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As observing the learning of middle school mathematics students for three years, I

examined the relationship between students' procedural knowledge and their conceptual

knowledge as they develop those knowledges in the rational number domain. In particular,

I explored the implications of an unbalanced development in a student’s conceptual

knowledge and procedural knowledge by considering two conditions: (a) the case of a

student who has relatively strong conceptual knowledge and weak procedural knowledge,

and (b) the case of a student who has relatively weak conceptual knowledge and strong

procedural knowledge.

Results suggest that conceptual knowledge and procedural knowledge are most productive

when they develop in a balanced fashion (i.e., closely iterative or simultaneously), which

calls into question the assumption that one has primacy over the other.
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I. Introduction

1. The necessity and the purpose of the

research

Since the early 1980s, emphasis on the

development of conceptual understanding has led to

substantial changes in curriculum design,

pedagogical methods, and, to some extent, testing

(Conference Board of the Mathematical Sciences,

1989). Less can be said, however, regarding our

understanding of procedures and their applications.

Often the literature on mathematics education

reform runs the risk of becoming overly polarized,

i.e., either throwing the procedural “baby out with

the bathwater,” or at the other extreme, rejecting

the conceptual approach in favor of developing

arithmetic skill and algebraic symbol manipulation.

I attempt, in this paper, to examine the

co-development of conceptual knowledge and

procedural knowledge in a medium-scale,

longitudinal study that traces the evolution of

individual children’s conceptual knowledge and

procedural knowledge over a three-year period.

2. Research Question
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In my study, I examine this interweaving, paying

particular attention to instances where a child has

relatively high ability on one type of knowledge, if

it leads the development of the other type of

knowledge naturally. Foreshadowing, I show that

when one feature is lacking, students have

tremendous difficulty compensating, either using

concepts to develop new procedures, or to abstract

general rules from specific skills.

II. Review of the Literature

1. Preceding research

The distinction and the relationship between

conceptual knowledge and procedural knowledge is

one of the oldest issues in the field of psychology

and mathematics education because it is an

important key to know what configurations of

information give rise to students’ solution strategies

and how different types of tasks and problem

configurations are organized cognitively. It is also

useful to make judgments about the adequacy and

extent of students’ knowledge from the procedures

they invent or deploy. Many scholars distinguish

between these types of knowledge, using different

terms such as declarative to roughly correspond to

conceptual, or propositions to roughly correspond

to procedural (e.g., Anderson, 1983; Hiebert &

Lefevre, 1986; Piaget, 1978; Skemp, 1978), but the

basic view that people have to have some store of

information like facts and rules that they can then

apply in some temporal order to initiate and

sustain behaviors is relatively universally agreed up

on. Early analyses of the relationship between the

two types of knowledge focused on which one was

better or which one came first cognitively (e.g.,

Briars & Siegler, 1984; Gibb & Castaneda, 1975;

Piaget, 1964). In this perspective, the two types of

knowledge are treated as separate entities, and at

best coexisting as disjoint neighbors.

For example, representing the cognitive science

perspective, Briars and Siegler’s work (1984)

argued preschoolers’ skill in executing the standard

counting procedure precede understanding of the

principle of counting. Children in their study were

found to count correctly before they consistently

judged incorrect another individual’s counting

errors.

On the contrary, Piaget (1964) found rote

counting didn’t help the development of children’s

number concepts. He insisted the concept of

number comes from conservation of quantity by

one-to-one correspondence, not from the rote

counting. Based largely on the influence of

Piaget’s work, many scholars insisted conceptual

knowledge is more important than procedural

knowledge or at least that a concept has to be

developed first before a procedure can then operate

on the concept. As a result, mathematics education

throughout the 1980’s through the present has

tended to emphasize concept more than procedure.

These two studies represent each side of

perspective about which type of knowledge is

better or which one comes first cognitively and

their seemingly opposing conclusions make us

confused. Only three scenarios are possible: Either

1) neo-constructivism is correct, and concepts drive

the development of procedures by which concepts

can be enacted in overt behavior, or 2) the

information-processing approach is correct and
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procedures, through successive approximation and

refinement, generate concepts that differentiate their

application and that provide the key datum by

which procedural slots can be filled, or 3) the

situation is really more complex where the two

types of knowledge co-develop either iteratively or

in parallel, each informing the other. Part of the

problem of determining how aspects of knowledge

develop stems from the problem of definition.

2. Defining Conceptual and Procedural

Knowledge

In mathematics education, the discussion of

conceptual knowledge and procedural knowledge

offered by Hiebert and Lafevre (1986) is one of

the most authoritative guides for distinguishing

between these two types of knowledge. In their

seminal volume, they described conceptual

knowledge (mixed use with the term “conceptual

understanding”) as a network, rich in relationships.

It is the relationships in fact, that define the

network of individual facts and propositions. It is

distinguished at two levels: 1) The primary level,

gathering and making sense more or less directly

from the environment, and 2) the reflective level

where these initial sense-making behaviors are

abstracted into mental representations. Procedural

knowledge (mixed use with the term

“computational skill”) also contains two parts: 1)

The first composed of the formal language, or

symbol representation system of mathematics and

2) the other composed of prescribed instructions

such as the algorithms, rules, or procedures used

to solve mathematical tasks.

Even in this account, however, there are critical

problems of definition. In particular, “conceptual

knowledge” as it is used in this volume includes

both information about and understanding of

mathematical procedures. “Procedural knowledge,”

for its own part, contains knowledge of symbols

and formal language, areas normally ascribed to

the conceptual domain in cognitive science. In

addition, in spite of Hiebert’s own mention about

the current trend of emphasis on “informal

procedures,” the notion of formal or standard

procedures and those which are invented ad hoc

are not defined. This distinction is further muddied

when one begins to try to piece out standard

mathematical procedures versus mental operations.

It is clear that there are more mental operations at

play in the cognitive processing of the

long-division algorithm than the steps which can be

stated in a textbook. As a result, there is still

disagreement about the distinction between two

types of knowledge among scholars (e.g., Baroody,

Feil, & Johnson, 2007; Star, 2005).

These compromises accepted by mathematics

educators have had some recent criticism.

Specifically, these definitions diverge significantly

from the larger and more rigorous body of theory

and empirical evidence in cognitive science (see

Star’s research commentary on this subject, 2005).

In particular, the depiction of conceptual knowledge

as being rich in relationships represents an

instructional bias that favors highly connected, deep

knowledge. But ontologically, concepts do not have

to be rich, highly connected, or deep. Ironically

the mathematics education literature acknowledges

that students do not often develop rich

mathematical connections, leaving such knowledge

undefined theoretically.
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Schopenhauer (1974) explains that in terms of

development, a concept starts forming from what is

known through intuitive perception, and becomes

accessible through abstraction (see also Hiebert &

Lefevre, 1986). It is typically associated with some

corresponding representation in language or symbol,

but a concept itself cannot be visualized. At the

beginning of the formation of a concept, the

concept is closely related to perception and

consists of several examples and non-examples of

the concept (Davis, 2006). If we borrow Vinner’s

term (1992), it can be labeled as a “concept

image.” He describes the process of concept

formation as the process of denoting all of the

objects in a given category of class of entities,

interactions, phenomena, or relationships between

them and developing an abstracted meaning which

he calls the “concept definition.”

Therefore, a child’s initial concepts have

relatively few links; they are superficial, isolated,

and inflexible (Baroody, 2003), but they grow in

interconnections over time through experiences with

like and unlike objects, behavior patterns, and other

phenomena. So not all “concepts” are typically

included in the term “conceptual understanding.” In

fact, conceptual knowledge does not have to denote

much if any understanding, but can lie inert

without links to other concepts or procedures to

enact the concept in performance. Therefore,

conceptual knowledge has to be ordered on a

continuum of understanding ranging from weak to

strong.

Similarly, procedural knowledge cannot be

thought of as synonymous with computational skill,

or procedural skill. A procedure is a sequence of

operations or that accomplishes some goal. The

term “skill” emphasizes specific procedures stored

to perform certain behaviors under certain eliciting

conditions. It is a mechanistic model of procedural

knowledge. However heuristics, plans, and

strategies are also procedural knowledge. They are

not mathematic content domain specific skills, but

ways of gathering information about task structure

and recruiting the specific skills to make sense of

and solve complex problems (Schoenfeld, 1979;

Star, 2005).

To account for these inconsistencies in

definitions in current usage in mathematics

education, Haapasalo and Kadijevich (2000) offer a

modified version of Hiebert’s definition of two

types of knowledge. They state that conceptual

knowledge denotes knowledge of, and ability to

access elements of discrete information which can

be concepts, rules (algorithms, procedures, etc.) and

even problems (a solved problem may introduce a

new concept or rule) given in various

representation forms. They also state that

procedural knowledge denotes dynamic and

successful utilization of particular rules, algorithms

or procedures within relevant representation form(s).

This requires not only the knowledge of the object

being utilized but also the knowledge of formal

and syntax for the representational system(s)

expressing them. However it makes the distinction

between two kinds of knowledge type more blurry

because now some parts of procedure can be

included in conceptual knowledge.

As it now stands in the field, most researchers

use the term “conceptual knowledge” as a broad

term that includes “conceptual understanding” as a

subcategory. Concept itself has a more narrow

meaning dealing with a bounded set of information



- 521 -

with some semantic structure. Also the term

“procedural knowledge” is used as the broad

category with “computational skill” or “procedural

skill” as specific subcategories. Procedure is more

specific still, referring to particular courses of

action including algorithms, strategies, and tactics

(e.g., Baroody, 2003; Hiebert & Lefevre, 1986;

Rittle-Johnson, Siegler, & Wagner Alibali, 2001).

We use these “good-enough” definitions when we

refer to conceptual or procedural knowledge

throughout this manuscript.

III. Method

1. Participant

The study was conducted at a middle school in

an inner city in the southwest United States as a

part of a three-year longitudinal study of the

development of ratio and proportion knowledge in

middle school children. At the first year of the

study, I started interview with 8 sixth grade

students among original interview group of 32

students and followed them. Manuel, one of the

students I interviewed, was chosen as an epistemic

subject, representing the entire set of data. He was

a patient student and did not give up easily. Even

though he could not solve given problem

immediately, he tried to solve it using different

ways. Also, he was anxious to explain what he

did and what he think. His mathematics test score

at his school was intermediate at the beginning of

the study, but at the third year of the study, his

score was high at his mathematics class. A

pseudonym was used for him.

2. Research Method and Research Design

The original project started with 41 sixth graders

and 10 seventh graders and each successive year,

the original sixth graders were followed up. In the

second year of the study, small replacement

samples of sixth graders were added and followed

into seventh grade in the third year to enable the

project team to go back and test hypotheses on

successive cohorts. At the end of the study, 32

students (allowing for attrition) were finished

complete interviews for the duration of the study.

Interviews were conducted for one hour every two

to three weeks for three full academic years. They

consisted of tasks written to explore the student's

understanding of the five sub-constructs of rational

numbers (Behr, Harel, Post, & Lesh, 1992; Lamon,

2005). The first and last two protocols in the

second and third year were benchmark protocols

that consisted of multi-level complex word

problems. They covered the five sub-constructs of

rational numbers. The remaining protocols

examined individual sub-constructs by both

contextualized word problems and decontextualized

calculation problems.

Interview procedures followed those of a

constructivist teaching experiment (Steffe &

Thompson, 2000). Students was asked to think

aloud as they solved the problems, and made

hypotheses regarding what students were thinking

and what procedures they used through provided

the problem text. Probing questions (e.g., “why did

you do that?”; “Show me how that works”) was

used in an attempt to draw out students’ verbal,

gestural, and written evidence of their thinking.
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weak conceptual knowledge  
& weak procedural knowledge

strong conceptual knowledge 
& weak procedural knowledge  

weak conceptual knowledge 
& strong procedural knowledge

strong conceptual knowledge 
& strong procedural knowledge 

   Conceptual knowledge
      weak   strong

[Figure 1. Four possible conditions of knowledge a student may exhibit when solving a problem

(adapted from Star, 2005)]

Also, concrete objects such as fraction bars,

circular fraction area mode, and rectangular fraction

area model were provided to the students.

Particular attention was placed on recording

student’s inscriptions, including written remarks,

and the use of supporting physical models. Each

interview was videotaped and transcribed.

3. Data analysis framework

To better understand the developmental

relationship between conceptual knowledge and

procedural knowledge, I administrated parallel

protocols at the beginning and at the end of each

academic year to see changes in students’ concepts

and procedures over the three years of our project.

My prior research led me to identify four possible

conditions where conceptual knowledge and

procedural knowledge can interact (See Figure 1).

Within this framework, strong conceptual

knowledge is defined as a student’s being able to

represent his or her thinking in which may be

required to understand and solve the given task,

but not necessarily being able to carry out

operations or computational steps in generating a

correct answer. If a student cannot represent his or

her thinking correctly in any representation forms

necessary to solve a given task, this is defined as

weak conceptual knowledge. On the other hand,

strong procedural knowledge is defined as a

student’s ability to demonstrate relatively error-free

execution of a set of skills to correctly find a

solution and demonstrate more than one way of

obtaining a solution. The lack of knowledge of the

formal and syntactical representational system(s) the

inability to express knowledge of those systems in

external, behavioral form, or failure to correctly

execute a problem-solving procedure (and correct it

if a mistake is made), It is defined as weak

procedural knowledge.

To investigate the influence of the unbalanced

development between conceptual knowledge and

procedural knowledge, I focused my analysis on

the two categories which provide the best

opportunity to examine the relationship between

conceptual and procedural knowledge: Category I -

When the student who has strong conceptual

knowledge demonstrates weak procedural

strong
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knowledge, and Category II - when the student

who has weak conceptual knowledge demonstrates

strong procedural knowledge. These two categories

were selected since they provide instances in which

the relationship between conceptual knowledge and

procedural knowledge breaks down. These are

instances which force students to confront their

conceptual knowledge and procedural knowledge as

they attempt to repair one or the other.

IV. Results

In order to clearly delineate problems that had a

higher potential for eliciting one type of knowledge

over the other, I classified problems according

whether or not a procedural operation is given

explicitly by a mathematical symbol. When an

operation is not given explicitly, a problem solver

needs to make decision regarding what

relationships exist in the problem and what

operation(s) correspond to those relationships; in

this type of questions, the student has to choose

which concept he brings to working memory. So

he must collect and organize information of the

problem, choose or invent a procedure (or series of

procedures) corresponding to his concept, and

execute it. On the protocols, when a contextualized

word problem was given to students, they followed

this path. To even approach solving this type of

problems, a problem solver needs to reach at least

Category I in Figure 1; strong conceptual

knowledge and weak procedural knowledge.

A second type of problem I gave consisted of

an operation(s) explicitly requested by a

mathematical symbol (e.g., ÷) or explicit operation

term (e.g., “divide”). If a student can recognize the

operation symbol, then he will execute the

operation in either a formal or informal way. In

my protocols, when a decontextualized calculation

problem was given to students, they followed this

path. To start solving this type of problem, a

problem solver needs to reach at least Category II

in Figure 1; strong procedural knowledge and weak

conceptual knowledge. In both types of problems,

informal procedures may be invented to solve the

problem. Such inventions were examined

specifically to see how students growing

understanding implied conceptual change and

proceduralization.

The episodes that I used in this paper were

from third year of the interview.

1. Category I : When the student who

shows strong conceptual knowledge

demonstrates weak procedural knowledge

During the entire three years of the experiment,

Manuel always started to solve similar

contextualized problems (changing only the

difficulty of the numbers) with the same ways of

thinking. He became more efficient computing big

numbers, which he related number facts using

simple whole number factors and multiples, but he

didn’t show little progress in procedural skills or

on formal ways of computing.

Task 1. Marilyn’s friends Jose and Jamie

are wrapping gifts and they need 2/5 of a

yard of red ribbon to wrap around each

present. They have a red ribbon that is three

yards long. Draw the ribbon and show where
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2/5 of a yard is. Then tell how many gifts

they can wrap with the 3 yards of red

ribbon.

Manuel started to solve the problem by drawing

a group of objects which represents a ribbon. He

drew three separate rectangles to represent three

yards of ribbon. Then he divided each rectangle

into five equal pieces and shaded two of them in

first rectangle (Figure 2).

[Figure 2. Manuel’s inscription of Task 1]

Following this, he quickly counted the number

of small rectangles in the first rectangle by hand.

Immediately, he answered they could wrap 15

gifts. When the interviewer reminded him how

many yards he needed to wrap a gift, he started to

count all the small rectangles by pairs.

Interviewer : For wrapping one gift, how many

yards do you need?

Manuel : Oh! They need two pieces of a yard

per gift, so they can…

Interviewer : Can you represent it as a fraction?

Manuel : They need 


for wrapping a present,

so they can wrap one, two, three, Four,

five, six, seven (he counted each pairs

one by one pointing his fingers.), and

they would have left 


(of a yard).

At the beginning of the solution, even though 3

yards of a ribbon is a continuous object, Manuel

drew it as three separate objects. After that, to

search how many 


were in 3 yards, he didn’t

count all of the small rectangles in the three big

rectangles. Instead he only counted small rectangles

in the first big rectangle and got fifteen 


in the

three big rectangles. This behavior showed he

thought multiplicatively using number facts in

whole number domain: three groups of five equal

pieces. However, at the very next moment, he

counted all pairs of 


to solve how many 


of

a yard in 3 yards. It showed he didn’t think

multiplicatively in rational number domains: three

groups of two and half equal pieces or three

groups of half of five equal pieces or three groups

of 


. He only thought additively in rational

number domain. Also, his inscription (Figure 2)

proved he had strong concept about fractional

quantity and his conceptual knowledge was strong

enough to solve the task, but it didn’t show he

could represent his thinking to formal mathematical

symbols and he had ability to manipulate them.

To examine how flexibly he could use his

conceptual knowledge without relating procedural

knowledge, the interviewer asked a following

question: How many gifts he could wrap with 50

yards of a ribbon if 


of a yard is need to wrap

a gift?

Manuel was sitting on a chair staring at his

picture on the paper without any motion. After

his long silence, the interviewer reduced the

number to 10.
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Interviewer : instead of 50, if I give ten yards,

can you do it?

Manuel : (he thought and nodded.) 25 because a

yard can wrap 2, but Because it’s even,

five groups of two yards, so with two

yards, they can wrap 5, and 5 times 5 is

25 because there are five groups (into 10

yards).

Interviewer : I see. So you can wrap 25 gifts.

Then now can you deal with 50?

Manuel : (he nodded with smile and said

immediately.) 125.

Still, he couldn’t think multiplicatively in fraction

domain: ten groups of two and half equal pieces

or ten groups of 5/2. However, he actively

combined his multiplicative thinking in whole

number domain with informal procedures in

fraction domain. He added 


of yards continually

until he filled in whole number yards with whole

number pairs of equal pieces. Finally, when he

found there were five pairs of equal pieces in two

yards, he solved the task using number facts

without drawing ten yards of ribbon: five groups

of five pairs of equal pieces. After, he could get

an answer for 50 yards easily. However, when the

interviewer investigated his corresponding formal

mathematic representation and procedural knowledge,

his answer was superficial.

Interviewer : so in this question (original task

1), you solved it with a picture. Can you

get the same answer without drawing?

Manuel : no.

Interviewer : can you represent this picture with

mathematical symbol? Like +, -, × ÷ ?

Manuel : (he thought for a while) “plus.”

Interviewer : how?

Manuel : because I added them.

Even though he solved the problem by measuring

his area model with its fractional part, he didn’t

interpret his informal procedure either as

multiplication or as division operation because he

didn’t recognize he actually did double counting;

he counted how many times 


was added to

cover three yards of ribbon while he added 


s

repeatedly. As a result, he chose addition to

represent the situation. Without explicit recognition

of his action, he could not develop his

multiplicative thinking beyond whole number

domain nor develop or activate his formal

procedural knowledge corresponding to this

conceptual knowledge. Furthermore, his weak

procedural knowledge impeded developing his

conceptual knowledge when he tried to construct a

formal mathematic representation that would

abstract and transfer his current understanding to

new situations. Let’s look at the next example, a

parallel problem given six months later.

Task 2. Marilyn’s friends Jose and Jamie

are wrapping gifts and they need 1/3 of a

yard of red ribbon to wrap around each

present. They have a red ribbon that is two

yards long. Draw the ribbon and show where

1/3 of a yard is. Then tell how many gifts

they can wrap with the 2 yards of red

ribbon.

Manuel solved this task in a very similar way
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as he did Task 1 six months earlier. He drew two

separate rectangles, divided one of them to three

pieces, shaded one piece to represent 1/3, and then

he counted the small rectangles. He answered,

“they can wrap six gifts,” partitioning the second

rectangle into three pieces.

[Figure 3. Manuel’s inscription of task 2]

Manuel : They can wrap 6 gifts.

Interviewer : If you get an answer without

drawing, how you can find it? Which

operation do you need to get 6?

Manuel : maybe… there are two yards and one

third, so times, 


· 


, then we can do

it by reciprocal, so 


· 


 


.

[Figure 4. Manuel’s procedure for task 2]

Until that time, he never tried to solve this type

of contextualized task in formal way, so he had to

construct symbolic inscription to represent the

situation using his existing knowledge. He knew he

had 2 and 


, and he had counted six times. He

remembered 2 times 3 equals 6, and 


and 3 are

reciprocal numbers. For him, reciprocal numbers

meant a pair of numbers which the location of the

numerator and the denominator is opposite and he

knew all natural number could be written as a

fraction which had denominator 1. However, he

didn’t know how reciprocal numbers are

manipulated in symbolic operation. He made an

ad-hoc procedure such as: 2×3=6 → 2×


=6, so

that his result matched what he came up with

using his informal procedure and the fraction bar

inscription. At the same time he constructed

improper ad-hoc procedure which produced right

answer to the question, he constructed wrong

concept of reciprocal numbers and wrong

representation about the problem situation. That is,

his weak procedural knowledge dragged down his

conceptual knowledge.

Summary of Category I Development. Manuel

started problem solving with strong conceptual

knowledge in above problems. To represent his

thinking, he related various concepts and

procedures efficiently. However, even though he

succeeded to solve original task using his

conceptual knowledge about fractions as measure

and his informal procedures which were cutting

and counting actions in diagram, and even though

he also solved the additional question which had

bigger number in the same context by connecting

the same conceptual knowledge he had with

multiplicative structure between numeric whole

numbers and adding number facts to the same

informal procedures he used, he didn’t recognize

explicitly what he did and how he did, so he was

unable to reflect correctly his actions to formal

mathematical expressions. Also, his ad-hoc

procedure by combining his weak procedural

knowledge about reciprocal numbers and wrong
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mathematical expression produced a right number

answer, so he could not develop his conceptual

knowledge beyond concrete operation level.

Therefore in summary, the knowledge of the

Category I (strong conceptual knowledge and weak

procedural knowledge) led first, Manuel to succeed

the tasks which had simple numbers and diagram

inscriptions, but it didn’t make him generate

reflected conceptual knowledge. Second, when the

task gave complex numbers beyond his intuition or

different type of inscription with original question,

conceptual knowledge couldn’t produce a solution

without helping of procedural knowledge. Third,

when Manuel tried to construct a symbolic

representation, which describes the problem

situation, from the result of the task, his ad-hoc

procedure was a wrong procedure which brought

right answer. As a result, he constructed wrong

concept to give support to his procedure.

Therefore, conceptual knowledge without support of

procedural knowledge has a limit in its

development.

2. Category II – when the student who

has weak conceptual knowledge demonstrates

strong procedural knowledge

In contrast to those problems where an explicit

context enabled Manuel to use his strong(er)

conceptual knowledge to cover weak(er) procedural

knowledge, when he was given a decontextualized

division problem which was treated most general

form of fraction division problem, he was able to

demonstrate appropriate formal division algorithm

without strong conceptual knowledge. The

following tasks were given roughly after three

weeks from the interview of task 1.

Task 3 : 


÷ 



[Figure 5. Manuel's inscription of his procedure for

Task 3]

Interviewer : Why did you choose multiplying?

Where and when did you get it?

Manuel : 7th grade. (I) Divided, change(d) the

denominator and numerator on the second.

Interviewer : Do you know why 


÷ 


equals




× 


?

Manuel : (he shook his head.)

Interviewer : Then when do you use that method?

Manuel : When do I use it? I use it with two

fractions.

Interviewer : Two fractions? If you only have one

fraction, then you don’t use it, or you

can’t use it?

Manuel: I don’t know.

When Manuel saw the division sign, he

immediately changed the division sign to a

multiplication sign and inverted the second fraction

(Figure 5). He explained division as “the reciprocal

way of multiplication” but he couldn’t explain why

it worked. It showed he had good procedural skill

for these particular type of questions, but he had

poor conceptual understanding corresponding to the

procedure. This result told me that at least some
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strong procedural skills could be developed with

weak conceptual knowledge. However, because

Manuel’s primary connection between his

procedural knowledge and conceptual knowledge

was the division symbol, not the meaning of

division in a mathematical sense, his procedural

knowledge had severe restriction: This kind of

strong procedural skill couldn’t lead naturally the

development of corresponding conceptual knowledge

at the highest level of understanding according to

Davis (1996). In other words, his knowledge was

procedural and what concepts were co-developing

with his procedures pertained only narrowly to

those situations that presented themselves as naked

division of fractions problems. The next vignette

illustrates that by changing the dividend into a

whole number and the divisor into a fraction

which numerator was 1 elicited a completely

different solution procedure from Manuel.

Task 4 : ÷ 



When Manuel saw a division sign between a

whole number and a fraction with a numerator 1,

he interpreted the problem as half of 10, so he got

5 (figure 6a). The interviewer asked him if he

could check correctness of his answer with a

division problem which both dividend and divisor

were whole numbers, showing one of his previous

division solution “÷  ”. He checked his

answer by multiplying the quotient and the divisor

(e.g., ×  ).

After that, however, he was unable to reconcile

what he had just used to check the whole number

division, with division of a whole number by a

fraction (it is likely, because of his good recall of

facts that Manuel might have noticed that he

couldn’t reach original number 10 by multiplying

the quotient 


and divisor 5). Instead of

extending the checking method to fraction number

domain and considering his answer’s correctness,

he kept his answer probably in his belief that was

division made quotient smaller, and he rejected the

checking method in fraction number domain

division problem. He tried to use a different

method to verify his answer: long division

algorithm (figure 6b). However, he put the

dividend outside of a long division sign, and then

hesitated. The reason was probably he never put

fraction to long division symbol and he confused

“dividing by” with the colloquial “dividing into”.

Whatever the reason was, he couldn’t go forward

anymore. As a follow-up, the interviewer asked

him to solve ÷ 


. His answer was three and

one-third.

Figure 6a Figure 6b

[Figure 6. Two inscriptions for dividing a whole

number by a fraction]

Summary of Category II Development. Manuel’s

case shows that, although a student may have

automatic procedural skill responding to specific

conditions, and may be able to solve difficult

problems presented in a particular format, if a

student’s procedural knowledge is not supported by

a larger understanding of the procedure, how it

corresponds to a central conceptual idea, and why

it works the way it does, its utility is limited to

only those formats from which it was learned.
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Manuel could do division by multiplying reciprocal

number of divisor if and only if the dividend was

a fraction and the divisor was a fraction which

numerator was not 1 in a number sentence (See

task 3). In his understanding, division as

multiplication of the inverse was useful only for

fractions and not for all division problems. In

addition, after he solved the problem with formal

mathematic procedure, he didn’t try to make sense

to his answer: he didn’t need to do it because he

already knew correct execution of a correct

procedure yields correct results regardless of his

understanding of the procedure. However he could

not relate it with other his mathematical knowledge

or apply it to division of a whole number by a

fraction just 3 weeks later. He still wanted to

solve the problem procedurally, so he invented a

procedure which involved a reciprocal ad hoc and

construct an explanation (modifying his own

concept), to verify his new procedure. Below is

the part of the interview from task 4.

Interviewer : What is 10 divided by 2?

Manuel : 5.

Interviewer : You said 10 divided by 


is also

5. It means 10 divided by 2 equals 10

divided by 


. It means 2 equals 


,

right?

Manuel : …But it’s rare, sometimes I had done

when I change reciprocal of this, 2 and




, like 1 is, it does mean nothing, so I

just leave 2, so it just 10 divided by 2.

Even though he demonstrated strong procedural

skills in the third task, the lack of understanding

of the reciprocal relationship between multiplication

and division made his skill useless in other

situation. In task 4, he also recognized the long

division sign as another representation of division,

but only remembered part of the procedure because

this skill wasn’t supported by conceptual

understanding that includes fractions. Finally I

concluded that students could have procedural

knowledge without correct corresponding conceptual

knowledge; however, without support of correct

conceptual understanding, procedural knowledge

application is limited since it doesn’t have a role

in developing students’ mathematical ability.

V. Discussion

Figure 7 illustrates, in a flowchart, the general

pattern of Manuel’s problem solving for the two

types of problems. From the figure, two distinct

structures are evident. On the left we see the way

in which he approached problems in context,

utilizing conceptual understanding to choose and

invent procedures towards a solution. On the right,

we see how he utilized his recognition of the

operations signified by number sentences to recall

learned procedures (and in cases where they didn’t

quite fit, ‘tweak’ them a bit to try to generate a

reasonable answer). As can be seen, these two

systems do not overlap significantly except in the

middle when concepts and procedures are highly

related. In Figure 7, the dotted arrows represent

accommodation processes by which, when

previously distinct concepts were connected, the

resulting amalgamation (i.e., higher-order concepts)



- 530 -

[Figure 7. Flowchart illustrating the relationship between conceptual and procedural knowledge in

Manuel’s solving rational number problems]

contained the procedures previously associated with

each of the constituent ideas. Likewise, when

previously dissociated procedures were combined,

they appeared to bring with them their associated

conceptual domains, generating new, higher-order

understandings.

As Manuel’s case illustrates, it seems a

reasonable leap of faith to accept that when a

student has multiple (reasonable) procedures

“attached” to a particular concept, s/he is able to

solve the problem by refining their procedures to

fit the situation at hand. Likewise, when a student

has multiple (reasonable) concepts “attached” to a

procedure, s/he is able to solve the problem by

examining the relationships between concepts to

see how the procedure should be instantiated. I

have seen in other children in my sample that they

tend to have well developed systems that appear to

be parallel to each other, similar to Manuel my

epistemic subject (Helding, Middleton, & Louis,

2007). This evidence reinforces the general body of

evidence that strong conceptual knowledge helps

students perceive the general picture a question

paints. It can assist students to begin a correct

approach to a solution before calculation and also

it may help them make sense of their solution.

Conceptual knowledge is used as a basis for

selection and execution of learned procedures. It

may also be used to call upon heuristic strategies

if the structure of the problem and its probable

solution paths are unclear (Schoenfeld, 1979).

Following conceptual recognition, if automation

of each step in a corresponding procedure is

acquired well, a student doesn’t need to

consciously attend to its’ corresponding concept

fully. That is, conceptual knowledge is used

implicitly as a background for framing the

execution of a well-learned procedure. However if

a student doesn’t have the concept at the heart of

the procedure, or s/he doesn’t cannot relate the
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procedure to other procedures, then as I observed

in task 3 with Manuel, the student is unlikely to have

the capacity to “weak” his procedure appropriately

for current task information. Subsequently s/he can

only use their procedural skill in same conditions

under which s/he learned it.

Moreover, even near-transfer is made difficult

when inconsistent or erroneous conceptual notions

are associated with formal procedures. This is not

to say that transfer has not occurred, quite the

contrary is shown here. Manuel transferred his

knowledge of whole number division and rationally

applied that knowledge, both conceptually and

procedurally, to division by fractions. The problem

for us was that Manuel transferred concepts that

were mathematically incorrect. The general findings

in the literature showing that individuals tend to

over-use simple but familiar procedures over more

refined, efficient ones in novel situations seems to

be a likely outcome of strong procedural knowledge

and relatively weak concepts being brought to bear

(Helding et al., 2007; Simon, 1990).

On the other hand, if automation of each step in

a procedure is not yet acquired, but a student

understands the concept of the problem and makes

connection from it to other concepts or other

procedures, then as I observed in the extension of

the Manuel’s task 1, he/she can bring out

corresponding concepts using more informal or

invented procedures. Additionally, in a modular

fashion, students can connect two or more related

concepts and extend or modify corresponding

procedures which become associated with the new,

merged, concept. In this situation, conceptual

knowledge is used explicitly.

VI. Conclusions

Our understanding of the interrelationship

between the development of conceptual knowledge

and procedural knowledge is still poor, fragmented,

and over-reduced to the examination of each type

of knowledge separately (Star, 2005). Even though

conceptual knowledge and procedural knowledge

are both important in mathematics, the research

and education communities have shown a tendency

to value one type of knowledge above the other.

On both sides of the debate, there is a firm belief

that the stronger type of knowledge will naturally

lead to the development of the other. As a result,

the current discourse in the reform of mathematics

education still downplays procedural skill, assuming

it should play a secondary, supporting role to

conceptual understanding in students’ learning of

mathematics (Carpenter, Franke, Jacobs, Fennema,

& Empson, 1998; Pesek & Kirschner, 2000;).

In contrast, the data in this paper shows that

when students construct their mathematical

knowledge, if one side of these two different types

of knowledge is extremely weak compared to the

other, the weaker side can impede the development

of the stronger knowledge. The results suggest the

notion that, at least in instructional situations, they

co-develop. In other words, students tend to build

procedural knowledge and conceptual knowledge

together as components of the same structure when

learning fractions (Byrnes & Wasik, 1991;

Rittle-Johnson & Alibali, 1999; Rittle-Johnson et

al., 2001).

Manuel presented a good case to examine the

interrelationship between developing conceptual

knowledge and procedural knowledge. Manuel
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consistently showed strong conceptual thinking but

weak procedural skills for contextualized problems

involving division of fractions. But when he faced

with division-by-fractions problems presented as

number sentences, the very same person exhibited

strong procedural skills but weak conceptual

understanding. This case illustrated that each type

of knowledge has developed unevenly in these

situations and that, at least for knowledge that

yields mathematically coherent and correct answers,

they have not yet intertwined with each other. This

is not to say that Manuel did not develop

conceptual knowledge associated with his strong

procedural knowledge, nor do I suggest that

Manuel did not have proceduralized his strong

conceptual knowledge. It is clear from the

transcripts that he had rather developed notions that

happened to be incorrect conceptually or “buggy”

procedurally. The co-development of conceptual and

procedural knowledge, at least for rational numbers

and other complex mathematical situations,

therefore, appears to require something else

altogether if the resulting knowledge is to be both

transferable and useful practically (Davis, 2006;

Scardamalia & Bereiter, 2006). Attention must be

paid to the purposeful connecting of procedures

and concepts (the dotted arrows in Figure 7) in

instructional settings such that context,

mathematical structure, and procedural operations

are to develop into a coherent system of

knowledge.
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개념적 지식과 절차적 지식 간의 불균형한 발달이 학생들의 유리수

영역의 지식 형성에 미치는 영향

김 아 영 (이화여자대학교 교육대학원/수송중학교)

이 논문에서 연구자는 중학생들의 수학 학습

을 삼 년간에 걸쳐 관찰하면서 그들이 유리수

범위에서 형성한 개념적 지식과 절차적 지식

사이의 발달 관계에 대하여 조사하였다. 특히,

아래의 두 상황에서 학생들의 개념적 지식과

절차적 지식 사이의 불균형한 발달이 이후의

지식 발달에 어떤 영향을 미치는 지에 관하여

조사하였다: (a) 상대적으로 강한 개념적 지식

과 약한 절차적 지식을 가진 경우; (b) 상대적

으로 약한 개념적 지식과 강한 절차적 지식을

가진 경우. 연구 결과는 개념적 지식과 절차적

지식이 균형적인 방식으로 (즉, 아주 근접하게

되풀이되거나 동시에) 발달될 때 가장 생산적

이라는 것을 시사하며 또한 어느 한 가지 유형

의 지식이 다른 유형의 지식보다 우위에 있다

는 가정에 의문에 제시한다.
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