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ABSTRACT

This study examined the cognitive consequences of constructivist teaching practices on the acquisition and 

transfer of programming with respect to the design of an instructional context that would encourage students 

to engage in reflective thought; the cognitive consequences of learning in the constructivist context; and the 

relation between the social and the individual in the teaching and learning process of programming. Students 

worked on a variety of programming and design problems in constructivist instructional contexts. The results 

indicated that between-group differences over repeated measures consistently favored students in reflective 

instruction. Rather than simple differences on measures, the pattern of mean differences over time conformed 

to a chain of cognitive consequences regulating the acquisition of programming. The implications of the study 

and suggestions for future research were discussed.
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프로그래밍 교수-학습에 대한 구성주의 접근
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요 약

본 연구는 프로그래밍 교육에 구성주의 교수–학습을 적용하여 프로그래밍 습득 및 전이에 미치는 영향을 분석해 보는 

데 목적이 있다. 이에 따라 프로그래밍 학습을 위한 구성주의 기반 교수 환경을 설계하고 이러한 환경에서 실제로 수업을 

실시하였다. 본 연구의 목적 및 선행 연구에 기초하여 고안된 연구 도구를 사용하여 프로그래밍 학습 및 태도에 미치는 효

과 및 관련 변인들을 측정 분석하였다. 분석 결과 구성주의 기반 프로그래밍 교수–학습 과정에서 연구 대상의 학년 및 교

수 환경에 따라 유의미한 효과가 있었으며 긍정적인 영향을 미치는 것으로 나타났다. 본 연구의 결과에 대한 시사점 및 후

속 연구에 대한 제언을 제시하였다.

키워드 : 프로그래밍 교수-학습, 구성주의

논문투고: 2012-09-20

논문심사: 2012-09-20

심사완료: 2012-09-24



364   한국정보교육학회 논문지 제16권 제3호

1. Introduction

1.1. Need for the Study

Although the theoretical tradition initiated by 
Dewey underscores the importance of reflection to 
education, it is silent about fruitful targets for 
reflection in specific domains. Hence, this study relied 
on previous research about programming to determine 
what might be important to target for constructivist 
teaching and learning[21]. First, studies of expert and 
novice programmers suggest that experts take a design 
perspective on programming, that is, they think about 
the goals of the program and potential relations 
among chunks of code to accomplish their goals, 
whereas novice programmers tend to see programming 
as equivalent to writing code[1][17][25].

Second, novice programmers often identify 
programming actions at the level of individual 
programming statements; they fail to "chunk" program 
code in relation to the goal it is intended to 
accomplish[15]; e.g., the programming structure is flat 
rather than hierarchical.

Third, and related to the first two points, students 
often treat programs as local constructions without 
thinking much about their connections to other related 
programs or ideas. This tendency highlights the 
importance of "bridging instruction" to help students 
develop relations among programming constructs[16].

Fourth, the very interactivity of programming can 
lead students to chains of action-reaction, rather than 
mindful consideration of the consequences of their 
activity[7].

These research findings collectively suggest fruitful 
targets for reflection because more mindful consideration 
of any or all of them may have a powerful impact on 
learning. The research findings guided the development 
of constructivist teaching practices, each of which was 
intended to promote more mindful consideration of a 
programming language[5][26]. To this end, the present 

study instigated four general classroom practices, each 
designed to focus on a key target for constructivist 
teaching and learning in the context of programming, as 
follows: (a) dialogue about design principles and real 
audiences for program to promote reflection about 
programming as design rather than as simply writing 
code, (b) provision of programming templates to 
exemplify and promote reflection about key principles of 
programming design, like modularity, (c) summarization 
of the action of programming code to promote reflection 
about the action of chunks of code rather than lines of 
code, and (d) compare-contrast questions to help students 
reflect dialogically about relations among different 
programs or chunks of code, or about relations between 
programming and everyday experiences.

This study attempted to design a program of 
constructivist instruction by considering previous research 
about programming. Taken as a whole, the research on 
programming supports the need to promote reflection 
about programming activity, especially because the very 
interactivity of computer programming can disguise the 
virtues of considered action. To counteract this tendency, 
the present study aims to design constructivist instruction 
to foster reflection in the teaching and learning process 
of a programming language.

1.2. Purpose of the Study

The purposes of this study were threefold:
First, to design an instructional context that would 

encourage students to engage in reflective thought;
Second, to examine the cognitive consequences of 

learning in the constructivist context, with the focus on 
the relation between reflection and the development of 
both simpler and more complex forms of programming 
knowledge;

Third, to analyze the relation between the social, 
here represented by a set of communally shared 
design practices, and the individual in the teaching 
and learning process of programming.
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2. Designing Constructivist Teaching

2.1. Student Designers

Students reflect about design, both at the level of the 
semantics of individual commands and at the schematic 
and strategic levels of program design, by engaging in 
teacher-led dialogue about it (see [4][11][13]). To 
stimulate reflection about the semantics of programming 
commands, the instructor might ask questions like: 

If you were making up a programming 
language, how would you do this? Why? What 
are some other ways that you might do this? 
What should the units be? Why? Why not? 
Which one should we use?

These questions promote student dialogue about the 
assumptions and design principles of the language; 
students' consensual choices are occasionally incorporated 
as conventions to reflect these conventions. To promote 
consideration of design strategies at the program level, 
students' programs are tested periodically by having 
other students use them. Student observation of users' 
reactions to their programs is intended to prompt 
consideration of alternative designs and help students 
develop a language of design[14][18].

2.2. Programming Templates

Programming templates are provided to students in 
the constructivist context. Each programming template 
exemplifies a major programming construct, such as 
breaking problems down by writing separate subprograms 
(i.e., problem decomposition) or using procedures to 
package collections of commands (i.e., program 
modularity). The rationale for this approach is to 
objectify and make visible in code important 
programming practices and to make it easier for students 
to compare their practices with those of more skilled 
programmers. The programming templates are also 

intended to serve as source analogs for programming 
solutions. In addition to problem decomposition and 
modularization, templates are written for programming 
conventions about variables, conditionals, list processing, 
looping, and debugging.

2.3. Summarization

To promote reflection about chunks of code rather than 
individual lines of code, students summarize the actions 
of their procedures and what they have accomplished 
each day. Summarization-skill training is modeled after 
that of Palinscar and Brown[19] and Day[8], beginning 
with short passages of text and proceeding to program 
code. The rationale for this component of constructivist 
teaching is that, by summarizing procedures, students 
would reflect on the program's purpose, thus bridging the 
programming actions to the larger context of their use, 
and by summarizing their accomplishments for the day, 
students would similarly reflect on the connection 
between purpose and structure.

2.4. Compare-Contrast Questions

Students are asked to compare what they are doing to 
other things that they know about or to articulate 
similarities and differences among their procedures. The 
rationale is to help students develop problem schemata 
and to bridge from their knowledge of a programming 
language to related contexts. The questions are also 
designed to help students distinguish necessary commands 
from superfluous commands when they design a program.

3. Method

3.1 Subjects

The participants in the study were students at two 
grades: twenty-four third-grade and twenty-six sixth-grade 
students from an elementary school located in a 
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<Table 1> Summary of Constructs and Measures

Theoretical Construct Measure

Cognitive resources Spatial matrix task
 Sentence span 
 Working memory
Programming knowledge
  Syntactic Command recall 
  Semantic Move-turn mastery
 Programming constructs mastery
  Schematic Command triads

Procedure triads

metropolitan school district. All the subjects had some 
previous experience with computers at or outside of 
school in a variety of subject areas. The subjects were 
rank ordered within each grade on the general composite 
score and assigned to instructional contexts via a 
stratified random sampling procedure. They remained in 
the same instructional contexts throughout the study.

3.2 Procedure

Prior to instruction, all participants were interviewed about 
their previous experience with computers, both in the school 
and at home. Three tasks measuring verbal and spatial 
working memory were administered. Scores obtained on the 
three measures of working memory were standardized within 
each grade; a sum of these three measures was 
restandardized to form a general working-memory variable. 
This working-memory standard score was then combined 
with a reading comprehension score to form a general 
composite of working memory and reading comprehension. 
The construction of this blocking variable, the composite of 
working memory and prior achievement, drew from previous 
studies that indicated strong relations among programming 
learning, prior achievement in school measured by reading 
skill, and individual differences in working memory[12][25].

The participants were rank ordered within each grade 
on the general composite score and assigned randomly 
by alternate ranks to one of two instructional conditions: 
the inquiry-based and reflective context. Students in both 
instructional contexts worked for a total of eighteen 
40-minute instructional sessions spanning three months of 
the school calendar. The order of the meeting times was 
counterbalanced between instructional conditions at each 
grade to avoid teacher-practice effects. Learning was 
assessed periodically throughout the course of instruction 
and immediately following the end of instruction.

3.3 Description of Instruction

The programming topics ranged from a simple 

introduction to graphics command and the design and 
production of a movie to more complex programming 
constructs, facing more complex challenges of design, like 
those involved in creating interactive programs as well as 
games or tutorials, with increasing orchestration of skills 
required over the course of instruction[9]. The primary 
difference between the two instructional contexts was the 
four practices designed to increase students' opportunities 
for reflection, described previously: (a) teaching from a 
design perspective, (b) student summaries of procedures 
and daily activity, (c) availability of programming 
templates, and (d) emphasis on compare-contrast questions 
that bridged between different programming episodes or 
between programming and other activities. In addition to 
these four practices, ways to objectify and make visible 
particular skills were also introduced throughout the 
course of instruction. These included computer programs 
and role-playing skits to help students reflect about the 
semantics of move and turn commands, the semantics of 
looping, the steps involved in debugging, and the 
operation of variables in programs.

3.4 Overview of Measures

As indicated previously, this study aimed to examine 
student acquisition of four levels of programming 
knowledge, transfer of the knowledge, and the relation 
between socially constituted beliefs and individual 
performance. Table 1 displays the wide range of 
constructs and measures employed in this study.
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Cued recall
  Strategic Graphics design problems
 Debugging problems
Transfer: Specific skills Error detection 
 Summarization
Transfer: General skills Integrating old-new information
 Planning 
 Pattern induction 
Attitude & Beliefs Attitudes toward programming 
 Programming preferences

3.5 Research Design and Data Analysis

The study employed a randomized block design[3]. 
The primary analytic technique used was the analysis of 
covariance (ANCOVA), with each student's standardized 
score on the blocking variable, the composite of 
working memory and reading ability, serving as the 
covariate. The between-subjects factors were instructional 
condition and grade. Separate analyses were conducted 
within grade whenever incommensurate measurement 
made between-grade comparisons fruitless.

4. Results and Discussion

Four sets of results are presented comparing student 
learning between instructional contexts and grades. First, 
students' short-term acquisition of levels of programming 
knowledge is examined. Second, students' long-term 
acquisition of programming knowledge is presented. 
Third, transfer of knowledge is then presented, followed 
by the examination of relations between socially 
constituted beliefs and individual performance.

4.1 Short-Term Acquisition of Knowledge

Table 2 displays means and standard deviations by 
instructional context and grade for measures of (a) 
working memory, (b) recall of commands: syntactic 
level of knowledge, (c) mastery of turn and move 
commands: semantic level of knowledge, and (d) each 
of two measures of strategic knowledge: solving  

graphics design problems and debugging.

 Grade 3 Grade 6
 Instructional Context Instructional Context
 Inquiry Reflective Inquiry Reflective
 M SD M SD M SD M SD

Working memory 12.5 7.8 11.4 5.0 33.6 23.7 34.2 21.1

Syntactic 8.5 5.4 8.5 4.1 13.8 4.3 14.2 3.6

Semantic 23.1 7.5 33.5 10.9 37.4 13.7 50.1 4.6
Strategic 
  Design 2.5 1.7 3.6 1.5 2.2 1.5 5.4 2.3
  Debugging 3.2 1.9 3.8 1.9 3.9 2.1 6.8 2.7

<Table 2> Means and standard deviations of measures of short-term 
acquisition of levels of programming knowledge

The results of ANCOVA applied to the measure of 
working memory indicated grade-related differences, F 
(l, 45) = 26.94, p < .01, and the blocking variable 
(composed of working memory and achievement scores) 
accounted, as expected, for a significant portion of the 
within-group regression, F (1, 45) = 19.01, p < .01. 
There were no differences due to instructional 
conditions at either grade. For the measure of command 
recall, the results indicated no differences between 
instructional conditions, but the difference between 
grades was significant; F (1, 45) = 20.64, p < .01.

The results of the analysis applied to the measure 
of the mastery of move and turn commands indicated 
significant differences between instructional conditions, 
F (1, 45) = 18.84, p < .01, but not between grades. 
The results of the analysis of the composite measure 
of problem-solving suggested an interaction between 
grade and instructional condition, F (1, 45) = 5.24, p 
< .05. Separate analyses within each grade indicated 
no reliable difference between instructional conditions 
at grade three, but a reliable difference between 
instructional conditions at grade six, F (1, 23) = 
17.48, p < .01. The difference between grades on the 
composite measure of problem-solving performance 
was significant, t = 2.24, p < .01.

In summary, no differences were found between 
reflective and inquiry instruction for the acquisition of 
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syntactic knowledge. Students participating in either 
form of instruction learned about syntax, although 
sixth-grade students learned more commands on average 
than did third-grade students. However, students in the 
reflective context at both grade levels learned more 
about the semantics of these commands, but sixth-grade 
students were on average no better than third-grade 
students. Students in the reflective context demonstrated 
superior problem-solving skills (strategic knowledge) at 
grade six but not at grade three. Differences in 
working-memory resources were evident between grades. 
The results show a form of discriminant validity. First, 
as expected, the reflective intervention made no 
difference for students' recall of commands. Second, 
consistent with the chain-of-consequences hypothesis, the 
highest level of between-group differences was centered 
at the semantic level in the third grade and the 
strategic level in the sixth grade.

4.2 Long-Term Acquisition of Knowledge

Table 3 displays means and standard deviations for 
the long-term acquisition of four levels of programming 
knowledge: syntax, semantics, schematic, and strategic.

 Grade 3 Grade 6
 Instructional Context Instructional Context
 Inquiry Reflective Inquiry Reflective

 M SD M SD M SD M SD

Syntactic 19.8 4.2 21.0 5.2 36.7 11.1 39.9 8.7

Semantic 34.1 11.5 38.9 9.5 49.3 8.2 51.5 4.2
Schematic 13.0 5.3 15.9 4.5 21.6 9.1 22.3 4.1 
Strategic
  Design 1.3 0.9 5.8 4.0 3.5 2.1 9.2 5.7 
  Debugging 2.5 2.3 6.0 1.8 6.2 4.5 18.0 8.1 

<Table 3> Means and standard deviations of measures of long-term 
acquisition of levels of programming knowledge

Syntactic knowledge. The results of ANCOVA 
applied to a composite variable of the simple recall of 
commands across time indicated no reliable differences 
between instructional methods,  but reliable differences 

between grades: F (1, 45) = 5.46, p < .05. The 
blocking variable accounted for a significant portion of 
the within-groups regression, F (l, 45)= 6.50, p < .05.

Semantic knowledge. The results of the analysis 
indicated no significant differences between inquiry and 
reflective forms of instruction at either grade level. 
The blocking variable at both grades accounted for a 
significant percentage of the within-group regression 
for this measure: F (1, 21) = 8.02, P < .01 at grade 
three and F (l, 23) = 13.19, P < .01 at grade six.

Schematic knowledge. Students' schematic knowledge 
was represented by a composite standard score consisting 
of the sum of standard scores within each grade for the 
postinstructional administration of command triads, 
procedure triads, and the cued recall of  commands 
fitted by the ordered tree algorithm. The results 
suggested reliable differences between instructional 
conditions at the third grade, F (1, 21) = 10.68, p < 
.01, but not at the sixth grade. The blocking variable 
did not account for a significant portion of the 
within-groups regression at the third grade, but it did at 
the sixth grade, F (l, 23) = 5.79, p < .01.

Strategic knowledge. Strategic knowledge was assessed 
by designing a graphic program and by debugging. 
Different forms of these measures were administered to 
each grade. The results of the analysis of the measure of 
program design suggest reliable differences between 
instructional conditions at each grade level: F (1, 21 )= 
13.99, p < .01, at grade three and F (1, 23) = 11.64, p 
< .01, at grade six. The blocking variable was unrelated 
to performance on this measure. The results of the 
analysis of the measure of debugging also indicated 
reliable differences between instructional conditions at 
each grade level: F (1, 21) = 18.68, p < .01, at grade 
three and F (1, 23)= 23.87, P < .01, at grade six. The 
blocking variable accounted for a significant portion of 
the within-group regression: F (l, 21) = 5.18, p < .05, at 
grade three and F (l, 23) = 6.08, p < .05, at grade six.

In summary, after a prolonged period of teaching 
and learning, there was no difference in student 
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learning between instructional contexts with respect to 
either syntax or semantics, although sixth graders 
learned more on average about both forms of 
knowledge than did the third graders. Students in the 
third grade participating in the reflective context 
developed more schematic knowledge than their 
counterparts participating in the inquiry context. No 
such advantage was found for sixth-grade students. 
Students participating in the reflective context at both 
grade levels were better able to put their knowledge 
to use. The pattern of results conformed to the 
cognitive-chain hypothesis. At the sixth grade, the 
benefits of reflection were evident only at the top of 
the chain, strategic knowledge, whereas for younger 
students, the benefits of reflection started at the 
schematic level.

4.3 Transfer

Student performance on measures of transfer by 
grade and instructional condition is shown in Table 4. 
The ANCOVA results of the measure of error 
detection indicate reliable differences between 
instructional conditions at each grade: F (1, 21) = 
14.46, p < .01, at grade three, and F (l, 23) = 4.84, 
p < .05, at grade six. The correlation between student 
performance on debugging and  error detection was 
substantial at each grade: r (22) = .77, p < .05, and r 
(24) = .60, p < .05, respectively. The results for the 
transfer measure of summarization also suggests 
reliable differences between instructional conditions: F 
(l, 21) = 25.22, p < .01, for grade three and F (l, 23) 
= 4.64, p < .05, for grade six. The composite 
blocking variable did not account for a significant 
portion of the within-groups regression. As expected, 
contexts at either grade level for the more general 
transfer measures of planning or inducing numeric and 
spatial patterns. In summary, the pattern of results for 
the measures of transfer conformed to that of other 
studies of programming: When general skills are taught 

and assessed specifically, transfer is evident[20][23].

 Grade 3 Grade 6
 Instructional Context Instructional Context
 Inquiry Reflective Inquiry Reflective
 M SD M SD  M SD M SD

Error detection 4.5 3.9 11.1 4.5  9.6 7.1 13.9 3.1
Summarization 6.5 3.1 11.2 2.7  10.4 4.5 13.9 3.5 
Planning      
  Violations 4.1 2.4 3.0 1.4  2.6 2.5 1.9 1.6 
  Path length 21.3 1.5 21.6 1.7  19.9 2.8 20.5 3.2 
Patterns          
  Numeric 5.7 2.5 6.8 2.3  12.4 2.9 12.8 3.6 
  Spatial 1.1 0.8 1.4 0.8  1.6 0.8 1.9 1.0 
Attitude 65.3 8.4 59.8 12.9  58.8 15.9 63.3 13.9 
Beliefs      
  Debugging - - - -  10.4 2.3 12.4 2.6 
  Problem heuristics - - - -  12.8 2.4 16.8 2.7 
  Program design - - - -  11.4 2.9 14.8 2.2 
  Program preference 0.8 0.7 1.7 0.7  1.2 0.8 1.7 0.5 

<Table 4> Means and standard deviations for measures of transfer, 
attitude, and beliefs

4.4 Attitude and Beliefs

The means and standard deviations for 
postinstructional measures of attitude toward and 
beliefs about programming are shown in Table 4.

Attitude. No differences between grades or instructional 
conditions were detected for student attitude toward their 
programming experiences, with the mean judgment 
centered around the agree point of the scale.

Beliefs. The measure of programming preference 
suggests a higher endorsement of modular programming 
practices, using procedures and subprocedures, in the 
reflective group at each grade level, although the 
difference was reliable only at the third grade F (l, 21) 
= 11.08, p < .01. The analyses of students' beliefs 
about programming practices were confined to the sixth 
grade. Students in the reflective condition were more 
likely to report agreement with statements reflecting 
ideal practices about debugging, problem-solving 
heuristics, and program design; debugging, t (24) = 
2.08, p < .05, problem-solving heuristics, t (24) = 4.00, 
p < .01, and program design, t (24) = 3.23, p < .01.
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5. Conclusion

This study examined the cognitive consequences of 
constructivist teaching practices on the acquisition and 
transfer of programming. Students worked on a variety 
of programming and design problems in either an 
inquiry or reflective instructional context. The inquiry 
context represented former, research-tested best 
practices in which teachers elicited predictions, asked 
leading questions, and assisted students when they 
encountered programming impasses. The reflective 
context was designed to improve on these practices by 
providing explicit encouragement of a design stance 
where students assumed roles as potential designers as 
well as actual roles as the designers of their own 
programs[22]. General instructional methods like the 
adoption of a student-designer approach and the use of 
programming templates were intended to promote the 
growth of reflection across a wide range of computer 
programming activities. Other instructional methods 
made specific elements of programming more visible 
as objects for reflection. In each instructional context 
and grade, the study assessed students' learning of (a) 
multiple forms of programming knowledge, (b) 
transferable components of learning, and (c) students' 
attitude toward and beliefs about their learning 
experiences. At each grade level, consistent and 
persistent differences between the inquiry and reflective 
instructional contexts were found. However, rather than 
simple mean differences between instructional contexts, 
the results on most measures conformed to a pattern 
suggested by a chain of cognitive consequences[2][17].

The pattern of mean differences between 
instructional contexts among the measures of the four 
levels of programming knowledge supports a chain of 
cognitive consequences, in which learning of lower 
levels of knowledge supports the acquisition of higher 
levels of competence[10][15]. In this study, lower 
levels of knowledge were embedded within higher 
levels of knowledge, as suggested by theories of 

cognitive apprenticeship that caution against learning 
skills in isolation[6], so the claim is not that one 
level must be mastered before learning anything about 
the next. Instead, the claim of the theory as applied 
to this study is that lower levels of learning are 
consolidated before higher levels are consolidated.

The results suggest that students in the reflective 
context at both grade levels transferred some 
components of learning to related contexts. Transfer of 
specific skills like detecting errors is feasible to the 
extent to which acquisition and transfer tasks share 
mental units in common[24]. The results obtained 
generally support this line of work: Students in the 
reflective context received more effective instruction 
about skills like summarization and program debugging, 
and they transferred these skills more readily than did 
their counterparts. Transfer of general skills was often 
the lodestone of earlier research about the utility of 
learning programming languages, but more than a 
decade of research suggests otherwise. While important 
and interesting findings have been revealed, the study 
needs to be replicated. In addition, Future research 
employing other types of approaches to programming 
instruction may be worth further investigation.
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