
Teaching and Learning Programming: A Constructivist Approach 363

Teaching and Learning Programming:

A Constructivist Approach

1)Miwha Lee
Busan National University of Education

ABSTRACT

This study examined the cognitive consequences of constructivist teaching practices on the acquisition and

transfer of programming with respect to the design of an instructional context that would encourage students

to engage in reflective thought; the cognitive consequences of learning in the constructivist context; and the

relation between the social and the individual in the teaching and learning process of programming. Students

worked on a variety of programming and design problems in constructivist instructional contexts. The results

indicated that between-group differences over repeated measures consistently favored students in reflective

instruction. Rather than simple differences on measures, the pattern of mean differences over time conformed

to a chain of cognitive consequences regulating the acquisition of programming. The implications of the study

and suggestions for future research were discussed.

Keywords : Programming instruction, Constructivist teaching

프로그래밍 교수-학습에 대한 구성주의 접근

이미화

부산교육대학교 컴퓨터교육학과

요 약

본 연구는 프로그래밍 교육에 구성주의 교수–학습을 적용하여 프로그래밍 습득 및 전이에 미치는 영향을 분석해 보는

데 목적이 있다. 이에 따라 프로그래밍 학습을 위한 구성주의 기반 교수 환경을 설계하고 이러한 환경에서 실제로 수업을

실시하였다. 본 연구의 목적 및 선행 연구에 기초하여 고안된 연구 도구를 사용하여 프로그래밍 학습 및 태도에 미치는 효

과 및 관련 변인들을 측정 분석하였다. 분석 결과 구성주의 기반 프로그래밍 교수–학습 과정에서 연구 대상의 학년 및 교

수 환경에 따라 유의미한 효과가 있었으며 긍정적인 영향을 미치는 것으로 나타났다. 본 연구의 결과에 대한 시사점 및 후

속 연구에 대한 제언을 제시하였다.

키워드 : 프로그래밍 교수-학습, 구성주의

논문투고: 2012-09-20

논문심사: 2012-09-20

심사완료: 2012-09-24

364 한국정보교육학회 논문지 제16권 제3호

1. Introduction

1.1. Need for the Study

Although the theoretical tradition initiated by
Dewey underscores the importance of reflection to
education, it is silent about fruitful targets for
reflection in specific domains. Hence, this study relied
on previous research about programming to determine
what might be important to target for constructivist
teaching and learning[21]. First, studies of expert and
novice programmers suggest that experts take a design
perspective on programming, that is, they think about
the goals of the program and potential relations
among chunks of code to accomplish their goals,
whereas novice programmers tend to see programming
as equivalent to writing code[1][17][25].

Second, novice programmers often identify
programming actions at the level of individual
programming statements; they fail to "chunk" program
code in relation to the goal it is intended to
accomplish[15]; e.g., the programming structure is flat
rather than hierarchical.

Third, and related to the first two points, students
often treat programs as local constructions without
thinking much about their connections to other related
programs or ideas. This tendency highlights the
importance of "bridging instruction" to help students
develop relations among programming constructs[16].

Fourth, the very interactivity of programming can
lead students to chains of action-reaction, rather than
mindful consideration of the consequences of their
activity[7].

These research findings collectively suggest fruitful
targets for reflection because more mindful consideration
of any or all of them may have a powerful impact on
learning. The research findings guided the development
of constructivist teaching practices, each of which was
intended to promote more mindful consideration of a
programming language[5][26]. To this end, the present

study instigated four general classroom practices, each
designed to focus on a key target for constructivist
teaching and learning in the context of programming, as
follows: (a) dialogue about design principles and real
audiences for program to promote reflection about
programming as design rather than as simply writing
code, (b) provision of programming templates to
exemplify and promote reflection about key principles of
programming design, like modularity, (c) summarization
of the action of programming code to promote reflection
about the action of chunks of code rather than lines of
code, and (d) compare-contrast questions to help students
reflect dialogically about relations among different
programs or chunks of code, or about relations between
programming and everyday experiences.

This study attempted to design a program of
constructivist instruction by considering previous research
about programming. Taken as a whole, the research on
programming supports the need to promote reflection
about programming activity, especially because the very
interactivity of computer programming can disguise the
virtues of considered action. To counteract this tendency,
the present study aims to design constructivist instruction
to foster reflection in the teaching and learning process
of a programming language.

1.2. Purpose of the Study

The purposes of this study were threefold:
First, to design an instructional context that would

encourage students to engage in reflective thought;
Second, to examine the cognitive consequences of

learning in the constructivist context, with the focus on
the relation between reflection and the development of
both simpler and more complex forms of programming
knowledge;

Third, to analyze the relation between the social,
here represented by a set of communally shared
design practices, and the individual in the teaching
and learning process of programming.

Teaching and Learning Programming: A Constructivist Approach 365

2. Designing Constructivist Teaching

2.1. Student Designers

Students reflect about design, both at the level of the
semantics of individual commands and at the schematic
and strategic levels of program design, by engaging in
teacher-led dialogue about it (see [4][11][13]). To
stimulate reflection about the semantics of programming
commands, the instructor might ask questions like:

If you were making up a programming
language, how would you do this? Why? What
are some other ways that you might do this?
What should the units be? Why? Why not?
Which one should we use?

These questions promote student dialogue about the
assumptions and design principles of the language;
students' consensual choices are occasionally incorporated
as conventions to reflect these conventions. To promote
consideration of design strategies at the program level,
students' programs are tested periodically by having
other students use them. Student observation of users'
reactions to their programs is intended to prompt
consideration of alternative designs and help students
develop a language of design[14][18].

2.2. Programming Templates

Programming templates are provided to students in
the constructivist context. Each programming template
exemplifies a major programming construct, such as
breaking problems down by writing separate subprograms
(i.e., problem decomposition) or using procedures to
package collections of commands (i.e., program
modularity). The rationale for this approach is to
objectify and make visible in code important
programming practices and to make it easier for students
to compare their practices with those of more skilled
programmers. The programming templates are also

intended to serve as source analogs for programming
solutions. In addition to problem decomposition and
modularization, templates are written for programming
conventions about variables, conditionals, list processing,
looping, and debugging.

2.3. Summarization

To promote reflection about chunks of code rather than
individual lines of code, students summarize the actions
of their procedures and what they have accomplished
each day. Summarization-skill training is modeled after
that of Palinscar and Brown[19] and Day[8], beginning
with short passages of text and proceeding to program
code. The rationale for this component of constructivist
teaching is that, by summarizing procedures, students
would reflect on the program's purpose, thus bridging the
programming actions to the larger context of their use,
and by summarizing their accomplishments for the day,
students would similarly reflect on the connection
between purpose and structure.

2.4. Compare-Contrast Questions

Students are asked to compare what they are doing to
other things that they know about or to articulate
similarities and differences among their procedures. The
rationale is to help students develop problem schemata
and to bridge from their knowledge of a programming
language to related contexts. The questions are also
designed to help students distinguish necessary commands
from superfluous commands when they design a program.

3. Method

3.1 Subjects

The participants in the study were students at two
grades: twenty-four third-grade and twenty-six sixth-grade
students from an elementary school located in a

366 한국정보교육학회 논문지 제16권 제3호

<Table 1> Summary of Constructs and Measures

Theoretical Construct Measure

Cognitive resources Spatial matrix task
 Sentence span
 Working memory
Programming knowledge
 Syntactic Command recall
 Semantic Move-turn mastery
 Programming constructs mastery
 Schematic Command triads

Procedure triads

metropolitan school district. All the subjects had some
previous experience with computers at or outside of
school in a variety of subject areas. The subjects were
rank ordered within each grade on the general composite
score and assigned to instructional contexts via a
stratified random sampling procedure. They remained in
the same instructional contexts throughout the study.

3.2 Procedure

Prior to instruction, all participants were interviewed about
their previous experience with computers, both in the school
and at home. Three tasks measuring verbal and spatial
working memory were administered. Scores obtained on the
three measures of working memory were standardized within
each grade; a sum of these three measures was
restandardized to form a general working-memory variable.
This working-memory standard score was then combined
with a reading comprehension score to form a general
composite of working memory and reading comprehension.
The construction of this blocking variable, the composite of
working memory and prior achievement, drew from previous
studies that indicated strong relations among programming
learning, prior achievement in school measured by reading
skill, and individual differences in working memory[12][25].

The participants were rank ordered within each grade
on the general composite score and assigned randomly
by alternate ranks to one of two instructional conditions:
the inquiry-based and reflective context. Students in both
instructional contexts worked for a total of eighteen
40-minute instructional sessions spanning three months of
the school calendar. The order of the meeting times was
counterbalanced between instructional conditions at each
grade to avoid teacher-practice effects. Learning was
assessed periodically throughout the course of instruction
and immediately following the end of instruction.

3.3 Description of Instruction

The programming topics ranged from a simple

introduction to graphics command and the design and
production of a movie to more complex programming
constructs, facing more complex challenges of design, like
those involved in creating interactive programs as well as
games or tutorials, with increasing orchestration of skills
required over the course of instruction[9]. The primary
difference between the two instructional contexts was the
four practices designed to increase students' opportunities
for reflection, described previously: (a) teaching from a
design perspective, (b) student summaries of procedures
and daily activity, (c) availability of programming
templates, and (d) emphasis on compare-contrast questions
that bridged between different programming episodes or
between programming and other activities. In addition to
these four practices, ways to objectify and make visible
particular skills were also introduced throughout the
course of instruction. These included computer programs
and role-playing skits to help students reflect about the
semantics of move and turn commands, the semantics of
looping, the steps involved in debugging, and the
operation of variables in programs.

3.4 Overview of Measures

As indicated previously, this study aimed to examine
student acquisition of four levels of programming
knowledge, transfer of the knowledge, and the relation
between socially constituted beliefs and individual
performance. Table 1 displays the wide range of
constructs and measures employed in this study.

Teaching and Learning Programming: A Constructivist Approach 367

Cued recall
 Strategic Graphics design problems
 Debugging problems
Transfer: Specific skills Error detection
 Summarization
Transfer: General skills Integrating old-new information
 Planning
 Pattern induction
Attitude & Beliefs Attitudes toward programming
 Programming preferences

3.5 Research Design and Data Analysis

The study employed a randomized block design[3].
The primary analytic technique used was the analysis of
covariance (ANCOVA), with each student's standardized
score on the blocking variable, the composite of
working memory and reading ability, serving as the
covariate. The between-subjects factors were instructional
condition and grade. Separate analyses were conducted
within grade whenever incommensurate measurement
made between-grade comparisons fruitless.

4. Results and Discussion

Four sets of results are presented comparing student
learning between instructional contexts and grades. First,
students' short-term acquisition of levels of programming
knowledge is examined. Second, students' long-term
acquisition of programming knowledge is presented.
Third, transfer of knowledge is then presented, followed
by the examination of relations between socially
constituted beliefs and individual performance.

4.1 Short-Term Acquisition of Knowledge

Table 2 displays means and standard deviations by
instructional context and grade for measures of (a)
working memory, (b) recall of commands: syntactic
level of knowledge, (c) mastery of turn and move
commands: semantic level of knowledge, and (d) each
of two measures of strategic knowledge: solving

graphics design problems and debugging.

 Grade 3 Grade 6
 Instructional Context Instructional Context
 Inquiry Reflective Inquiry Reflective
 M SD M SD M SD M SD

Working memory 12.5 7.8 11.4 5.0 33.6 23.7 34.2 21.1

Syntactic 8.5 5.4 8.5 4.1 13.8 4.3 14.2 3.6

Semantic 23.1 7.5 33.5 10.9 37.4 13.7 50.1 4.6
Strategic
 Design 2.5 1.7 3.6 1.5 2.2 1.5 5.4 2.3
 Debugging 3.2 1.9 3.8 1.9 3.9 2.1 6.8 2.7

<Table 2> Means and standard deviations of measures of short-term
acquisition of levels of programming knowledge

The results of ANCOVA applied to the measure of
working memory indicated grade-related differences, F
(l, 45) = 26.94, p < .01, and the blocking variable
(composed of working memory and achievement scores)
accounted, as expected, for a significant portion of the
within-group regression, F (1, 45) = 19.01, p < .01.
There were no differences due to instructional
conditions at either grade. For the measure of command
recall, the results indicated no differences between
instructional conditions, but the difference between
grades was significant; F (1, 45) = 20.64, p < .01.

The results of the analysis applied to the measure
of the mastery of move and turn commands indicated
significant differences between instructional conditions,
F (1, 45) = 18.84, p < .01, but not between grades.
The results of the analysis of the composite measure
of problem-solving suggested an interaction between
grade and instructional condition, F (1, 45) = 5.24, p
< .05. Separate analyses within each grade indicated
no reliable difference between instructional conditions
at grade three, but a reliable difference between
instructional conditions at grade six, F (1, 23) =
17.48, p < .01. The difference between grades on the
composite measure of problem-solving performance
was significant, t = 2.24, p < .01.

In summary, no differences were found between
reflective and inquiry instruction for the acquisition of

368 한국정보교육학회 논문지 제16권 제3호

syntactic knowledge. Students participating in either
form of instruction learned about syntax, although
sixth-grade students learned more commands on average
than did third-grade students. However, students in the
reflective context at both grade levels learned more
about the semantics of these commands, but sixth-grade
students were on average no better than third-grade
students. Students in the reflective context demonstrated
superior problem-solving skills (strategic knowledge) at
grade six but not at grade three. Differences in
working-memory resources were evident between grades.
The results show a form of discriminant validity. First,
as expected, the reflective intervention made no
difference for students' recall of commands. Second,
consistent with the chain-of-consequences hypothesis, the
highest level of between-group differences was centered
at the semantic level in the third grade and the
strategic level in the sixth grade.

4.2 Long-Term Acquisition of Knowledge

Table 3 displays means and standard deviations for
the long-term acquisition of four levels of programming
knowledge: syntax, semantics, schematic, and strategic.

 Grade 3 Grade 6
 Instructional Context Instructional Context
 Inquiry Reflective Inquiry Reflective

 M SD M SD M SD M SD

Syntactic 19.8 4.2 21.0 5.2 36.7 11.1 39.9 8.7

Semantic 34.1 11.5 38.9 9.5 49.3 8.2 51.5 4.2
Schematic 13.0 5.3 15.9 4.5 21.6 9.1 22.3 4.1
Strategic
 Design 1.3 0.9 5.8 4.0 3.5 2.1 9.2 5.7
 Debugging 2.5 2.3 6.0 1.8 6.2 4.5 18.0 8.1

<Table 3> Means and standard deviations of measures of long-term
acquisition of levels of programming knowledge

Syntactic knowledge. The results of ANCOVA
applied to a composite variable of the simple recall of
commands across time indicated no reliable differences
between instructional methods, but reliable differences

between grades: F (1, 45) = 5.46, p < .05. The
blocking variable accounted for a significant portion of
the within-groups regression, F (l, 45)= 6.50, p < .05.

Semantic knowledge. The results of the analysis
indicated no significant differences between inquiry and
reflective forms of instruction at either grade level.
The blocking variable at both grades accounted for a
significant percentage of the within-group regression
for this measure: F (1, 21) = 8.02, P < .01 at grade
three and F (l, 23) = 13.19, P < .01 at grade six.

Schematic knowledge. Students' schematic knowledge
was represented by a composite standard score consisting
of the sum of standard scores within each grade for the
postinstructional administration of command triads,
procedure triads, and the cued recall of commands
fitted by the ordered tree algorithm. The results
suggested reliable differences between instructional
conditions at the third grade, F (1, 21) = 10.68, p <
.01, but not at the sixth grade. The blocking variable
did not account for a significant portion of the
within-groups regression at the third grade, but it did at
the sixth grade, F (l, 23) = 5.79, p < .01.

Strategic knowledge. Strategic knowledge was assessed
by designing a graphic program and by debugging.
Different forms of these measures were administered to
each grade. The results of the analysis of the measure of
program design suggest reliable differences between
instructional conditions at each grade level: F (1, 21)=
13.99, p < .01, at grade three and F (1, 23) = 11.64, p
< .01, at grade six. The blocking variable was unrelated
to performance on this measure. The results of the
analysis of the measure of debugging also indicated
reliable differences between instructional conditions at
each grade level: F (1, 21) = 18.68, p < .01, at grade
three and F (1, 23)= 23.87, P < .01, at grade six. The
blocking variable accounted for a significant portion of
the within-group regression: F (l, 21) = 5.18, p < .05, at
grade three and F (l, 23) = 6.08, p < .05, at grade six.

In summary, after a prolonged period of teaching
and learning, there was no difference in student

Teaching and Learning Programming: A Constructivist Approach 369

learning between instructional contexts with respect to
either syntax or semantics, although sixth graders
learned more on average about both forms of
knowledge than did the third graders. Students in the
third grade participating in the reflective context
developed more schematic knowledge than their
counterparts participating in the inquiry context. No
such advantage was found for sixth-grade students.
Students participating in the reflective context at both
grade levels were better able to put their knowledge
to use. The pattern of results conformed to the
cognitive-chain hypothesis. At the sixth grade, the
benefits of reflection were evident only at the top of
the chain, strategic knowledge, whereas for younger
students, the benefits of reflection started at the
schematic level.

4.3 Transfer

Student performance on measures of transfer by
grade and instructional condition is shown in Table 4.
The ANCOVA results of the measure of error
detection indicate reliable differences between
instructional conditions at each grade: F (1, 21) =
14.46, p < .01, at grade three, and F (l, 23) = 4.84,
p < .05, at grade six. The correlation between student
performance on debugging and error detection was
substantial at each grade: r (22) = .77, p < .05, and r
(24) = .60, p < .05, respectively. The results for the
transfer measure of summarization also suggests
reliable differences between instructional conditions: F
(l, 21) = 25.22, p < .01, for grade three and F (l, 23)
= 4.64, p < .05, for grade six. The composite
blocking variable did not account for a significant
portion of the within-groups regression. As expected,
contexts at either grade level for the more general
transfer measures of planning or inducing numeric and
spatial patterns. In summary, the pattern of results for
the measures of transfer conformed to that of other
studies of programming: When general skills are taught

and assessed specifically, transfer is evident[20][23].

 Grade 3 Grade 6
 Instructional Context Instructional Context
 Inquiry Reflective Inquiry Reflective
 M SD M SD M SD M SD

Error detection 4.5 3.9 11.1 4.5 9.6 7.1 13.9 3.1
Summarization 6.5 3.1 11.2 2.7 10.4 4.5 13.9 3.5
Planning
 Violations 4.1 2.4 3.0 1.4 2.6 2.5 1.9 1.6
 Path length 21.3 1.5 21.6 1.7 19.9 2.8 20.5 3.2
Patterns
 Numeric 5.7 2.5 6.8 2.3 12.4 2.9 12.8 3.6
 Spatial 1.1 0.8 1.4 0.8 1.6 0.8 1.9 1.0
Attitude 65.3 8.4 59.8 12.9 58.8 15.9 63.3 13.9
Beliefs
 Debugging - - - - 10.4 2.3 12.4 2.6
 Problem heuristics - - - - 12.8 2.4 16.8 2.7
 Program design - - - - 11.4 2.9 14.8 2.2
 Program preference 0.8 0.7 1.7 0.7 1.2 0.8 1.7 0.5

<Table 4> Means and standard deviations for measures of transfer,
attitude, and beliefs

4.4 Attitude and Beliefs

The means and standard deviations for
postinstructional measures of attitude toward and
beliefs about programming are shown in Table 4.

Attitude. No differences between grades or instructional
conditions were detected for student attitude toward their
programming experiences, with the mean judgment
centered around the agree point of the scale.

Beliefs. The measure of programming preference
suggests a higher endorsement of modular programming
practices, using procedures and subprocedures, in the
reflective group at each grade level, although the
difference was reliable only at the third grade F (l, 21)
= 11.08, p < .01. The analyses of students' beliefs
about programming practices were confined to the sixth
grade. Students in the reflective condition were more
likely to report agreement with statements reflecting
ideal practices about debugging, problem-solving
heuristics, and program design; debugging, t (24) =
2.08, p < .05, problem-solving heuristics, t (24) = 4.00,
p < .01, and program design, t (24) = 3.23, p < .01.

370 한국정보교육학회 논문지 제16권 제3호

5. Conclusion

This study examined the cognitive consequences of
constructivist teaching practices on the acquisition and
transfer of programming. Students worked on a variety
of programming and design problems in either an
inquiry or reflective instructional context. The inquiry
context represented former, research-tested best
practices in which teachers elicited predictions, asked
leading questions, and assisted students when they
encountered programming impasses. The reflective
context was designed to improve on these practices by
providing explicit encouragement of a design stance
where students assumed roles as potential designers as
well as actual roles as the designers of their own
programs[22]. General instructional methods like the
adoption of a student-designer approach and the use of
programming templates were intended to promote the
growth of reflection across a wide range of computer
programming activities. Other instructional methods
made specific elements of programming more visible
as objects for reflection. In each instructional context
and grade, the study assessed students' learning of (a)
multiple forms of programming knowledge, (b)
transferable components of learning, and (c) students'
attitude toward and beliefs about their learning
experiences. At each grade level, consistent and
persistent differences between the inquiry and reflective
instructional contexts were found. However, rather than
simple mean differences between instructional contexts,
the results on most measures conformed to a pattern
suggested by a chain of cognitive consequences[2][17].

The pattern of mean differences between
instructional contexts among the measures of the four
levels of programming knowledge supports a chain of
cognitive consequences, in which learning of lower
levels of knowledge supports the acquisition of higher
levels of competence[10][15]. In this study, lower
levels of knowledge were embedded within higher
levels of knowledge, as suggested by theories of

cognitive apprenticeship that caution against learning
skills in isolation[6], so the claim is not that one
level must be mastered before learning anything about
the next. Instead, the claim of the theory as applied
to this study is that lower levels of learning are
consolidated before higher levels are consolidated.

The results suggest that students in the reflective
context at both grade levels transferred some
components of learning to related contexts. Transfer of
specific skills like detecting errors is feasible to the
extent to which acquisition and transfer tasks share
mental units in common[24]. The results obtained
generally support this line of work: Students in the
reflective context received more effective instruction
about skills like summarization and program debugging,
and they transferred these skills more readily than did
their counterparts. Transfer of general skills was often
the lodestone of earlier research about the utility of
learning programming languages, but more than a
decade of research suggests otherwise. While important
and interesting findings have been revealed, the study
needs to be replicated. In addition, Future research
employing other types of approaches to programming
instruction may be worth further investigation.

References

[1] Ambrose, S., Bridges, M. A., DiPietro, M. C.
Lovett, M. C., & Norman, M. K. (2010). How
learning works. San Francisco, CA: Jossey-Bass.

[2] Anderson, J. R. (2009). Cognitive psychology and
its implications. New York: Worth.

[3] Brown, A. L. (1992). Design experiments: Theoretical
and methodological challenges in creating complex
interventions in classroom settings. The Journal of
the Learning Sciences, 2, 141-178.

[4] Carter, C., & Foley, B. J. (2011) Constructing the
self in a digital world. Cambridge University Press.

[5] Clements, D. H. (1990). Metacomponential
development in a programming environment.

Teaching and Learning Programming: A Constructivist Approach 371

Journal of Educational Psychology, 82, 141-149.
[6] Collins, A., Brown, J. S. & Newman, E. E. (1989).

Cognitive apprenticeship: Teaching the crafts of
reading, writing, and mathematics. In L. B. Resnick
(Ed.), Knowing, learning, and instruction. (pp.453-494).
Hillsdale, NJ: LEA.

[7] Cope, P., & Simmons, M. (1994). Some effects of
limited feedback on performance and problem
solving strategy. Journal of Educational Psychology,
86, 368-379J.

[8] Day, J. D. (1986). Teaching summarization skills.
Cognition and Instruction, 3, 193-210.

[9] Dettelman, D., & Sternberg, R. J. (1993). Transfer
on trial: Intelligence, cognition, and instruction.
Norwood, NJ: Ablex.

[10] Fay, A. L., & Mayer, R. E. (1987). Children's
naive conceptions and confusions about graphics
commands. Journal of Educational Psychology, 79,
254-268.

[11] Harel, I. (1991). Children designers: Inter-
disciplinary constructions for learning and knowing.
Norwood, NJ: Ablex.

[12] Just, M. A., & Carpenter, P. A. (1992). A capacity
theory of comprehension: Individual differences in
working memory. Psychological Review, 99, 122-149.

[13] Khine, M. S., & Saleh, I. M. (2011). Models and
modeling: Cognitive tools for scientific enquiry.
New York: Springer-Verlag.

[14] Lawson, B. (2005). How designers think. Boston:
Butterworth Architecture.

[15] Linn, M. C. (1985). The cognitive consequences
of programming instruction in classrooms.
Educational Researcher, 14, 14-16, 25-29.

[16] Littlefield, J., Delclos, V., Bransford, J., Clayton,
K., & Franks, J. (1989). Some prerequisites for
teaching thinking: Methodological issues. Cognition
and Instruction, 6, 331-366.

[17] Mayer, R. E. (1992). Teaching for transfer of

problem-solving skills to computer programming.
In E. DeCorte, M. C. Linn, H. Mandl, & L.
Verschaffel (Eds.), Computer-based learning
environments and problem solving (pp.193-206).
New York: Springer-Verlag.

[18] Olson, D. R., & Astington, J. W. (1993). Thinking
about thinking: Learning how to take statements
and hold beliefs. Educational Psychologist, 28, 7-23.

[19] Palinscar, A. S., & Brown, A. L. (1984). Reciprocal
teaching of comprehension-fostering and monitor-ing
activities. Cognition and Instruction, 1, 117-175.

[20] Robins, A. (1996). Transfer in cognition.
Connection Science, 8, 185-203.

[21] Rountree, N., Rountree, J., & Robins, A. (2002).
Identifying the danger zones. Inroads, 34, 121-124.

[22] Schon, D. A. (1990). Educating the reflective
practitioner. San Francisco, CA: Jossey-Bass.

[23] Siegler, R. S. (2004). Children's thinking.
Englewood Cliffs, NJ: Prentice-Hall.

[24] Singley, M. K., & Anderson, J. R. (1989). The
transfer of cognitive skill. Cambridge, MA: Harvard
University Press.

[25] Soloway, E., & Spohrer, J. (1988) Studying the
novice programmer. New York: Psychology Press.

[26] Swan, K. (1989). Programming and the teaching
and learning of problem solving. Journal of
Artificial Intelligence in Education, 1, 73-92.

저 자 소 개

이 미 화

미국 위스콘신대학교 석사 및 박사

미국 위스콘신대학교 연구교수

캐나다 멀티미디어연구소 객원교수

호주 멀티미디어교육연구원 연구교수

호주 원격교육센터 연구원

부산교육대학교 컴퓨터교육학과 교수

E-mail : mlee@bnue.ac.kr

