DOI QR코드

DOI QR Code

Radiofrequency Ablation of Benign Thyroid Nodules and Recurrent Thyroid Cancers: Consensus Statement and Recommendations

  • Na, Dong-Gyu (Department of Radiology, Human Medical Imaging & Intervention Center) ;
  • Lee, Jeong-Hyun (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Jung, So-Lyung (Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Kim, Ji-Hoon (Department of Radiology, Seoul National University College of Medicine) ;
  • Sung, Jin-Yong (Department of Radiology and Thyroid Center, Daerim St. Mary's Hospital) ;
  • Shin, Jung-Hee (Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kim, Eun-Kyung (Department of Radiology, Yonsei University College of Medicine) ;
  • Lee, Joon-Hyung (Department of Radiology, Dong-A University Medical Center) ;
  • Kim, Dong-Wook (Department of Radiology, Busan Paik Hospital, Inje University College of Medicine) ;
  • Park, Jeong-Seon (Department of Radiology, Hanyang University College of Medicine, Hanyang University Hospital) ;
  • Kim, Kyu-Sun (Department of Radiology and Thyroid Center, Daerim St. Mary's Hospital) ;
  • Baek, Seon-Mi (Department of Radiology, Haeundae Healings Hospital) ;
  • Lee, Young-Hen (Department of Radiology, Ansan Hospital, Korea University Medical College) ;
  • Chong, Se-Min (Department of Radiology and Thyroid Center, Chung-Ang University Hospital, Chung-Ang University College of Medicine) ;
  • Sim, Jung-Suk (Department of Radiology, Mothers' Clinic) ;
  • Huh, Jung-Yin (Department of Radiology, CHA University College of Medicine, Gangnam CHA Hospital) ;
  • Bae, Jae-Ik (Department of Radiology, Ajou University School of Medicine) ;
  • Kim, Kyung-Tae (Department of Radiology, UNMEC Clinic) ;
  • Han, Song-Yee (Department of Radiology, Dr. Han's Breast Clinic) ;
  • Bae, Min-Young (Department of Radiology, Myung Jindan Health Care Center) ;
  • Kim, Yoon-Suk (Department of Radiology, Thyroid Clinic, Philip Medical Center) ;
  • Baek, Jung-Hwan (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Korean Society of Thyroid Radiology, Korean Society of Thyroid Radiology (Korean Society of Thyroid Radiology (KSThR)) ;
  • Korean Society of Radiology, Korean Society of Radiology (Korean Society of Radiology)
  • 발행 : 2012.04.01

초록

Thermal ablation using radiofrequency is a new, minimally invasive modality employed as an alternative to surgery in patients with benign thyroid nodules and recurrent thyroid cancers. The Task Force Committee of the Korean Society of Thyroid Radiology has developed recommendations for the optimal use of radiofrequency ablation for thyroid nodules. These recommendations are based on a comprehensive analysis of the current literature, the results of multicenter studies, and expert consensus.

키워드

참고문헌

  1. Deandrea M, Limone P, Basso E, Mormile A, Ragazzoni F, Gamarra E, et al. US-guided percutaneous radiofrequency thermal ablation for the treatment of solid benign hyperfunctioning or compressive thyroid nodules. Ultrasound Med Biol 2008;34:784-791 https://doi.org/10.1016/j.ultrasmedbio.2007.10.018
  2. Jeong WK, Baek JH, Rhim H, Kim YS, Kwak MS, Jeong HJ, et al. Radiofrequency ablation of benign thyroid nodules: safety and imaging follow-up in 236 patients. Eur Radiol 2008;18:1244-1250 https://doi.org/10.1007/s00330-008-0880-6
  3. Kim YS, Rhim H, Tae K, Park DW, Kim ST. Radiofrequency ablation of benign cold thyroid nodules: initial clinical experience. Thyroid 2006;16:361-367 https://doi.org/10.1089/thy.2006.16.361
  4. Spiezia S, Garberoglio R, Milone F, Ramundo V, Caiazzo C, Assanti AP, et al. Thyroid nodules and related symptoms are stably controlled two years after radiofrequency thermal ablation. Thyroid 2009;19:219-225 https://doi.org/10.1089/thy.2008.0202
  5. Baek JH, Jeong HJ, Kim YS, Kwak MS, Lee D. Radiofrequency ablation for an autonomously functioning thyroid nodule. Thyroid 2008;18:675-676 https://doi.org/10.1089/thy.2007.0274
  6. Baek JH, Kim YS, Lee D, Huh JY, Lee JH. Benign predominantly solid thyroid nodules: prospective study of efficacy of sonographically guided radiofrequency ablation versus control condition. AJR Am J Roentgenol 2010;194:1137-1142 https://doi.org/10.2214/AJR.09.3372
  7. Lee JH, Kim YS, Lee D, Choi H, Yoo H, Baek JH. Radiofrequency ablation (RFA) of benign thyroid nodules in patients with incompletely resolved clinical problems after ethanol ablation (EA). World J Surg 2010;34:1488-1493 https://doi.org/10.1007/s00268-010-0565-6
  8. Sung JY, Kim YS, Choi H, Lee JH, Baek JH. Optimum firstline treatment technique for benign cystic thyroid nodules: ethanol ablation or radiofrequency ablation? AJR Am J Roentgenol 2011;196:W210-W214 https://doi.org/10.2214/AJR.10.5172
  9. Baek JH, Na DG, Lee JH, Jung SL, Sung JY, Sim J, et al.Korean society of thyroid radiology recommendations for radiofrequency ablation of thyroid nodules. 2009 Available at: http://thyroidimaging.kr/
  10. Huh JY, Baek JH, Choi H, Kim JK, Lee JH. Efficacy of additional treatment session of radiofrequency ablation for symptomatic benign thyroid nodules: A prospective randomized study. Radiology 2012 In press
  11. Monchik JM, Donatini G, Iannuccilli J, Dupuy DE. Radiofrequency ablation and percutaneous ethanol injection treatment for recurrent local and distant well-differentiated thyroid carcinoma. Ann Surg 2006;244:296-304 https://doi.org/10.1097/01.sla.0000217685.85467.2d
  12. Baek JH, Moon WJ, Kim YS, Lee JH, Lee D. Radiofrequency ablation for the treatment of autonomously functioning thyroid nodules. World J Surg 2009;33:1971-1977 https://doi.org/10.1007/s00268-009-0130-3
  13. Park KW, Shin JH, Han BK, Ko EY, Chung JH. Inoperable symptomatic recurrent thyroid cancers: preliminary result of radiofrequency ablation. Ann Surg Oncol 2011;18:2564-2568 https://doi.org/10.1245/s10434-011-1619-1
  14. Spiezia S, Garberoglio R, Di Somma C, Deandrea M, Basso E, Limone PP, et al. Efficacy and safety of radiofrequency thermal ablation in the treatment of thyroid nodules with pressure symptoms in elderly patients. J Am Geriatr Soc 2007;55:1478- 1479 https://doi.org/10.1111/j.1532-5415.2007.01306.x
  15. Sung JY, Baek JH, Kim YS, Jeong HJ, Kwak MS, Lee D, et al. One-step ethanol ablation of viscous cystic thyroid nodules. AJR Am J Roentgenol 2008;191:1730-1733 https://doi.org/10.2214/AJR.08.1113
  16. Baek JH, Kim YS, Sung JY, Choi H, Lee JH. Locoregional control of metastatic well-differentiated thyroid cancer by ultrasound-guided radiofrequency ablation. AJR Am J Roentgenol 2011;197:W331-W336 https://doi.org/10.2214/AJR.10.5345
  17. Dupuy DE, Monchik JM, Decrea C, Pisharodi L. Radiofrequency ablation of regional recurrence from well-differentiated thyroid malignancy. Surgery 2001;130:971-977 https://doi.org/10.1067/msy.2001.118708
  18. Papini E, Guglielmi R, Gharib H, Misischi I, Graziano F, Chianelli M, et al. Ultrasound-guided laser ablation of incidental papillary thyroid microcarcinoma: a potential therapeutic approach in patients at surgical risk. Thyroid 2011;21:917-920 https://doi.org/10.1089/thy.2010.0447
  19. Livraghi T, Solbiati L, Meloni MF, Gazelle GS, Halpern EF, Goldberg SN. Treatment of focal liver tumors with percutaneous radio-frequency ablation: complications encountered in a multicenter study. Radiology 2003;226:441- 451 https://doi.org/10.1148/radiol.2262012198
  20. Rhim H, Dodd GD 3rd, Chintapalli KN, Wood BJ, Dupuy DE, Hvizda JL, et al. Radiofrequency thermal ablation of abdominal tumors: lessons learned from complications. Radiographics 2004;24:41-52 https://doi.org/10.1148/rg.241025144
  21. Rhim H, Yoon KH, Lee JM, Cho Y, Cho JS, Kim SH, et al. Major complications after radio-frequency thermal ablation of hepatic tumors: spectrum of imaging findings. Radiographics 2003;23:123-134; discussion 134-136 https://doi.org/10.1148/rg.231025054
  22. Tong NY, Ru HJ, Ling HY, Cheung YC, Meng LW, Chung PC. Extracardiac radiofrequency ablation interferes with pacemaker function but does not damage the device. Anesthesiology 2004;100:1041 https://doi.org/10.1097/00000542-200404000-00053
  23. Nemcek AA. Complications of radiofrequency ablation of neoplasms. Semin Intervent Radiol 2006;23:177-187 https://doi.org/10.1055/s-2006-941448
  24. Jang SW, Baek JH, Kim JK, Sung JY, Choi H, Lim HK, et al. How to manage the patients with unsatisfactory results after ethanol ablation for thyroid nodules: Role of radiofrequency ablation. Eur J Radiol 2011 [Epub ahead of print]
  25. Gharib H, Papini E, Paschke R, Duick DS, Valcavi R, Hegedüs L, et al. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and EuropeanThyroid Association Medical Guidelines for Clinical Practice for the Diagnosis and Management of Thyroid Nodules. Endocr Pract 2010;16 Suppl 1:1-43
  26. Dossing H, Bennedbaek FN, Hegedus L. Ultrasound-guided interstitial laser photocoagulation of an autonomous thyroid nodule: the introduction of a novel alternative. Thyroid 2003;13:885-888 https://doi.org/10.1089/105072503322401104
  27. Fassi J, Lambertini R, Farias P, Blejman O, Rosa Diez G, Algranati S, et al. Treatment of uremic hyperparathyroidism with percutaneous ethanol injection. Nephron Clin Pract 2005;101:c53-c57 https://doi.org/10.1159/000086222
  28. Guglielmi R, Pacella CM, Bianchini A, Bizzarri G, Rinaldi R, Graziano FM, et al. Percutaneous ethanol injection treatment in benign thyroid lesions: role and efficacy. Thyroid 2004;14:125-131 https://doi.org/10.1089/105072504322880364
  29. American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19:1167-1214 https://doi.org/10.1089/thy.2009.0110
  30. Bennedbaek FN, Hegedüs L. Treatment of recurrent thyroid cysts with ethanol: a randomized double-blind controlled trial. J Clin Endocrinol Metab 2003;88:5773-5777 https://doi.org/10.1210/jc.2003-031000
  31. Kim DW, Rho MH, Kim HJ, Kwon JS, Sung YS, Lee SW. Percutaneous ethanol injection for benign cystic thyroid nodules: is aspiration of ethanol-mixed fluid advantageous? AJNR Am J Neuroradiol 2005;26:2122-2127
  32. Kwak JY, Koo H, Youk JH, Kim MJ, Moon HJ, Son EJ, et al. Value of US correlation of a thyroid nodule with initially benign cytologic results. Radiology 2010;254:292-300 https://doi.org/10.1148/radiol.2541090460
  33. Oertel YC, Miyahara-Felipe L, Mendoza MG, Yu K. Value of repeated fine needle aspirations of the thyroid: an analysis of over ten thousand FNAs. Thyroid 2007;17:1061-1066 https://doi.org/10.1089/thy.2007.0159
  34. Moon WJ, Baek JH, Jung SL, Kim DW, Kim EK, Kim JY, et al. Ultrasonography and the ultrasound-based management of thyroid nodules: consensus statement and recommendations. Korean J Radiol 2011;12:1-14 https://doi.org/10.3348/kjr.2011.12.1.1
  35. Moon WJ, Jung SL, Lee JH, Na DG, Baek JH, Lee YH, et al. Benign and malignant thyroid nodules: US differentiation-- multicenter retrospective study. Radiology 2008;247:762-770 https://doi.org/10.1148/radiol.2473070944
  36. Jung SL, Jung CK, Kim SH, Kang BJ, Ahn KJ, Kim BS, et al. Histopathologic findings related to the indeterminate or inadequate results of fine-needle aspiration biopsy and correlation with ultrasonographic findings in papillary thyroid carcinomas. Korean J Radiol 2010;11:141-148 https://doi.org/10.3348/kjr.2010.11.2.141
  37. Kwak JY, Han KH, Yoon JH, Moon HJ, Son EJ, Park SH, et al.Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology 2011;260:892-899 https://doi.org/10.1148/radiol.11110206
  38. Lee YH, Kim DW, In HS, Park JS, Kim SH, Eom JW, et al. Differentiation between benign and malignant solid thyroid nodules using an US classification system. Korean J Radiol 2011;12:559-567 https://doi.org/10.3348/kjr.2011.12.5.559
  39. Algin O, Algin E, Gokalp G, Ocakog˘lu G, Erdog˘an C, Saraydaroglu O, et al. Role of duplex power Doppler ultrasound in differentiation between malignant and benign thyroid nodules. Korean J Radiol 2010;11:594-602 https://doi.org/10.3348/kjr.2010.11.6.594
  40. Kim SH, Park CS, Jung SL, Kang BJ, Kim JY, Choi JJ, et al. Observer variability and the performance between faculties and residents: US criteria for benign and malignant thyroid nodules. Korean J Radiol 2010;11:149-155 https://doi.org/10.3348/kjr.2010.11.2.149
  41. Baek JH, Lee JH, Valcavi R, Pacella CM, Rhim H, Na DG. Thermal ablation for benign thyroid nodules: radiofrequency and laser. Korean J Radiol 2011;12:525-540 https://doi.org/10.3348/kjr.2011.12.5.525
  42. Valcavi R, Riganti F, Bertani A, Formisano D, Pacella CM. Percutaneous laser ablation of cold benign thyroid nodules: a 3-year follow-up study in 122 patients. Thyroid 2010;20:1253- 1261 https://doi.org/10.1089/thy.2010.0189
  43. Burch HB, Shakir F, Fitzsimmons TR, Jaques DP, Shriver CD. Diagnosis and management of the autonomously functioning thyroid nodule: the Walter Reed Army Medical Center experience, 1975-1996. Thyroid 1998;8:871-880 https://doi.org/10.1089/thy.1998.8.871
  44. Kim SH, Kim BS, Jung SL, Lee JW, Yang PS, Kang BJ, et al. Ultrasonographic findings of medullary thyroid carcinoma: a comparison with papillary thyroid carcinoma. Korean J Radiol 2009;10:101-105 https://doi.org/10.3348/kjr.2009.10.2.101
  45. Monzani F, Caraccio N, Goletti O, Lippolis PV, Casolaro A, Del Guerra P, et al. Five-year follow-up of percutaneous ethanol injection for the treatment of hyperfunctioning thyroid nodules: a study of 117 patients. Clin Endocrinol (Oxf) 1997;46:9-15 https://doi.org/10.1046/j.1365-2265.1997.d01-1752.x
  46. Jeon SJ, Kim E, Park JS, Son KR, Baek JH, Kim YS, et al. Diagnostic benefit of thyroglobulin measurement in fineneedle aspiration for diagnosing metastatic cervical lymph nodes from papillary thyroid cancer: correlations with US features. Korean J Radiol 2009;10:106-111 https://doi.org/10.3348/kjr.2009.10.2.106
  47. Heilo A, Sigstad E, Fagerlid KH, Haskjold OI, Groholt KK, Berner A, et al. Efficacy of ultrasound-guided percutaneous ethanol injection treatment in patients with a limited number of metastatic cervical lymph nodes from papillary thyroid carcinoma. J Clin Endocrinol Metab 2011;96:2750-2755 https://doi.org/10.1210/jc.2010-2952
  48. Kim MJ, Kim EK, Kim BM, Kwak JY, Lee EJ, Park CS, et al. Thyroglobulin measurement in fine-needle aspirate washouts: the criteria for neck node dissection for patients with thyroid cancer. Clin Endocrinol (Oxf) 2009;70:145-151 https://doi.org/10.1111/j.1365-2265.2008.03297.x
  49. Boi F, Baghino G, Atzeni F, Lai ML, Faa G, Mariotti S. The diagnostic value for differentiated thyroid carcinoma metastases of thyroglobulin (Tg) measurement in washout fluid from fine-needle aspiration biopsy of neck lymph nodes is maintained in the presence of circulating anti-Tg antibodies. J Clin Endocrinol Metab 2006;91:1364-1369 https://doi.org/10.1210/jc.2005-1705
  50. Baloch ZW, Barroeta JE, Walsh J, Gupta PK, Livolsi VA, Langer JE, et al. Utility of Thyroglobulin measurement in fine-needle aspiration biopsy specimens of lymph nodes in the diagnosis of recurrent thyroid carcinoma. Cytojournal 2008;5:1 https://doi.org/10.1186/1742-6413-5-1
  51. Kwok A, Faigel DO. Management of anticoagulation before and after gastrointestinal endoscopy. Am J Gastroenterol 2009;104:3085-3097; quiz 3098 https://doi.org/10.1038/ajg.2009.469
  52. Ha EJ, Baek JH, Lee JH. The efficacy and complications of radiofrequency ablation of thyroid nodules. Curr Opin Endocrinol Diabetes Obes 2011;18:310-314 https://doi.org/10.1097/MED.0b013e32834a9168
  53. Baek JH, Lee JH, Sung JY, Bae JI, Kim KT, Sim J, et al. Complications encountered in the treatment of benign thyroid nodules with US-guided radiofrequency ablation: a multicenter study. Radiology 2012;262:335-342 https://doi.org/10.1148/radiol.11110416
  54. Wallace LB, Berber E. Percutaneous and video-assisted ablation of endocrine tumors: liver, adrenal, and thyroid. Surg Laparosc Endosc Percutan Tech 2011;21:255-259 https://doi.org/10.1097/SLE.0b013e3182266f52
  55. Dossing H, Bennedbaek FN, Bonnema SJ, Grupe P, Hegedüs L. Randomized prospective study comparing a single radioiodine dose and a single laser therapy session in autonomously functioning thyroid nodules. Eur J Endocrinol 2007;157:95- 100 https://doi.org/10.1530/EJE-07-0094
  56. Dossing H, Bennedbaek FN, Hegedus L. Effect of ultrasoundguided interstitial laser photocoagulation on benign solitary solid cold thyroid nodules - a randomised study. Eur J Endocrinol 2005;152:341-345 https://doi.org/10.1530/eje.1.01865
  57. Dossing H, Bennedbaek FN, Hegedus L. Beneficial effect of combined aspiration and interstitial laser therapy in patients with benign cystic thyroid nodules: a pilot study. Br J Radiol 2006;79:943-947 https://doi.org/10.1259/bjr/40698061
  58. Dossing H, Bennedbaek FN, Hegedus L. Long-term outcome following interstitial laser photocoagulation of benign cold thyroid nodules. Eur J Endocrinol 2011;165:123-128 https://doi.org/10.1530/EJE-11-0220
  59. Dossing H, Bennedbaek FN, Hegedüs L. Effect of ultrasoundguided interstitial laser photocoagulation on benign solitary solid cold thyroid nodules: one versus three treatments. Thyroid 2006;16:763-768 https://doi.org/10.1089/thy.2006.16.763
  60. Dossing H, Bennedbaek FN, Karstrup S, Hegedüs L. Benign solitary solid cold thyroid nodules: US-guided interstitial laser photocoagulation--initial experience. Radiology 2002;225:53- 57 https://doi.org/10.1148/radiol.2251011042
  61. Pacella CM, Bizzarri G, Guglielmi R, Anelli V, Bianchini A, Crescenzi A, et al. Thyroid tissue: US-guided percutaneous interstitial laser ablation-a feasibility study. Radiology 2000;217:673-677 https://doi.org/10.1148/radiology.217.3.r00dc09673
  62. Papini E, Guglielmi R, Bizzarri G, Pacella CM. Ultrasoundguided laser thermal ablation for treatment of benign thyroid nodules. Endocr Pract 2004;10:276-283 https://doi.org/10.4158/EP.10.3.276
  63. Spiezia S, Vitale G, Di Somma C, Pio Assanti A, Ciccarelli A, Lombardi G, et al. Ultrasound-guided laser thermal ablation in the treatment of autonomous hyperfunctioning thyroid nodules and compressive nontoxic nodular goiter. Thyroid 2003;13:941-947 https://doi.org/10.1089/105072503322511346
  64. Hegedus L. Therapy: a new nonsurgical therapy option for benign thyroid nodules? Nat Rev Endocrinol 2009;5:476-478 https://doi.org/10.1038/nrendo.2009.152
  65. Burke DR, Lewis CA, Cardella JF, Citron SJ, Drooz AT, Haskal ZJ, et al. Quality improvement guidelines for percutaneous transhepatic cholangiography and biliary drainage. J Vasc Interv Radiol 2003;14:S243-S246
  66. Lewis CA, Allen TE, Burke DR, Cardella JF, Citron SJ, Cole PE, et al. Quality improvement guidelines for central venous access. The Standards of Practice Committee of the Society of Cardiovascular & Interventional Radiology. J Vasc Interv Radiol 1997;8:475-479 https://doi.org/10.1016/S1051-0443(97)70592-X
  67. Park JK, Jeong SY, Lee JH, Lim GC, Chang JW. Variations in the course of the cervical vagus nerve on thyroid ultrasonography. AJNR Am J Neuroradiol 2011;32:1178-1181 https://doi.org/10.3174/ajnr.A2476
  68. Ha EJ, Baek JH, Lee JH, Kim JK, Shong YK. Clinical significance of vagus nerve variation in radiofrequency ablation of thyroid nodules. Eur Radiol 2011;21:2151-2157 https://doi.org/10.1007/s00330-011-2167-6
  69. Gibson A. Bilateral Abnormal Relationship of the Vagus Nerve in its Cervical Portion. J Anat Physiol 1915;49:389-392
  70. Giovagnorio F, Martinoli C. Sonography of the cervical vagus nerve: normal appearance and abnormal findings. AJR Am J Roentgenol 2001;176:745-749 https://doi.org/10.2214/ajr.176.3.1760745
  71. Shin JH, Jung SL, Baek JH, Kim JH. Rupture of benign thyroid tumors after radio-frequency ablation. AJNR Am J Neuroradiol 2011;32:2165-2169 https://doi.org/10.3174/ajnr.A2661
  72. Choi JW, Kwak SH, Yoo SM, Song IS, Lee HY, Lee JB, et al. Ultrasound-guided radiofrequency ablation of thyroid gland: a preliminary study in dogs. J Korean Radiol Soc 2005;52:333- 341 https://doi.org/10.3348/jkrs.2005.52.5.333
  73. Mulier S, Mulier P, Ni Y, Miao Y, Dupas B, Marchal G, et al. Complications of radiofrequency coagulation of liver tumours. Br J Surg 2002;89:1206-1222 https://doi.org/10.1046/j.1365-2168.2002.02168.x

피인용 문헌

  1. Radiofrequency Ablation of Thyroid Nodules: Basic Principles and Clinical Application vol.2012, pp.None, 2012, https://doi.org/10.1155/2012/919650
  2. Radiofrequency Ablation of Benign Thyroid Nodules Does Not Affect Thyroid Function in Patients with Previous Lobectomy vol.23, pp.3, 2012, https://doi.org/10.1089/thy.2012.0171
  3. Single-Session Treatment of Benign Cystic Thyroid Nodules with Ethanol versus Radiofrequency Ablation: A Prospective Randomized Study vol.269, pp.1, 2013, https://doi.org/10.1148/radiol.13122134
  4. Use of Radiofrequency Ablation in Benign Thyroid Nodules: A Literature Review and Updates vol.2013, pp.None, 2012, https://doi.org/10.1155/2013/428363
  5. Combination Therapy of Temporary Tracheal Stenting and Radiofrequency Ablation for Multinodular Thyroid Goiter with Airway Compression vol.14, pp.5, 2012, https://doi.org/10.3348/kjr.2013.14.5.805
  6. Radiofrequency and ethanol ablation for the treatment of recurrent thyroid cancers: current status and challenges vol.25, pp.1, 2013, https://doi.org/10.1097/cco.0b013e32835a583d
  7. Radiofrequency Ablation in Nodular Thyroid Diseases vol.21, pp.2, 2013, https://doi.org/10.1016/j.jmu.2013.04.006
  8. A short review of basic head and neck interventional procedures in a general radiology department vol.13, pp.4, 2012, https://doi.org/10.1102/1470-7330.2013.0043
  9. Radiofrequency Ablation Compared to Surgery for the Treatment of Benign Thyroid Nodules vol.2014, pp.None, 2012, https://doi.org/10.1155/2014/934595
  10. Advances in nonsurgical treatment of benign thyroid nodules vol.10, pp.8, 2012, https://doi.org/10.2217/fon.14.59
  11. Combination Therapy Consisting of Ethanol and Radiofrequency Ablation for Predominantly Cystic Thyroid Nodules vol.35, pp.3, 2012, https://doi.org/10.3174/ajnr.a3701
  12. Radiofrequency Ablation to Treat Loco-Regional Recurrence of Well-Differentiated Thyroid Carcinoma vol.15, pp.6, 2012, https://doi.org/10.3348/kjr.2014.15.6.817
  13. Moving-Shot versus Fixed Electrode Techniques for Radiofrequency Ablation: Comparison in an Ex-Vivo Bovine Liver Tissue Model vol.15, pp.6, 2014, https://doi.org/10.3348/kjr.2014.15.6.836
  14. Percutaneous thermal microwave ablation of thyroid nodules : Preparation, feasibility, efficiency vol.53, pp.4, 2012, https://doi.org/10.3413/nukmed-0631-13-10
  15. Usefulness of Two-Stage Ethanol Ablation in the Treatment of Benign Predominantly Cystic Thyroid Nodules vol.20, pp.6, 2012, https://doi.org/10.4158/ep13458.or
  16. Radiofrequency Ablation of Benign Thyroid Nodule vol.57, pp.3, 2012, https://doi.org/10.3342/kjorl-hns.2014.57.3.151
  17. Intralesional saline injection for effective ultrasound-guided aspiration of benign viscous cystic thyroid nodules vol.33, pp.2, 2012, https://doi.org/10.14366/usg.13027
  18. Microwave ablation of benign thyroid nodules vol.10, pp.6, 2014, https://doi.org/10.2217/fon.13.260
  19. Protection of skin with subcutaneous administration of 5% dextrose in water during superficial radiofrequency ablation in a rabbit model vol.30, pp.4, 2012, https://doi.org/10.3109/02656736.2014.914250
  20. Vascular and interventional radiology radiofrequency ablation of benign thyroid nodules and recurrent thyroid cancers: literature review vol.119, pp.7, 2012, https://doi.org/10.1007/s11547-014-0411-2
  21. Feasibility study for the introduction of a new treatment method for benign thyroid nodules in a teaching and research hospital vol.20, pp.5, 2012, https://doi.org/10.1111/jep.12177
  22. Non-surgical, Image-guided Management of Benign Thyroid Nodules vol.7, pp.2, 2012, https://doi.org/10.11106/cet.2014.7.2.111
  23. Radiofrequency Ablation of Benign Symptomatic Thyroid Nodules: Prospective Safety and Efficacy Study vol.39, pp.4, 2012, https://doi.org/10.1007/s00268-014-2896-1
  24. Efficacy and safety of radiofrequency ablation for treating locoregional recurrence from papillary thyroid cancer vol.25, pp.1, 2012, https://doi.org/10.1007/s00330-014-3405-5
  25. Management of Recurrent/Persistent Nodal Disease in Patients with Differentiated Thyroid Cancer: A Critical Review of the Risks and Benefits of Surgical Intervention Versus Active Surveillance vol.25, pp.1, 2012, https://doi.org/10.1089/thy.2014.0098
  26. Radiofrequency Ablation for Autonomously Functioning Thyroid Nodules: A Multicenter Study vol.25, pp.1, 2015, https://doi.org/10.1089/thy.2014.0100
  27. Surgical and Pathological Changes after Radiofrequency Ablation of Thyroid Nodules vol.2015, pp.None, 2012, https://doi.org/10.1155/2015/576576
  28. Laser Thermal Ablation of Thyroid Benign Nodules vol.6, pp.4, 2012, https://doi.org/10.15171/jlms.2015.10
  29. Radiofrequency versus Ethanol Ablation for Treating Predominantly Cystic Thyroid Nodules: A Randomized Clinical Trial vol.16, pp.6, 2015, https://doi.org/10.3348/kjr.2015.16.6.1332
  30. Percutaneous microwave ablation of benign thyroid nodules : Functional imaging in comparison to nodular volume reduction at a 3-month follow-up vol.54, pp.1, 2015, https://doi.org/10.3413/nukmed-0678-14-06
  31. Treatment of Benign Thyroid Nodules: Comparison of Surgery with Radiofrequency Ablation vol.36, pp.7, 2012, https://doi.org/10.3174/ajnr.a4276
  32. Ultrasonography-Based Thyroidal and Perithyroidal Anatomy and Its Clinical Significance vol.16, pp.4, 2012, https://doi.org/10.3348/kjr.2015.16.4.749
  33. Predicting the Size of Benign Thyroid Nodules and Analysis of Associated Factors That Affect Nodule Size vol.51, pp.2, 2015, https://doi.org/10.4068/cmj.2015.51.2.97
  34. Reply: vol.36, pp.9, 2015, https://doi.org/10.3174/ajnr.a4479
  35. Ultrasound Features of Middle Cervical Sympathetic Ganglion vol.31, pp.10, 2015, https://doi.org/10.1097/ajp.0000000000000184
  36. Single-session radiofrequency ablation on benign thyroid nodules: a prospective single center study : Radiofrequency ablation on thyroid vol.401, pp.3, 2012, https://doi.org/10.1007/s00423-016-1408-1
  37. Radiofrequency ablation for benign thyroid nodules vol.39, pp.9, 2016, https://doi.org/10.1007/s40618-016-0469-x
  38. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nod vol.26, pp.1, 2012, https://doi.org/10.1089/thy.2015.0020
  39. Full-Thickness Skin Burn Caused by Radiofrequency Ablation of a Benign Thyroid Nodule vol.26, pp.1, 2012, https://doi.org/10.1089/thy.2015.0453
  40. Efficacy and Safety of Radiofrequency and Ethanol Ablation for Treating Locally Recurrent Thyroid Cancer: A Systematic Review and Meta-Analysis vol.26, pp.3, 2012, https://doi.org/10.1089/thy.2015.0545
  41. Ultrasonography Diagnosis and Imaging-Based Management of Thyroid Nodules: Revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations vol.17, pp.3, 2012, https://doi.org/10.3348/kjr.2016.17.3.370
  42. Quality of life in patients treated with radiofrequency ablation for thyroid nodules vol.4, pp.1, 2012, https://doi.org/10.7243/2053-3640-4-1
  43. REPLY: vol.37, pp.1, 2012, https://doi.org/10.3174/ajnr.a4612
  44. Case Experience of Radiofrequency Ablation for Benign Thyroid Nodules: From an Ex Vivo Animal Study to an Initial Ablation in Taiwan vol.24, pp.1, 2012, https://doi.org/10.1016/j.jmu.2016.03.003
  45. Radiofrequency ablation of benign thyroid nodules: evaluation of the treatment efficacy using ultrasonography vol.35, pp.3, 2012, https://doi.org/10.14366/usg.15083
  46. 2016 Revised Korean Thyroid Association Management Guidelines for Patients with Thyroid Nodules and Thyroid Cancer vol.9, pp.2, 2012, https://doi.org/10.11106/ijt.2016.9.2.59
  47. The Results of Ultrasonography-Guided Percutaneous Radiofrequency Ablation in Hyperparathyroid Patients in Whom Surgery Is Not Feasible vol.40, pp.4, 2012, https://doi.org/10.1007/s00270-016-1544-6
  48. Radiofrequency ablation of low-risk small papillary thyroidcarcinoma: preliminary results for patients ineligible for surgery vol.33, pp.2, 2012, https://doi.org/10.1080/02656736.2016.1230893
  49. Factors related to recurrence of the benign non-functioning thyroid nodules after percutaneous microwave ablation vol.33, pp.4, 2012, https://doi.org/10.1080/02656736.2016.1274058
  50. Ultrasound-Guided Percutaneous Microwave Ablation for Solid Benign Thyroid Nodules: Comparison of MWA versus Control Group vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/9724090
  51. Innovative Techniques for Image-Guided Ablation of Benign Thyroid Nodules: Combined Ethanol and Radiofrequency Ablation vol.18, pp.3, 2012, https://doi.org/10.3348/kjr.2017.18.3.461
  52. Thyroid Radiofrequency Ablation: Updates on Innovative Devices and Techniques vol.18, pp.4, 2012, https://doi.org/10.3348/kjr.2017.18.4.615
  53. Complications Following Radiofrequency Ablation of Benign Thyroid Nodules: A Systematic Review vol.130, pp.11, 2012, https://doi.org/10.4103/0366-6999.206347
  54. Evaluation of the safety and efficacy of radiofrequency ablation for treating benign thyroid nodules vol.8, pp.5, 2012, https://doi.org/10.7150/jca.17655
  55. Efficacy and safety of ultrasound‐guided radiofrequency ablation of hyperplastic parathyroid gland for secondary hyperparathyroidism associated with chronic kidney disease vol.39, pp.3, 2017, https://doi.org/10.1002/hed.24657
  56. Efficacy and safety of a single radiofrequency ablation of solid benign non-functioning thyroid nodules vol.61, pp.2, 2012, https://doi.org/10.1590/2359-3997000000246
  57. Factors associated with initial incomplete ablation for benign thyroid nodules after radiofrequency ablation: First results of CEUS evaluation vol.65, pp.4, 2012, https://doi.org/10.3233/ch-16208
  58. Factors related to the efficacy of radiofrequency ablation for benign thyroid nodules vol.36, pp.4, 2017, https://doi.org/10.14366/usg.17034
  59. US-Guided Percutaneous Radiofrequency versus Microwave Ablation for Benign Thyroid Nodules: A Prospective Multicenter Study vol.7, pp.None, 2012, https://doi.org/10.1038/s41598-017-09930-7
  60. Radiofrequency ablation for the management of thyroid nodules: A critical appraisal of the literature vol.87, pp.6, 2012, https://doi.org/10.1111/cen.13422
  61. Efficacy and Safety of Ethanol Ablation for Branchial Cleft Cysts vol.38, pp.12, 2012, https://doi.org/10.3174/ajnr.a5373
  62. Radiofrequency ablation of primary thyroid carcinoma: efficacy according to the types of thyroid carcinoma vol.34, pp.5, 2012, https://doi.org/10.1080/02656736.2018.1427288
  63. Nodule size as predictive factor of efficacy of radiofrequency ablation in treating autonomously functioning thyroid nodules vol.34, pp.5, 2012, https://doi.org/10.1080/02656736.2018.1430868
  64. Ex vivo comparison between thyroid-dedicated bipolar and monopolar radiofrequency electrodes vol.34, pp.5, 2012, https://doi.org/10.1080/02656736.2018.1437283
  65. A single session of laser ablation for toxic thyroid nodules: three-year follow-up results vol.34, pp.5, 2018, https://doi.org/10.1080/02656736.2018.1437931
  66. Ultrasound-guided percutaneous microwave ablation versus surgery for papillary thyroid microcarcinoma vol.34, pp.5, 2012, https://doi.org/10.1080/02656736.2018.1453092
  67. Microwave ablation compared to thyroidectomy to treat benign thyroid nodules vol.34, pp.5, 2012, https://doi.org/10.1080/02656736.2018.1456677
  68. Is there a role for minimally invasive thermal ablations in the treatment of autonomously functioning thyroid nodules? vol.34, pp.5, 2018, https://doi.org/10.1080/02656736.2018.1462537
  69. Patient satisfaction after thyroid RFA versus surgery for benign thyroid nodules: a telephone survey vol.35, pp.1, 2012, https://doi.org/10.1080/02656736.2018.1487590
  70. Comparison between microwave ablation and bipolar radiofrequency ablation in benign thyroid nodules: differences in energy transmission, duration of application and applied shots vol.35, pp.1, 2018, https://doi.org/10.1080/02656736.2018.1489984
  71. Monopolar Radiofrequency Ablation of Thyroid Nodules: A Prospective Austrian Single-Center Study vol.28, pp.4, 2018, https://doi.org/10.1089/thy.2017.0547
  72. Surgical Confirmation of Incomplete Treatment for Primary Papillary Thyroid Carcinoma by Percutaneous Thermal Ablation: A Retrospective Case Review and Literature Review vol.28, pp.9, 2012, https://doi.org/10.1089/thy.2017.0558
  73. Initial Ablation Ratio: Quantitative Value Predicting the Therapeutic Success of Thyroid Radiofrequency Ablation vol.28, pp.11, 2012, https://doi.org/10.1089/thy.2018.0180
  74. Efficacy and Safety of Radiofrequency Ablation for Benign Thyroid Nodules: A Prospective Multicenter Study vol.19, pp.1, 2012, https://doi.org/10.3348/kjr.2018.19.1.167
  75. Quality of Life in Patients Treated with Percutaneous Laser Ablation for Non-Functioning Benign Thyroid Nodules: A Prospective Single-Center Study vol.19, pp.1, 2018, https://doi.org/10.3348/kjr.2018.19.1.175
  76. Primary Imaging Test and Appropriate Biopsy Methods for Thyroid Nodules: Guidelines by Korean Society of Radiology and National Evidence-Based Healthcare Collaborating Agency vol.19, pp.4, 2018, https://doi.org/10.3348/kjr.2018.19.4.623
  77. 2017 Thyroid Radiofrequency Ablation Guideline: Korean Society of Thyroid Radiology vol.19, pp.4, 2018, https://doi.org/10.3348/kjr.2018.19.4.632
  78. RE: 2017 Thyroid Radiofrequency Ablation Guideline: The Korean Society of Thyroid Radiology vol.19, pp.6, 2012, https://doi.org/10.3348/kjr.2018.19.6.1196
  79. The efficacy and safety of high-intensity focused ultrasound ablation of benign thyroid nodules vol.37, pp.2, 2012, https://doi.org/10.14366/usg.17057
  80. High-intensity focused ultrasound (HIFU) therapy for benign thyroid nodules without anesthesia or sedation vol.61, pp.2, 2012, https://doi.org/10.1007/s12020-018-1560-1
  81. Is biopsy enough for papillary thyroid microcarcinoma? : An analysis of the SEER database 2004 to 2013 with propensity score matching vol.97, pp.31, 2018, https://doi.org/10.1097/md.0000000000011791
  82. Radiofrequenzablation von Schilddrüsenknoten: Good Clinical Practice Empfehlungen vol.11, pp.3, 2012, https://doi.org/10.1007/s41969-018-0043-6
  83. mRECIST criteria to assess recurrent thyroid carcinoma treatment response after radiofrequency ablation: a prospective study vol.41, pp.12, 2018, https://doi.org/10.1007/s40618-018-0886-0
  84. Benign thyroid nodule unresponsive to radiofrequency ablation treated with laser ablation: a case report vol.12, pp.1, 2012, https://doi.org/10.1186/s13256-018-1628-9
  85. US-Guided Radiofrequency Ablation for Low-Risk Papillary Thyroid Microcarcinoma: Efficacy and Safety in a Large Population vol.20, pp.12, 2012, https://doi.org/10.3348/kjr.2019.0192
  86. A Glimpse on Trends and Characteristics of Recent Articles Published in the Korean Journal of Radiology vol.20, pp.12, 2019, https://doi.org/10.3348/kjr.2019.0928
  87. Management strategy for nerve damage during radiofrequency ablation of thyroid nodules vol.36, pp.1, 2012, https://doi.org/10.1080/02656736.2018.1554826
  88. Comparison of efficacy and complications between radiofrequency ablation and repeat surgery in the treatment of locally recurrent thyroid cancers: a single-center propensity score matching study vol.36, pp.1, 2012, https://doi.org/10.1080/02656736.2019.1571248
  89. Safety and efficacy of thermal ablation (radiofrequency and laser): should we treat all types of thyroid nodules? vol.36, pp.1, 2012, https://doi.org/10.1080/02656736.2019.1627432
  90. Feasibility and safety of ultrasound-guided percutaneous microwave ablation for tertiary hyperparathyroidism vol.36, pp.1, 2019, https://doi.org/10.1080/02656736.2019.1684576
  91. Microwave Ablation Compared With Laser Ablation for Treating Benign Thyroid Nodules in a Propensity-Score Matching Study vol.10, pp.None, 2012, https://doi.org/10.3389/fendo.2019.00874
  92. Preliminary report of microwave ablation for the primary papillary thyroid microcarcinoma: a large-cohort of 185 patients feasibility study vol.64, pp.1, 2012, https://doi.org/10.1007/s12020-019-01868-2
  93. Ethanol ablation as a treatment strategy for benign cystic thyroid nodules: a comparison of the ethanol retention and aspiration techniques vol.38, pp.2, 2012, https://doi.org/10.14366/usg.18033
  94. Summary of the 2017 thyroid radiofrequency ablation guideline and comparison with the 2012 guideline vol.38, pp.2, 2012, https://doi.org/10.14366/usg.18044
  95. Does Radiofrequency Ablation Induce Neoplastic Changes in Benign Thyroid Nodules: A Preliminary Study vol.34, pp.2, 2012, https://doi.org/10.3803/enm.2019.34.2.169
  96. Letter to “Successful radiofrequency ablation strategies for benign thyroid nodules” vol.65, pp.3, 2012, https://doi.org/10.1007/s12020-019-01879-z
  97. Ultrasound‐Guided Percutaneous Microwave Ablation for Substernal Goiter: Initial Experience vol.38, pp.11, 2019, https://doi.org/10.1002/jum.14992
  98. Efficacy of Percutaneous Thermal Ablation of Papillary Thyroid Carcinoma vol.19, pp.4, 2012, https://doi.org/10.16956/jes.2019.19.4.154
  99. Ultrasound-guided radiofrequency ablation for papillary thyroid microcarcinoma: a retrospective analysis of 198 patients vol.37, pp.1, 2012, https://doi.org/10.1080/02656736.2019.1708480
  100. Solid benign thyroid nodules (>10 ml): a retrospective study on the efficacy and safety of sonographically guided ethanol ablation combined with radiofrequency ablation vol.37, pp.1, 2012, https://doi.org/10.1080/02656736.2020.1717647
  101. CT-based quantitative evaluation of the efficacy after radiofrequency ablation in patients with benign thyroid nodules vol.37, pp.1, 2020, https://doi.org/10.1080/02656736.2020.1779358
  102. A Novel Strategy for Single-Session Ultrasound-Guided Radiofrequency Ablation of Large Benign Thyroid Nodules: A Pilot Cohort Study vol.11, pp.None, 2012, https://doi.org/10.3389/fendo.2020.560508
  103. Radiofrequency ablation of thyroid nodules: “Good Clinical Practice Recommendations” for Austria : An interdisciplinary statement from the following professional associations: Austrian Thy vol.170, pp.1, 2012, https://doi.org/10.1007/s10354-019-0682-2
  104. Effectiveness of Injecting Cold 5% Dextrose into Patients with Nerve Damage Symptoms during Thyroid Radiofrequency Ablation vol.35, pp.2, 2020, https://doi.org/10.3803/enm.2020.35.2.407
  105. Radiofrequency Thermal Ablation of Benign Thyroid Nodules: The Correlation Between Ultrasound Nodule Characteristics and Results vol.27, pp.4, 2020, https://doi.org/10.1177/1553350620913134
  106. The Efficacy of Ultrasonography-Guided Radiofrequency Ablation in Patients With Benign Thyroid Goiters With a History of Unilateral Lobectomy vol.13, pp.3, 2012, https://doi.org/10.21053/ceo.2020.00164
  107. Clinical applications of Doppler ultrasonography for thyroid disease: consensus statement by the Korean Society of Thyroid Radiology vol.39, pp.4, 2012, https://doi.org/10.14366/usg.20072
  108. Roles of contrast-enhanced ultrasonography in identifying volume change of benign thyroid nodule and optical time of secondary radiofrequency ablation vol.20, pp.1, 2012, https://doi.org/10.1186/s12880-020-00476-1
  109. Long-Term Follow-Up Results of Ultrasound-Guided Radiofrequency Ablation for Low-Risk Papillary Thyroid Microcarcinoma: More Than 5-Year Follow-Up for 84 Tumors vol.30, pp.12, 2012, https://doi.org/10.1089/thy.2020.0106
  110. Percutaneous Adrenal Radiofrequency Ablation: A Short Review for Endocrinologists vol.35, pp.4, 2012, https://doi.org/10.3803/enm.2020.880
  111. Continuous, Large-Volume Hydrodissection to Protect Delicate Structures around the Thyroid throughout the Radiofrequency Ablation Procedure vol.10, pp.6, 2012, https://doi.org/10.1159/000519625
  112. Noninvasive thyroid histotripsy treatment: proof of concept study in a porcine model vol.38, pp.1, 2012, https://doi.org/10.1080/02656736.2021.1922762
  113. Modified percutaneous ethanol injection method combined with microwave ablation for the treatment of symptomatic, predominantly cystic, benign thyroid nodules: a retrospective study of 201 cases vol.38, pp.1, 2012, https://doi.org/10.1080/02656736.2021.1924407
  114. Thyroid dysfunction following radiofrequency ablation for benign thyroid nodules: more likely to occur within one-week and in high-risk population vol.38, pp.1, 2012, https://doi.org/10.1080/02656736.2021.1950849
  115. Review of clinical tumor ablation advance in Asia vol.38, pp.1, 2021, https://doi.org/10.1080/02656736.2021.1983037
  116. A long-term retrospective study of ultrasound-guided microwave ablation of thyroid benign solid nodules vol.38, pp.1, 2012, https://doi.org/10.1080/02656736.2021.1994659
  117. Value of contrast-enhanced ultrasonography in radiofrequency ablation of secondary hyperparathyroidism vol.43, pp.1, 2012, https://doi.org/10.1080/0886022x.2021.1889601
  118. Long-Term Outcomes of Thermal Ablation for Benign Thyroid Nodules: The Issue of Regrowth vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/9922509
  119. Evaluation of Ultrasound-Guided Radiofrequency Ablation as a Treatment Option for Papillary Thyroid Microcarcinoma in the Isthmus: A Retrospective Study vol.11, pp.None, 2012, https://doi.org/10.3389/fendo.2020.599471
  120. Radiofrequency Thermal Ablation for a Small Papillary Thyroid Carcinoma in a Patient Unfit for Surgery: A Case Report vol.12, pp.None, 2012, https://doi.org/10.3389/fendo.2021.566362
  121. Predictor Analysis in Radiofrequency Ablation of Benign Thyroid Nodules: A Single Center Experience vol.12, pp.None, 2012, https://doi.org/10.3389/fendo.2021.638880
  122. Clinical practice guidelines for radiofrequency ablation of benign thyroid nodules: a systematic review vol.40, pp.2, 2021, https://doi.org/10.14366/usg.20015
  123. Recurrence and additional treatment of cystic thyroid nodules after ethanol ablation: validation of three proposed criteria vol.40, pp.3, 2012, https://doi.org/10.14366/usg.20039
  124. Percutaneous Ultrasound-Guided Laser Ablation of Benign Thyroid Nodules: Results of 10-Year Follow-Up in 171 Patients vol.5, pp.7, 2012, https://doi.org/10.1210/jendso/bvab081
  125. Differences in the ultrasonographic appearance of thyroid nodules after radiofrequency ablation vol.95, pp.3, 2012, https://doi.org/10.1111/cen.14480
  126. Efficacy and safety of ultrasound (US)-guided radiofrequency ablation of benign thyroid nodules vol.52, pp.1, 2012, https://doi.org/10.1186/s43055-021-00435-y