstruction techniques for pediatric CT. vol.204, pp.3, 2015, https://doi.org/10.2214/ajr.14.12590
  30. Pediatric Chest CT: Wide-Volume and Helical Scan Modes in 320-MDCT vol.205, pp.6, 2015, https://doi.org/10.2214/ajr.14.13941
  31. Attenuation-Based Automatic Kilovoltage Selection and Sinogram-Affirmed Iterative Reconstruction: Effects on Radiation Exposure and Image Quality of Portal-Phase Liver CT vol.16, pp.1, 2015, https://doi.org/10.3348/kjr.2015.16.1.69
  32. Coronary Artery Imaging in Children vol.16, pp.2, 2012, https://doi.org/10.3348/kjr.2015.16.2.239
  33. Determining and Managing Fetal Radiation Dose from Diagnostic Radiology Procedures in Turkey vol.16, pp.6, 2015, https://doi.org/10.3348/kjr.2015.16.6.1276
  34. Methods of CT Dose Estimation in Whole-Body 18F-FDG PET/CT vol.56, pp.5, 2015, https://doi.org/10.2967/jnumed.114.153718
  35. Dose reduction in chest CT examination vol.165, pp.1, 2015, https://doi.org/10.1093/rpd/ncv123
  36. Age- and gender-specific estimates of cumulative CT dose over 5 years using real radiation dose tracking data in children vol.45, pp.9, 2015, https://doi.org/10.1007/s00247-015-3331-y
  37. 두부 CT에서 차폐기법과 새로운 관전류변조기법에 따른 눈의 선량과 화질평가 vol.9, pp.5, 2015, https://doi.org/10.7742/jksr.2015.9.5.279
  38. Anomalous origin of the left coronary artery from the pulmonary artery in children: diagnostic use of multidetector computed tomography vol.46, pp.10, 2012, https://doi.org/10.1007/s00247-016-3635-6
  39. Survey of Thoracic CT Protocols and Technical Parameters in Korean Hospitals: Changes before and after Establishment of Thoracic CT Guideline by Korean Society of Thoracic Radiology in 2008 vol.31, pp.1, 2012, https://doi.org/10.3346/jkms.2016.31.s1.s32
  40. The Role of Whole-Body Computed Tomography in Severely Injured Patients Retrospective Single Center Cohort Study vol.6, pp.1, 2012, https://doi.org/10.17479/jacs.2016.6.1.18
  41. VISIBILITY OF STRUCTURES OF RELEVANCE FOR PATIENTS WITH CYSTIC FIBROSIS IN CHEST TOMOSYNTHESIS: INFLUENCE OF ANATOMICAL LOCATION AND OBSERVER EXPERIENCE vol.169, pp.1, 2012, https://doi.org/10.1093/rpd/ncv556
  42. Incremental value of SPECT/CT in detection of Meckel’s diverticulum in a 10-year-old child vol.5, pp.1, 2012, https://doi.org/10.1186/s40064-016-2928-4
  43. Evaluation of commissural malalignment of aortic-pulmonary sinus using cardiac CT for arterial switch operation: comparison with transthoracic echocardiography vol.47, pp.5, 2017, https://doi.org/10.1007/s00247-017-3786-0
  44. Asian consortium on radiation dose of pediatric cardiac CT (ASCI-REDCARD) vol.47, pp.8, 2012, https://doi.org/10.1007/s00247-017-3847-4
  45. Myocardial delayed-enhancement CT: initial experience in children and young adults vol.47, pp.11, 2012, https://doi.org/10.1007/s00247-017-3889-7
  46. Serial changes in anatomy and ventricular function on dual-source cardiac computed tomography after the Norwood procedure for hypoplastic left heart syndrome vol.47, pp.13, 2012, https://doi.org/10.1007/s00247-017-3972-0
  47. Non-destructive two-photon excited fluorescence imaging identifies early nodules in calcific aortic-valve disease vol.1, pp.11, 2012, https://doi.org/10.1038/s41551-017-0152-3
  48. Dual-Energy CT: New Horizon in Medical Imaging vol.18, pp.4, 2012, https://doi.org/10.3348/kjr.2017.18.4.555
  49. Combined Electrocardiography- and Respiratory-Triggered CT of the Lung to Reduce Respiratory Misregistration Artifacts between Imaging Slabs in Free-Breathing Children: Initial Experience vol.18, pp.5, 2017, https://doi.org/10.3348/kjr.2017.18.5.860
  50. Automated femoral landmark extraction for optimal prosthesis placement in total hip arthroplasty vol.33, pp.8, 2017, https://doi.org/10.1002/cnm.2844
  51. Evaluation of different low-dose multidetector CT and cone beam CT protocols in maxillary sinus imaging: part I-anin vitrostudy vol.46, pp.6, 2012, https://doi.org/10.1259/dmfr.20160323
  52. Combined prospectively electrocardiography- and respiratory-triggered sequential cardiac computed tomography in free-breathing children: success rate and image quality vol.48, pp.7, 2018, https://doi.org/10.1007/s00247-018-4114-z
  53. Computed tomography pulmonary vascular volume ratio in children and young adults with congenital heart disease: the effect of cardiac phase vol.48, pp.7, 2018, https://doi.org/10.1007/s00247-018-4120-1
  54. Dose monitoring in pediatric and young adult head and cervical spine CT studies at two emergency duty departments vol.25, pp.2, 2018, https://doi.org/10.1007/s10140-017-1571-x
  55. Coronary artery anomalies on preoperative cardiac CT in children with tetralogy of Fallot or Fallot type of double outlet right ventricle: comparison with surgical findings vol.34, pp.12, 2018, https://doi.org/10.1007/s10554-018-1422-1
  56. Pediatric appendicitis with appendicolith often presents with prolonged abdominal pain and a high risk of perforation vol.14, pp.2, 2012, https://doi.org/10.1007/s12519-018-0128-8
  57. LOW-DOSE CT PROTOCOL OPTIMIZATION FOR THE ASSESSMENT OF ACUTE APPENDICITIS: THE OPTICAP PHANTOM STUDY vol.178, pp.1, 2012, https://doi.org/10.1093/rpd/ncx070
  58. Detection and Characterization of Solid Pulmonary Nodules at Digital Chest Tomosynthesis: Data from a Cohort of the Pilot Swedish Cardiopulmonary Bioimage Study vol.287, pp.3, 2018, https://doi.org/10.1148/radiol.2018171481
  59. Single-Acquisition Triple-Bolus Dual-Energy CT Protocol for Comprehensive Evaluation of Renal Masses: A Single-Center Randomized Noninferiority Trial vol.211, pp.1, 2018, https://doi.org/10.2214/ajr.17.18786
  60. Quantitative Image Quality and Histogram-Based Evaluations of an Iterative Reconstruction Algorithm at Low-to-Ultralow Radiation Dose Levels: A Phantom Study in Chest CT vol.19, pp.1, 2012, https://doi.org/10.3348/kjr.2018.19.1.119
  61. Is It Better to Enter a Volume CT Dose Index Value before or after Scan Range Adjustment for Radiation Dose Optimization of Pediatric Cardiothoracic CT with Tube Current Modulation? vol.19, pp.4, 2012, https://doi.org/10.3348/kjr.2018.19.4.692
  62. Image Quality and Radiation Dose of High-Pitch Dual-Source Spiral Cardiothoracic Computed Tomography in Young Children with Congenital Heart Disease: Comparison of Non-Electrocardiography Synchronizat vol.19, pp.6, 2018, https://doi.org/10.3348/kjr.2018.19.6.1031
  63. Computed Tomography-Based Ventricular Volumes and Morphometric Parameters for Deciding the Treatment Strategy in Children with a Hypoplastic Left Ventricle: Preliminary Results vol.19, pp.6, 2012, https://doi.org/10.3348/kjr.2018.19.6.1042
  64. Low-Tube-Voltage CT Urography Using Low-Concentration-Iodine Contrast Media and Iterative Reconstruction: A Multi-Institutional Randomized Controlled Trial for Comparison with Conventional CT Urograph vol.19, pp.6, 2018, https://doi.org/10.3348/kjr.2018.19.6.1119
  65. Effect of arm position, presence of medical devices, and off-centering during acquisition of scout image on automatic tube voltage selection and current modulation in pediatric chest CT vol.13, pp.4, 2012, https://doi.org/10.1371/journal.pone.0195807
  66. Use of Iterative Reconstruction and a Small Contrast Volume in Rabbit Kidney CT: Comparison with Conventional Protocol vol.79, pp.2, 2018, https://doi.org/10.3348/jksr.2018.79.2.77
  67. Establishment of institutional diagnostic reference level for CT imaging associated with multiple anatomical regions vol.1248, pp.None, 2019, https://doi.org/10.1088/1742-6596/1248/1/012067
  68. Semiautomatic Three-Dimensional Threshold-Based Cardiac Computed Tomography Ventricular Volumetry in Repaired Tetralogy of Fallot: Comparison with Cardiac Magnetic Resonance Imaging vol.20, pp.1, 2019, https://doi.org/10.3348/kjr.2018.0237
  69. Four-Dimensional Thoracic CT in Free-Breathing Children vol.20, pp.1, 2019, https://doi.org/10.3348/kjr.2018.0325
  70. User-Friendly Vendor-Specific Guideline for Pediatric Cardiothoracic Computed Tomography Provided by the Asian Society of Cardiovascular Imaging Congenital Heart Disease Study Group: Part 1. Imaging T vol.20, pp.2, 2012, https://doi.org/10.3348/kjr.2018.0571
  71. Technical feasibility of semiautomatic three-dimensional threshold-based cardiac computed tomography quantification of left ventricular mass vol.49, pp.3, 2012, https://doi.org/10.1007/s00247-018-4303-9
  72. Radiation Safety in Emergency Medicine: Balancing the Benefits and Risks vol.20, pp.3, 2019, https://doi.org/10.3348/kjr.2018.0416
  73. Diagnosis of Pulmonary Arterial Hypertension in Children by Using Cardiac Computed Tomography vol.20, pp.6, 2012, https://doi.org/10.3348/kjr.2018.0673
  74. Changes in Right Ventricular Volume, Volume Load, and Function Measured with Cardiac Computed Tomography over the Entire Time Course of Tetralogy of Fallot vol.20, pp.6, 2012, https://doi.org/10.3348/kjr.2018.0891
  75. Volumetric Severity Assessment of Ebstein Anomaly Using Three-Dimensional Cardiac CT: A Feasibility Study vol.3, pp.3, 2012, https://doi.org/10.22468/cvia.2019.00052
  76. CareDose 4D 사용 시 동일한 스캔조건에서 조직기반설정을 다르게 적용함에 따른 선량 비교: 성인과 소아팬텀 연구 vol.42, pp.4, 2012, https://doi.org/10.17946/jrst.2019.42.4.271
  77. Low-Dose CT With the Adaptive Statistical Iterative Reconstruction V Technique in Abdominal Organ Injury: Comparison With Routine-Dose CT With Filtered Back Projection vol.213, pp.3, 2019, https://doi.org/10.2214/ajr.18.20827
  78. Computed Tomography Pulmonary Vascular Volume Ratio Can Be Used to Evaluate the Effectiveness of Pulmonary Angioplasty in Peripheral Pulmonary Artery Stenosis vol.20, pp.10, 2019, https://doi.org/10.3348/kjr.2019.0286
  79. Using 2-mSv Appendiceal CT in Usual Practice for Adolescents and Young Adults: Willingness Survey of 579 Radiologists, Emergency Physicians, and Surgeons from 20 Hospitals vol.21, pp.1, 2012, https://doi.org/10.3348/kjr.2019.0010
  80. Advanced Medical Use of Three-Dimensional Imaging in Congenital Heart Disease: Augmented Reality, Mixed Reality, Virtual Reality, and Three-Dimensional Printing vol.21, pp.2, 2012, https://doi.org/10.3348/kjr.2019.0625
  81. Pattern Analysis of Left Ventricular Remodeling Using Cardiac Computed Tomography in Children with Congenital Heart Disease: Preliminary Results vol.21, pp.6, 2020, https://doi.org/10.3348/kjr.2019.0689
  82. Hydrocephalus: Ventricular Volume Quantification Using Three-Dimensional Brain CT Data and Semiautomatic Three-Dimensional Threshold-Based Segmentation Approach vol.21, pp.None, 2012, https://doi.org/10.3348/kjr.2020.0671
  83. Comparison of submillisievert CT with standard-dose CT for urolithiasis vol.61, pp.8, 2012, https://doi.org/10.1177/0284185119890088
  84. 자동노출제어장치 평가를 위한 3D 프린팅 기반의 자체 제작 팬텀의 유용성 평가 vol.41, pp.4, 2020, https://doi.org/10.9718/jber.2020.41.4.147
  85. Dual-source abdominopelvic computed tomography: Comparison of image quality and radiation dose of 80 kVp and 80/150 kVp with tin filter vol.15, pp.9, 2012, https://doi.org/10.1371/journal.pone.0231431
  86. Comparison of quantitative image quality of cardiac computed tomography between raw-data-based and model-based iterative reconstruction algorithms with an emphasis on image sharpness vol.50, pp.11, 2012, https://doi.org/10.1007/s00247-020-04741-x
  87. Noise Level and Similarity Analysis for Computed Tomographic Thoracic Image with Fast Non-Local Means Denoising Algorithm vol.10, pp.21, 2012, https://doi.org/10.3390/app10217455
  88. Knowledge of CT exposure parameters among Norwegian student radiographers vol.20, pp.None, 2012, https://doi.org/10.1186/s12909-020-02233-y
  89. Intermodality agreement between TTE and low kVp ECG-gated MDCTA in diagnosis of complex CHD in pediatrics vol.51, pp.1, 2012, https://doi.org/10.1186/s43055-020-00217-y
  90. Review of the Asian Consortium on Radiation Dose of Pediatric Cardiac CT (ASCI-REDCARD) and Recommendations for a New Edition vol.5, pp.4, 2012, https://doi.org/10.22468/cvia.2021.00269
  91. Right Ventricular Mass Quantification Using Cardiac CT and a Semiautomatic Three-Dimensional Hybrid Segmentation Approach: A Pilot Study vol.22, pp.6, 2021, https://doi.org/10.3348/kjr.2020.0787
  92. Characteristics of Lumbar Bone Density in Middle-Aged and Elderly Subjects: A Correlation Study between T-Scores Determined by the DEXA Scan and Hounsfield Units from CT vol.2021, pp.None, 2012, https://doi.org/10.1155/2021/5443457
  93. Ultra-low-dose chest CT imaging of COVID-19 patients using a deep residual neural network vol.31, pp.3, 2012, https://doi.org/10.1007/s00330-020-07225-6
  94. Surveillance of small, solid pulmonary nodules at digital chest tomosynthesis: data from a cohort of the pilot Swedish CArdioPulmonary bioImage Study (SCAPIS) vol.62, pp.3, 2021, https://doi.org/10.1177/0284185120923106
  95. Basic Physical Principles and Clinical Applications of Computed Tomography vol.32, pp.1, 2012, https://doi.org/10.14316/pmp.2021.32.1.1
  96. Dose Estimation for the European Epidemiological Study on Pediatric Computed Tomography (EPI-CT) vol.196, pp.1, 2021, https://doi.org/10.1667/rade-20-00231.1
  97. ESTIMATION OF PATIENT RADIATION DOSES FROM MULTI-DETECTOR COMPUTED TOMOGRAPHY ANGIOGRAPHY PROCEDURES IN TANZANIA vol.197, pp.2, 2021, https://doi.org/10.1093/rpd/ncab159