DOI QR코드

DOI QR Code

SIMM Method Based on Acceleration Extraction for Nonlinear Maneuvering Target Tracking

  • Son, Hyun-Seung (Dept. of Electrical and Electronic Engineering, Yonsei University) ;
  • Park, Jin-Bae (Dept. of Electrical and Electronic Engineering, Yonsei University) ;
  • Joo, Young-Hoon (Dept. of Control and Robot Engineering, Kunsan University)
  • 투고 : 2011.04.06
  • 심사 : 2011.10.26
  • 발행 : 2012.03.01

초록

This paper presents the smart interacting multiple model (SIMM) using the concept of predicted point and maximum noise level. Maximum noise level means the largest value of the mere noises. We utilize the positional difference between measured point and predicted point as acceleration. Comparing this acceleration with the maximum noise level, we extract the acceleration to recognize the characteristics of the target. To estimate the acceleration, we propose an optional algorithm utilizing the proposed method and the Kalman filter (KF) selectively. Also, for increasing the effect of estimation, the weight given at each sub-filter of the interacting multiple model (IMM) structure is varying according to the rate of noise scale. All the procedures of the proposed algorithm can be implemented by an on-line system. Finally, an example is provided to show the effectiveness of the proposed algorithm.

키워드

참고문헌

  1. Y. Bar-shalom and X. R. Li, Estimation and tracking principles, techniques, and software, Artech House, 1993.
  2. M. S. Grewal and A. P. Andrews, Kalman filtering theory and practice, Prentice Hall, 1993.
  3. Y. Bar-shalom and T. E. Fortman, Tracking and data association, Academic Press, 1988.
  4. S. Blackman and R. Popoli, Design and analysis of modern tracking systems, Artech House, 1999.
  5. Craig M. Payne, Principles of Naval Weapon Systems, Naval Institute Press, 2006.
  6. B. J. Lee, J. B. Park, and Y. H. Joo, "Fuzzy-logicbased IMM algorithm for tracking a maneuvering target", IEE Proceedings Radar, Sonar and Navigation, vol. 152, no. 1, pp. 16-22, 2005. https://doi.org/10.1049/ip-rsn:20041002
  7. S. Y. Noh, J. B. Park, and Y. H. Joo, "Intelligent tracking algorithm for maneuvering target using Kalman filter with fuzzy gain", IET Proceedings- Radar, Sonar and Navigation, vol. 1, no. 3, pp. 241- 247, 2007. https://doi.org/10.1049/iet-rsn:20060030
  8. R. W. Osborne, III, Y. Bar-shalom, and T. Kirubarajan, "Radar measurement noise variance estimation with several targets of opportunity", IEEE Transactions on Aerospace and Electronic Systems, vol. 44, pp. 985-995, 2008. https://doi.org/10.1109/TAES.2008.4655358
  9. Hyun-Sik Kim, Joon-Goo Park, and Dongik Lee, "Adaptive fuzzy IMM algorithm for uncertain target tracking", International Journal of Control, Automation, and Systems, vol. 7, no. 6, pp. 1001- 1008, 2009. https://doi.org/10.1007/s12555-009-0617-6
  10. Singer, R. A. "Estimating optimal tracking filter performance for manned maneuvering targets", IEEE Transactions Aerospace and Electronic Systems, AES-6, vol. 4, pp. 473-483, 1970. https://doi.org/10.1109/TAES.1970.310128
  11. P. Gutman and V. Mordekhai "Tracking targets using adaptive Kalman filtering", IEEE Transactions on Aerospace and Electronic Systems, vol. 26, pp. 691- 698, 1990. https://doi.org/10.1109/7.102704
  12. Y. T. Chan, A. G. C. Hu, and J. B. Plant, "A Kalman filter based tracking scheme with input estimation", IEEE Transactions on Aerospace and Electronic Systems, vol. 15, pp. 237-244, 1979. https://doi.org/10.1109/TAES.1979.308710
  13. P. L. Bogler, "Tracking a maneuvering target using input estimation", IEEE Transactions on Aerospace and Electronic Systems, vol. 23, pp. 298-310, 1987. https://doi.org/10.1109/TAES.1987.310826
  14. Y. Bar-Shalom and K. Birmiwal, "Variable dimension filter for maneuvering target tracking", IEEE Transactions on Aerospace and Electronic Systems, vol. 18, pp. 621-629, 1982. https://doi.org/10.1109/TAES.1982.309274
  15. A. T. Alouani, P. Xia, T. R. Rice, and W. D. Blair, "A two-stage Kalman estimator for state estimation in the presence of random bias and for tracking a maneuvering targets", Proceedings of 30th IEEE Conference on Decision and Control, pp. 2059-2062, 1991.
  16. G. A. Ackerson and K. S. Fu, "On state estimation in switching environments", IEEE Transactions on Automatic Control, vol. 15, pp. 10-17, 1970. https://doi.org/10.1109/TAC.1970.1099359
  17. C. B. Chang and M. Athans, "State estimation for discrete system with switching parameters", IEEE Transactions on Aerospace and Electronic Systems, vol. 14, pp. 418-425, 1978. https://doi.org/10.1109/TAES.1978.308603
  18. H. A. P. Blom and Y. Bar-Shalom, "The interacting multiple model algorithm for systems with Markovian switching coefficients", IEEE Transactions on Automatic Control, vol. 33, pp. 780- 783, 1988. https://doi.org/10.1109/9.1299
  19. Y. Bar-Shalom, K. C. Chang, and H. A. P. Blom, "Tracking a maneuvering target using input estimation versus the interacting multiple model algorithm", IEEE Transactions on Aerospace and Electronic Systems, vol. 25, pp. 296-300, 1989. https://doi.org/10.1109/7.18693
  20. E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, "Interacting multiple model methods in target tracking: a survey", IEEE Transactions on Aerospace and Electronic Systems, vol. 34, pp. 103-123, 1998. https://doi.org/10.1109/7.640267
  21. D. P. Atherton and H. J. Lin, "Parallel implementtation of IMM tracking algorithm using transputers", IEE Proceedings-Radar, Sonar and Navigation, vol. 141, pp. 325-332, 1994. https://doi.org/10.1049/ip-rsn:19941513
  22. A. Munir and D. P. Atherton, "Adaptive interacting multiple model algorithm for tracking a maneuvering target", IEE Proceedings-Radar, Sonar and Navigation, vol. 142, pp. 11-17, 1995. https://doi.org/10.1049/ip-rsn:19951528

피인용 문헌

  1. The Reduction Methodology of External Noise with Segmentalized PSO-FCM: Its Application to Phased Conversion of the Radar System on Board vol.18, pp.7, 2012, https://doi.org/10.5302/J.ICROS.2012.18.7.638
  2. A Target Tracking Based on Bearing and Range Measurement With Unknown Noise Statistics vol.8, pp.6, 2013, https://doi.org/10.5370/JEET.2013.8.6.1520
  3. Segmentalized FCM-based tracking algorithm for zigzag maneuvering target vol.13, pp.1, 2015, https://doi.org/10.1007/s12555-013-0406-0
  4. Intelligent Range Decision Method for Figure of Merit of Sonar Equation vol.23, pp.4, 2013, https://doi.org/10.5391/JKIIS.2013.23.4.304