DOI QR코드

DOI QR Code

Characterization of Growth and Auxin Formation in a Bacteria Isolated from Waste bed of Agaricus bisporus

양송이 수확 후 배지로 부터 분리한 옥신생산 세균의 생육특성

  • Shin, Sang-Kwon (Department of Bio-Environmental Chemistry, College of Agriculture and Lifesciences, Chungnam National University) ;
  • Kyung, Ki-Cheon (Taean Lily Experiment Station, Chungcheongnam-do Agricultural Research and Extention Services) ;
  • Kong, Won-Sik (Mushroom Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Chung, Doug-Young (Department of Bio-Environmental Chemistry, College of Agriculture and Lifesciences, Chungnam National University) ;
  • Yoon, Min-Ho (Department of Bio-Environmental Chemistry, College of Agriculture and Lifesciences, Chungnam National University)
  • 신상권 (충남대학교 생물환경화학과) ;
  • 경기천 (충남농업기술원 태안백합시험장) ;
  • 공원식 (국립원예특작과학원 버섯과) ;
  • 정덕영 (충남대학교 생물환경화학과) ;
  • 윤민호 (충남대학교 생물환경화학과)
  • Received : 2012.10.15
  • Accepted : 2012.11.27
  • Published : 2012.12.31

Abstract

An auxin-producing bacteria (2SJ8-02) was isolated from waste mushroom bed of Agaricus bisporus in Buyeo-Gun, Chungnam. The strain 2SJ8-02 was classified as a novel strain of Pantoea rwandensis based on a chemotaxanomic and phylogeneticanalyses. The isolate was confirmed to produce indole-3-acetic acid (IAA), one of auxin hormones, by TLC and HPLC analyses. The maximum concentration of IAA, $122mg\;L^{-1}$ was detected from the culture in R2A broth containing 0.1% tryptophan for 24 h at $35^{\circ}C$. The molecular weight of the main peak obtained by LC-mass analysis was 175 corresponding to that of IAA. To investigate the growth-promoting effects to the crops, the culture broth of Pantoea rwandensis 2SJ8-02 was infected to water cultures and seed pots of mung bean. In consequence, the adventitious root induction and root growth of mung bean were two times higher than those of the control.

충남 부여군 석성면 양송이 재배 농가에서 채취한 양송이 수확 후 배지로부터 auxin생성능이 뛰어난 세균 2SJ8-02 균주를 분리하여 TLC 및 HPLC 분석을 통해 확인한 결과, IAA 생산농도는 $122mg\;L^{-1}$이었으며 LC-Mass분석에 의하여 생성된 물질은 분자량이 175인 IAA로 확인되었다. 분리균에 의한 IAA 생산을 위한 최적조건을 실험한 결과, 0.1% L-tryptophan를 함유한 pH 7.0의 R2A broth배지에 $35^{\circ}C$, 24시간 배양 시 최대 이었다. 녹두발근 생검법과 pot 재배를 통한 식물생육효과 실험에서 분리균 배양액의 첨가는 대조구에 비해 발근수와 뿌리길이에서 약 2배의 뿌리신장효과를 보였다. 생리적 특성 및 계통학적 특성분석을 통해 분리균은 Gram 음성 간균인 Pantoea rwandensis 2SJ8-02로 동정되었다.

Keywords

References

  1. Anroun H., C.J. Beauchamp, N. Goussard, R. Chabot, and R. Lalande. 1998. Potential of Rhizobium and Bradyrhizobium specids as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204: 57-67. https://doi.org/10.1023/A:1004326910584
  2. Barazani, O. and J. Friedman. 1999. Is IAA the major root growth factor secreted from plant-growth-mediating bacteria. J. Chem. Ecol. 25:2397-2406. https://doi.org/10.1023/A:1020890311499
  3. Ezaki, T., Y. Hashimoto, and E. Yabuuchi. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in micro-dilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39:224-229. https://doi.org/10.1099/00207713-39-3-224
  4. Gamalero, E., M. Fracchia, J. Cavaletto, P. Garbaye, G. Frey-Klett, C. Varese, and M.G. Martinotti. 2003. Characterization of functional traits of two fluorescent Pseudomonas isolated from basidiomycetes of ectomycorrhizal fungi. Soil Biol. Biochem. 35:55-63. https://doi.org/10.1016/S0038-0717(02)00236-5
  5. Joshi, K.K., V. Kumer, R.C. Dubey, D.K. Masheshwari, V.K. Bajapai, and S.C. Kang. 2006. Effect of chemical fertilizer -adaptive variants, Pseudomonas aerugininosa GRC2 and Azotobacter chroococcum ACI, on macrophominia paseolina causing charcoal rot of brassica Juncea. Korean J. Environ. Agric. 25:228-235. https://doi.org/10.5338/KJEA.2006.25.3.228
  6. Jung, H.K., J.R. Kim, S.M. Woo, and S.C. Kim. 2006. An auxin producing plant growth promoting rhizobacterium Bacillus subtilis AH18 which has siderophore-producing biocontrol activity. Kor. J. Microbiol. Biotechnol. 34:94-100.
  7. Jung, H.K., J.R. Kim, S.M. Woo, and S.D. Kim. 2007. Selection of the auxin, siderophore, and cellulase-producing PGPR, Bacillus licheniformis K11 and its plant growth promoting mechanisms. J. Korean Soc. Appl. Biol. Chem. 50(1):23-28.
  8. Jung Y.P., K.C. Kyung, K.Y. Jang, and M.H. Yoon. 2011. Isolation and characterization of plant growth promoting rhizobacteria from waste mushroom bed from Agaricus bisporus . Korean J. Soil Sci. Fert. 44(5): 866-871 https://doi.org/10.7745/KJSSF.2011.44.5.866
  9. Kloepper, J.W., J. Leong, M. Teintze, and M.N. Schroth. 1980. Enhancement plant growth by siderophore produced by plant growth-promoting rhizobacteria. Nature 286:885-886. https://doi.org/10.1038/286885a0
  10. Lim, H.S., J.M. Lee, and S.D. Kim. 2002. A plant growth promoting Pseudomonas fluorescens GL20: Mechanism for disease suppression, outer membrane receptor for ferric siderophore, and genetic improvement for incresed biocontrol efficacy. J. Mocrobiol. Biotechnol. 12:249-257.
  11. Mehnaz, S., M.S. Mirza, J. Haurat, R. Bally, P. Normand , A. Bano, and K.A. Malik. 2001. Isolation and 16S rRNA sequence analysis of the benificial bacterium from the rhizosphere of rice. Can. J. Microbiol. 472:110-117.
  12. Mirza, M.S., W. Ahmad, F. Latif, J. Haurat, R. Bally, P. Normand, and K.A. Malik. 2001. Isolation, partial characterization, and the effect of plant growth-promoting bactria (PGPB) on micro-propagated sugarcane in vitro. Plant Soil 237:47-54. https://doi.org/10.1023/A:1013388619231
  13. Ouzari, H., A. Khsairi, N. Raddadi, A. Hassen, M. Zarrouk, D. Daffonchio, and A. Boudabous. 2008. Diversity of auxin -producing bacteria associated to Pseudomonas savastanoi -induced olive knots. J. Basic Microb. 48(5):370-377. https://doi.org/10.1002/jobm.200800036
  14. Pishchik, V.N., N.I. Vorobyev, I.I. Chernaeva, A.P. Kozhemyakov, Y.V. Alexeev, and S.M. Lukin. 2002. Experimental and mathematical simulation of plant growth promoting rhizobacteria and plant interaction under cadmium stress. Plant Soil 243:173-186. https://doi.org/10.1023/A:1019941525758
  15. Pozem, M.J., C. Azcon-Aguilar, C. Dumas-Gaudot, and J.M. Barea. 1999. 1,3-$\beta$-Glucanase activities in tamato roots inoculated with arbuscular mycorrhizal fungi and Phytopthora parasitica and their possible involvement in bio protection. Plant Sci. 141:149-157. https://doi.org/10.1016/S0168-9452(98)00243-X
  16. Ramamoorthy, V., R. Viswanathan, Raguchander, V. Prakasam, and R. Samiyappan. 2001. Induction of systemic resistance by plant promoting rhizobacteria in crop plants against pests and diseases. Crop Protection. 20:1-11. https://doi.org/10.1016/S0261-2194(00)00056-9
  17. Wei, G., J.W. Kleopper, and S. Tuzun. 1996. Induced systemic resistance to cucumber diseases plant growth by plant promoting rhizobacteria under field conditions. Phytopathology. 86:221-224. https://doi.org/10.1094/Phyto-86-221
  18. Zimmer, W., M. Wesche, and L. Timmermans. 1998. Identification and isolation of indole-3-pyruvate decarboxylase gene from Azopirillum brasilense, sequencing and funtional analysis of gene locus gene. Curr. Mcibiol. 36:327-331.

Cited by

  1. Plant Growth Promotion Effect of Ochrobactrum anthropi A-1 isolated from Soil of Oyster Mushroom Farmhouse vol.13, pp.4, 2015, https://doi.org/10.14480/JM.2015.13.4.275