DOI QR코드

DOI QR Code

Feasibility as a Laundry Detergent Additive of an Alkaline Protease from Bacillus clausii C5 Transformed by Chromosomal Integration

Chromosomal Integration에 의해 제조한 Bacillus clausii C5 유래의 alkaline protease의 세제 첨가제 응용성

  • 주한승 (씨앤제이바이오텍(주)) ;
  • 최장원 (대구대학교 바이오산업학과)
  • Received : 2012.12.13
  • Accepted : 2012.12.23
  • Published : 2012.12.31

Abstract

Bacillus clausii I-52 which produced SDS- and $H_2O_2$-tolerant extracellular alkaline protease (BCAP) was isolated from heavily polluted tidal mud flat of West Sea in Incheon, Korea and stable strain (transformant C5) of B. clausii I-52 harboring another copy of BCAP gene in the chromosome was developed using the chromosome integration vector, pHPS9-fuBCAP. When investigated the production of BCAP using B. clausii transformant C5 through pilot-scale submerged fermentation (500 L) at $37^{\circ}C$ for 30 h with an aeration rate of 1 vvm and agitation rate of 250 rpm, protease yield of approximately 105,700 U/mL was achieved using an optimized medium (soybean meal 2%, wheat flour 1%, sodium citrate 0.5%, $K_2HPO_4$ 0.4%, $Na_2HPO_4$ 0.1%, NaCl 0.4%, $MgSO_4{\cdot}7H_2O$ 0.01%, $FeSO_4{\cdot}7H_2O$ 0.05%, liquid maltose 2.5%, $Na_2CO_3$ 0.6%). The enzyme stability of BCAP was increased by addition of polyols (10%, v/v) and also, the stabilities of BCAP towards not only the thermal-induced inactivation at $50^{\circ}C$ but also the SDS and $H_2O_2$-induced inactivation at $50^{\circ}C$ were enhanced. Among the polyols examined, the best result was obtained with propylene glycol (10%, v/v). The BCAP supplemented with propylene glycol exhibited extreme stability against not only the detergent components such as ${\alpha}$-orephin sulfonate (AOS) and zeolite but also the commercial detergent preparations. The granulized enzyme of BCAP was prepared with approximately 1,310,000 U/g of granule. Wash performance analysis using EMPA test fabrics revealed that BCAP granule exhibited high efficiency for removal of protein stains in the presence of anionic surfactants as well as bleaching agents. When compared to Savinase 6T$^{(R)}$ and Everlase 6T$^{(R)}$ manufactured by Novozymes, BCAP under this study probably showed similar or higher efficiency for the removal of protein stains. These results suggest that the alkaline protease produced from B. clausii transformant C5 showing high stability against detergents and high wash performance has significant potential and a promising candidate for use as a detergent additive.

Keywords

References

  1. Layman, P. L. (1986) Industrial enzymes: battling to remain specialties. Chem. Engineer. News 64: 11-14.
  2. Kumar, C. G. and H. Takagi (1999) Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnol. Adv. 17: 561-594. https://doi.org/10.1016/S0734-9750(99)00027-0
  3. Kirk, O., T. V. Borchert, and C. C. Fuglsang (2002) Industrial enzyme applications. Curr. Opin. Biotechnol. 13: 345-351. https://doi.org/10.1016/S0958-1669(02)00328-2
  4. Samal, B. B., B. Karan, and Y. Stabinsky (1990) Stability of two novel serine proteinases in commercial laundry detergent formulations. Biotechnol. Bioeng. 28: 609-612.
  5. Phadatare, S. U., V. V. Deshpande, and M. C. Srinvasan (1993) High activity alkaline protease from Conidiobolus coronatus (NCL 86.8.20): enzyme production and compatibility with commercial detergents. Enz. Microb. Technol. 15: 72-76. https://doi.org/10.1016/0141-0229(93)90119-M
  6. Tunlid, A., S. Rosen, B. Ek, and L. Rask (1994) Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Arthrobotrys oligospora. Microbiol. 140: 1687-1695. https://doi.org/10.1099/13500872-140-7-1687
  7. Jacobs, M. F. (1995) Expression of the subtilisin carlsbergencoding gene in Bacillus licheniformis and Bacillus subtilis. Gene 152: 67-74.
  8. Ito, S., T. Kobayashi, K. Ara, K. Ozaki, S. Kawai, and Y. Hatada (1998) Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles 2: 185-190 https://doi.org/10.1007/s007920050059
  9. Manachini, P. L. and M. G. Fortina (1998) Production in sea-water of thermostable alkaline proteases by a halotolerant strain of Bacillus licheniformis. Biotechnol. Lett. 20: 565-568. https://doi.org/10.1023/A:1005349728182
  10. Banerjee, U. C., R. K. Sani, W. Azmi, and R. Soni (1999) Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive. Process Biochem. 35: 213-219. https://doi.org/10.1016/S0032-9592(99)00053-9
  11. Yang, J. K., I. L. Shih, Y. M. Tzeng, and S. L. Wang (2000) Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enz. Microb. Technol. 26: 406-413. https://doi.org/10.1016/S0141-0229(99)00164-7
  12. Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang (2002) Optimization of the production of an extracellular alkaline protease from Bacillus horikoshii. Process Biochem. 38: 155-159. https://doi.org/10.1016/S0032-9592(02)00061-4
  13. Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang (2003) Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: production and some properties. J. Appl. Microbiol. 95: 267-272. https://doi.org/10.1046/j.1365-2672.2003.01982.x
  14. Joo, H. S., C. G. Kumar, G. C. Park, S. R. Paik, and C. S. Chang (2004) Bleach-resistant alkaline protease produced by a Bacillus sp. isolated from the Korean polychaeta, Periserrula leucophryna. Process Biochem. 39: 1441-1447. https://doi.org/10.1016/S0032-9592(03)00260-7
  15. Maurer, K. H. (2004) Detergent proteases. Curr. Opin. Biotechnol. 15: 330-334. https://doi.org/10.1016/j.copbio.2004.06.005
  16. Joo, H. S. and C. S. Chang (2005a) Production of protease from a new alkalophilic Bacilus sp. I-312 grown on soybean meal: optimization and some properties. Process Biochem. 40: 1263-1270 https://doi.org/10.1016/j.procbio.2004.05.010
  17. Gessesse, A. (1997) The use of nug meal as low-cost substrate for the production of alkaline protease by the alkaliphilic Bacillus sp. AR-009 and some properties of the enzyme. Bioresour. Technol. 62: 59-61. https://doi.org/10.1016/S0960-8524(97)00059-X
  18. Rao, M. B., A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62: 597-635.
  19. Horikoshii, K. (1999) Alkalophiles: some applications of their products for biotechnology. Microbiol. Mol. Biol. Rev. 63: 735-750
  20. Kumar, C. G., M. P. Tiwari, and K. D. Jany (1999) Novel alkaline serine proteases from alkalophilic Bacillus sp.: purification and characterization. Process Biochem. 34: 441-449. https://doi.org/10.1016/S0032-9592(98)00110-1
  21. Saeki, K., K. Ozaki, T. Kobayashi, and S. Ito (2007) Detergent alkaline proteases: enzymatic properties, genes, and crystal structures. J. Biosci. Bioeng. 103: 501-508. https://doi.org/10.1263/jbb.103.501
  22. Johnvesly, B. and G. R. Naik (2001) Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemically defined medium. Process Biochem. 37: 139-144. https://doi.org/10.1016/S0032-9592(01)00191-1
  23. Uyar, F. and Z. Baysal (2004) Production and optimization of process parameters for alkaline protease production by a newly isolated Bacillus sp. under solid state fermentation. Process Biochem. 39: 1893-1898. https://doi.org/10.1016/j.procbio.2003.09.016
  24. Haddar, A., N. Fakhfakh-Zouari, N. Hmidet, F. Frikha, M. Nasri, and A. S. Kamoun (2010) Low-cost fermentation medium for alkaline protease production by Bacillus mojavensis A21 using hulled grain of wheat and sardinella peptone. J. Biosci. Bioengineer. 110: 288-294. https://doi.org/10.1016/j.jbiosc.2010.03.015
  25. Hameed, A., T. Keshavarz, and C. S. Evans (1999) Effect of dissolved oxygen tension and pH on the production of extracellular protease from a new isolate of Bacillus subtilis K2, for use in leather processing. J. Chem. Technol. Biotechnol. 74: 5-8. https://doi.org/10.1002/(SICI)1097-4660(199901)74:1<5::AID-JCTB979>3.0.CO;2-T
  26. Christiansen, T. and J. Nielsen (2002) Production of extracellular protease and glucose uptake in Bacillus clausii in steady-state transient continuous cultures. J. Biotechnol. 97: 265-273. https://doi.org/10.1016/S0168-1656(02)00109-8
  27. Calik, P., E. Celik, E. T. Ilkin, C. Oktar, and E. Ozdemir (2003) Protein-based complex medium design for recombinant serine alkaline protease production. Enz. Microb. Technol. 33: 975-986. https://doi.org/10.1016/j.enzmictec.2003.07.002
  28. Ramnani, P. and R. Gupta (2004) Optimization of medium composition for keratinase production by Bacillus licheniformis RG1 using statistical methods involving response surface methodology. Biotechnol. Appl. Biochem. 40: 191-196 https://doi.org/10.1042/BA20030228
  29. Rai, S. K. and A. K. Mukherjee (2010) Statistical optimization of production, purification and industrial application of a laundry detergent and organic solvent-stable subtilisin-like serine protease (Alzwiprase) from Bacillus subtilis DM-04. Biochem. Eng. J. 48: 173-180. https://doi.org/10.1016/j.bej.2009.09.007
  30. Gupta, R., Q. K. Beg, S. Khan, and B. Chauhan (2002) An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl. Microbiol. Biotechnol. 60: 381-395. https://doi.org/10.1007/s00253-002-1142-1
  31. Bryan, P. N. (2000) Protein engineering of subtilisin. Biochim. Biophys. Acta. 1543: 203-222. https://doi.org/10.1016/S0167-4838(00)00235-1
  32. Estell, D. D., T. P. Graycar, and J. A. Wells (1985) Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J. Biol. Chem. 260: 6518-6521.
  33. Ness, J. E., M. Welch, L. Giver, M. Bueno, J. R. Cherry, T. V, Borchert, W. P. C. Stemmer, and J. Minshull (1999) DNA shuffling of subgenomic sequences of subtilisin. Nat. Biotechnol. 17: 893-896. https://doi.org/10.1038/12884
  34. Davis, B. G., K. Khumtaveeporn, R. R. Bott, and J. B. Jones (1999) Altering the specificity of subtilisin Bacillus lentus through the introduction of positive charge at single amino acid sites. Bioorg. Med. Chem. 7: 2303-2311. https://doi.org/10.1016/S0968-0896(99)00168-6
  35. Bhosale, S. H., M. B. Rao, V. V. Deshpande, and M. C. Srinivasan (1995) Thermostability of high activity alkaline protease from Conidiobolus coronatus (NCL 86.8.20). Enz. Microb. Technol. 17: 136-139. https://doi.org/10.1016/0141-0229(94)00045-S
  36. Becker, T., G. Park, and A. L. Gaertner (1997) Formulating of detergent enzymes. Surfactant Sci. Ser. 69: 299-325.
  37. Kumar, C. G., R. K., Malik, and M. P. Tiwari (1998) Novel enzyme-based detergents: an Indian perspective. Curr. Sci. 75: 1312-1318.
  38. Joo, H. S., Y. M. Koo, J. W. Choi, and C. S. Chang (2005) Stabilization method of an alkaline protease from inactivation by heat, SDS and hydrogen peroxide. Enz. Microb. Technol. 36: 766-772. https://doi.org/10.1016/j.enzmictec.2005.01.002
  39. Joo, H. S. and C. S. Chang (2005b) Oxidant and SDS-stable alkaline protease from a halo-tolerant Bacillus clausii I-52: enhanced production and simple purification. J. Appl. Microbiol. 98: 491-497. https://doi.org/10.1111/j.1365-2672.2004.02464.x
  40. Joo, H. S. and C. S. Chang (2006) Production of an oxidant and SDS-stable alkaline protease from an alkaophilic Bacillus clausii I-52 by submerged fermentation: feasibility as a laundry detergent additive. Enz. Microb. Technol. 38: 176-183. https://doi.org/10.1016/j.enzmictec.2005.05.008
  41. Joo, H. S. and J. W. Choi (2011) Cloning and expression of a alkaline protease from Bacillus clausii I-52. J. Agri. Life Sci. 45: 201-212.
  42. Joo, H. S., D. C. Park, and J. W. Choi (2012) Increased production of an alkaline protease from Bacillus clausii I-52 by chromosomal integration. J. Agri. Life Sci. 46: 163-176.
  43. Gonzalez, G., C. Gonzalez, and P. Merino (1992) Thermotabilization of Cucurbita ficifolia protease in the presence of additives. Biotechnol. Lett. 14: 919-924. https://doi.org/10.1007/BF01020629
  44. Han, X. Q. and S. Damodran (1997) Stability of protease Q against autolysis and in sodium dodecyl sulfate and urea solutions. Biochem. Biophys. Res. Comm. 240: 839-843. https://doi.org/10.1006/bbrc.1997.7698
  45. Otzen, D. E. (2002) Protein unfolding in detergents: effect of micelle structure, ionic strength, pH, and temperature. Biophys. J. 83: 2219-2230. https://doi.org/10.1016/S0006-3495(02)73982-9
  46. Siezen, R. J. and J. A. M. Leunissen (1997) Subtilases: the superfamily of subtilisin like serine proteases. Protein Sci. 6: 501-523.
  47. Kembhavi, A. A., A. Kulkarni, and A. Pant (1993) Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM No. 64. Appl. Biochem. Biotechnol. 38: 83-92. https://doi.org/10.1007/BF02916414
  48. Lee, S. and D. J. Jang (2001) Progressive rearrangement of subtilisin carlsberg into orderly and inflexible conformation with $Ca^{2+}$ binding. Biophys. J. 81: 2972-2978. https://doi.org/10.1016/S0006-3495(01)75937-1
  49. Ghorbel, B., A. Sellami-Kamoun, and M. Nasri (2003) Stability studies of protease from Bacillus cereus BG1. Enz. Microbial Technol. 32: 513-518. https://doi.org/10.1016/S0141-0229(03)00004-8
  50. Hajji, M., S. Kanoun, M. Nasri, and N. Gharsallah (2007) Purification and characterization of an alkaline serine-protease produced by a new isolated Aspergillus clavatus ES1. Process Biochem. 42: 791-797. https://doi.org/10.1016/j.procbio.2007.01.011
  51. Stoner, M. R., D. A. Dale, P. J. Gualfetti, T. Becker, M. C. Manning, and J. F. Carpenter (2004) Protease autolysis in heavyduty liquid detergent formulations: effect of thermodynamic stabilizers and protease inhibitors. Enz. Microb. Technol. 34: 114-125. https://doi.org/10.1016/j.enzmictec.2003.09.008
  52. Kravetz, L. and K. F. Guin (1985) Effect of surfactant structure on stability of enzymes formulated into laundry liquids. J. Am. Oil Chem. Soc. 62: 943-949. https://doi.org/10.1007/BF02541765
  53. Lalonde, J., E. J. Witte, and M. L. Oconnell (1995) Protease stabilization by highly concentrated anionic surfactant mixtures. J. Am. Oil Chem. Soc. 52: 53-59.
  54. Kotomin, A. A., M. B. Petelskii, A. A. Abramzon, A. E. Punin, and O. D. Yakimchuk (2001) Optimization of the component concentrations in solutions of synthetic detergents. Russ. J. Appl. Chem. 74: 2038-2042.
  55. Kumar, D., S. N. Thakur, R. Verma, and T. C. Bhalla (2008) Microbial proteases and application as laundry detergent additive. Res. J. Microbiol. 3: 661-672. https://doi.org/10.3923/jm.2008.661.672
  56. Sekhon, B. S. and M. K. Sangha (2004) Detergents-zeolites and enzymes excel cleaning power. Resonance 9: 35-45. https://doi.org/10.1007/BF02837576
  57. Russell, G. L. and L. M. Britton (2002) Use of certain alcohol ethoxyates to maintain protease stability in the presence of anionic surfactants. J. Surfact. Detergent 5: 5-10. https://doi.org/10.1007/s11743-002-0198-9