Teaching and Learning Programming: A Constructivist Approach 363

Teaching and Learning Programming:
A Constructivist Approach

Miwha Lee
Busan National University of Education

ABSTRACT
This study examined the cognitive consequences of constructivist teaching practices on the acquisition and

transfer of programming with respect to the design of an instructional context that would encourage students
to engage in reflective thought; the cognitive consequences of learning in the constructivist context; and the
relation between the social and the individual in the teaching and learning process of programming. Students
worked on a variety of programming and design problems in constructivist instructional contexts. The results
indicated that between—group differences over repeated measures consistently favored students in reflective
instruction. Rather than simple differences on measures, the pattern of mean differences over time conformed
to a chain of cognitive consequences regulating the acquisition of programming. The implications of the study
and suggestions for future research were discussed.
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1. Introduction

1.1. Need for the Study

Although the theoretical tradition initiated by
Dewey underscores the importance of reflection to
education, it is slent about fruitful targets for
reflection in specific domains. Hence, this study relied
on previous research about programming to determine
what might be important to target for constructivist
teaching and learning[21]. First, studies of expert and
novice programmers suggest that experts take a design
perspective on programming, that is, they think about
the goals of the program and potentia relations
among chunks of code to accomplish their goals,
whereas novice programmers tend to see programming
as equivaent to writing code[1][17][25].

Second,
programming actions a the level of

novice programmers often  identify
individual
programming statements; they fail to "chunk" program
code in relation to the goal it is intended to
accomplish[15]; e.g., the programming structure is flat
rather than hierarchical.

Third, and related to the first two points, students
often treat programs as local constructions without
thinking much about their connections to other related
programs or ideas. This tendency highlights the
importance of "bridging instruction” to help students
develop relations among programming constructs[16].

Fourth, the very interactivity of programming can
lead students to chains of action-reaction, rather than
mindful consideration of the consequences of their
activity[7].

These research findings collectively suggest fruitful
targets for reflection because more mindful consideration
of any or al of them may have a powerful impact on
learning. The research findings guided the development
of congructivigt teaching practices, each of which was
intended to promote more mindful consderation of a

programming language[5][26]. To this end, the present

study instigated four general classroom practices, each
designed to focus on a key target for constructivist
teaching and learning in the context of programming, as
follows. (a) didogue about design principles and red
audiences for program to promote reflection about
programming as design rather than as simply writing
code, (b) provison of programming templates to
exemplify and promote reflection about key principles of
programming design, like modularity, (c) summarization
of the action of programming code to promote reflection
about the action of chunks of code rather than lines of
code, and (d) compare-contrast questions to help students
reflect didogicdly about relations among different
programs or chunks of code, or about relations between
programming and everyday experiences.

This study attempted to design a program of
congtructivist instruction by considering previous research
about programming. Taken as a whole, the research on
programming supports the need to promote reflection
about programming activity, especidly because the very
interactivity of computer programming can disguise the
virtues of considered action. To counteract this tendency,
the present study aims to design constructivist instruction
to foster reflection in the teaching and learning process
of a programming language.

1.2. Purpose of the Study

The purposes of this study were threefold:

First, to design an instructional context that would
encourage students to engage in reflective thought;

Second, to examine the cognitive consegquences of
learning in the constructivist context, with the focus on
the relation between reflection and the development of
both simpler and more complex forms of programming
knowledge;

Third, to analyze the relation between the socia,
here represented by a set of communaly shared
design practices, and the individual in the teaching
and learning process of programming.



Teaching and Learning Programming: A Constructivist Approach 365

2. Designing Constructivist Teaching

2.1. Student Designers

Students reflect about design, both at the level of the
semantics of individual commands and a the schematic
and strategic levels of program design, by engaging in
teacher-led dialogue about it (see [4][11][13]). To
stimulate reflection about the semantics of programming
commands, the instructor might ask questions like:

If you were making up a programming
language, how would you do this? Why? What
are some other ways that you might do this?
What should the units be? Why? Why not?
Which one should we use?

These questions promote student dialogue about the
assumptions and design principles of the language;
students' consensual choices are occasionaly incorporated
as conventions to reflect these conventions. To promote
consideration of design dtrategies at the program levd,
students programs ae tested periodicdly by having
other students use them. Student observation of users
reactions to their programs is intended to prompt
consideration of dternative designs and help students
develop a language of design[14][18].

2.2. Programming Templates

Programming templates are provided to sudents in
the constructivist context. Each programming template
exemplifies a mgor programming construct, such as
breaking problems down by writing separate subprograms
(i.e, problem decomposition) or using procedures to
package collections of commands (i.e, program
modularity). The rationae for this approach is to
objectify and make vishle in code important
programming practices and to make it easier for students
to compare their practices with those of more skilled
programmers. The programming templates ae aso

intended to serve as source andlogs for programming
solutions. In addition to problem decomposition and
modularization, templates are written for programming
conventions about variables, conditionas, list processing,
looping, and debugging.

2.3. Summarization

To promote reflection about chunks of code rather than
individual lines of code, students summarize the actions
of ther procedures and what they have accomplished
each day. Summarization-skill training is modeled after
that of Pdinscar and Brown[19] and Day[8], beginning
with short passages of text and proceeding to program
code. The rationae for this component of constructivist
teaching is that, by summarizing procedures, students
would reflect on the program's purpose, thus bridging the
progranming actions to the larger context of ther use
and by summarizing their accomplishments for the day,
students would smilarly reflect on the connection
between purpose and structure.

2.4, Compare-Contrast Questions

Students are asked to compare what they are doing to
other things that they know about or to articulae
similarities and differences among their procedures. The
rationale is to help students develop problem schemata
and to bridge from their knowledge of a programming
language to related contexts. The questions are aso
designed to help students distinguish necessary commands
from superfluous commands when they design a program.

3. Method

3.1 Subjects

The participants in the study were students a two
grades: twenty-four third-grade and twenty-six sixth-grade
students from an eementary school located in a
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metropolitan school digtrict. All the subjects had some
previous experience with computers a or outside of
school in a variety of subject areas. The subjects were
rank ordered within each grade on the general composite
score and assigned to indtructiona contexts via a
stratified random sampling procedure. They remained in
the same instructiona contexts throughout the study.

3.2 Procedure

Prior to ingtruction, dl participants were interviewed about
their previous experience with computers, both in the schodl
and & home Three tesks messuring verbd and spatid
working memory were administered. Scores obtained on the
three measures of working memory were sandardized within
eech grade a sum of these three messures weas
restandardized to form a generd working-memory variable
This working-memory standard score was then  combined
with a reading comprehenson score to form a generd
composite of working memory and reading comprehension.
The congruction of this blocking variable, the composite of
working memory and prior achievement, drew from previous
sudies that indicated strong rdations among programming
learning, prior achievement in school messured by reading
kill, and individud differences in working memory[12][25)].

The participants were rank ordered within each grade
on the general composite score and assigned randomly
by dternate ranks to one of two instructional conditions:
the inquiry-based and reflective context. Students in both
instructional contexts worked for a tota of eighteen
40-minute ingtructional sessions spanning three months of
the school caendar. The order of the meeting times was
counterbaanced between instructional conditions a each
grade to avoid teacher-practice effects. Learning was
assessed periodicaly throughout the course of instruction
and immediately following the end of instruction.

3.3 Description of Instruction

The programming topics ranged from a simple

introduction to graphics command and the design and
production of a movie to more complex programming
constructs, facing more complex chalenges of design, like
those involved in creeting interactive programs as wel as
games or tutorids, with increasing orchestration of skills
required over the course of ingtruction[9]. The primary
difference between the two instructiona contexts was the
four practices designed to increase students opportunities
for reflection, described previoudy: (a) teaching from a
design perspective, (b) student summaries of procedures
and daly activity, (c) availability of programming
templates, and (d) emphasis on compare-contrast questions
that bridged between different programming episodes or
between programming and other activities. In addition to
these four practices, ways to objectify and make visble
partticular skills were dso introduced throughout the
course of ingtruction. These included computer programs
and role-playing skits to hdp students reflect about the
semantics of move and turn commands, the semantics of
looping, the seps involved in debugging, and the
operation of variables in programs.

3.4 Overview of Measures

As indicated previoudy, this study aimed to examine
student acquisition of four levels of programming
knowledge, transfer of the knowledge, and the relation
between socially congtituted beliefs and individua
performance. Table 1 displays the wide range of
constructs and measures employed in this study.

<Table 1> Summary of Constructs and Measures

Theoretical Construct Measure
Cognitive resources Spatial matrix task
Sentence span

Working memory
Programming knowledge

Syntactic Command recall

Semantic Move-turn mastery
Programming constructs mastery

Schematic Command triads

Procedure triads
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Cued recall

Graphics design problems
Debugging problems

Error detection

Summarization

Integrating old-new information
Planning

Pattern induction

Attitudes toward programming
Programming preferences

Strategic

Transfer: Specific skills

Transfer: General skills

Attitude & Beliefs

3.5 Research Design and Data Analysis

The study employed a randomized block design[3].
The primary analytic technique used was the anaysis of
covariance (ANCOVA), with each student's standardized
score on the blocking variable, the composite of
working memory and reading ability, serving as the
covariate. The between-subjects factors were ingtructional
condition and grade. Separate analyses were conducted
within grade whenever incommensurate measurement
made between-grade comparisons fruitless.

4. Results and Discussion

Four sets of results are presented comparing student
learning between ingtructional contexts and grades. First,
students short-term acquisition of levels of programming
knowledge is examined. Second, students long-term
acquisition of programming knowledge is presented.
Third, transfer of knowledge is then presented, followed
by the examination of
congtituted beliefs and individual performance.

relations between socidly

4.1 Short-Term Acquisition of Knowledge

Table 2 displays means and standard deviations by
instructional context and grade for measures of (a)
working memory, (b) recall of commands. syntactic
level of knowledge, (c) mastery of turn and move
commands. semantic level of knowledge, and (d) each
of two measures of strategic knowledge: solving

graphics design problems and debugging.

<Table 2> Means and standard deviations of measures of short-term
acquisition of levels of programming knowledge

Grade 3 Grade 6

Instructional Context Instructional Context

Inquiry Reflective Inquiry Reflective

M S M S M S M S

Working memory 125 7.8 114 50 336 237 342 211

Syntactic 85 54 85 41 138 43 142 36

Semantic 231 75 335109 374 137 501 46
Strategic

Design 25 17 36 15 22 15 54 23

Debugging 32 19 38 19 39 21 68 27

The results of ANCOVA applied to the measure of
working memory indicated grade-related differences, F
(I, 45) = 2694, p < .01, and the blocking variable
(composed of working memory and achievement scores)
accounted, as expected, for a significant portion of the
within-group regression, F (1, 45) = 19.01, p < .0OL
instructional
conditions a either grade. For the measure of command
recal, the results indicated no differences between
instructional conditions, but the difference between
grades was significant; F (1, 45) = 20.64, p < .0L.

The results of the analysis applied to the measure

There were no differences due to

of the mastery of move and turn commands indicated
significant differences between instructional conditions,
F (1, 45) = 18.84, p < .01, but not between grades.
The results of the analysis of the composite measure
of problem-solving suggested an interaction between
grade and instructional condition, F (1, 45) = 5.24, p
< .05. Separate analyses within each grade indicated
no relisble difference between instructional conditions
a grade three, but a reliable difference between
instructional conditions at grade six, F (1, 23) =
1748, p < .01. The difference between grades on the
composite measure of problem-solving performance
was significant, t = 2.24, p < .01

In summary, no differences were found between
reflective and inquiry instruction for the acquisition of
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syntactic  knowledge. Students participating in either
form of ingtruction learned about syntax, athough
sixth-grade students learned more commands on average
than did third-grade students. However, students in the
reflective context at both grade levels learned more
about the semantics of these commands, but sixth-grade
students were on average no better than third-grade
students. Students in the reflective context demonstrated
superior problem-solving skills (strategic knowledge) at
grade six but not a grade three. Differences in
working-memory resources were evident between grades.
The results show a form of discriminant validity. First,
as expected, the reflective intervention made no
difference for students recall of commands. Second,
consigtent with the chain-of-consequences hypothesis, the
highest level of between-group differences was centered
a the semantic leve in the third grade and the
strategic level in the sixth grade.

4.2 Long-Term Acquisition of Knowledge
Table 3 displays means and standard deviations for
the long-term acquisition of four levels of programming

knowledge: syntax, semantics, schematic, and strategic.

<Table 3> Means and standard deviations of measures of long-term
acquisition of levels of programming knowledge

Grade 3
Instructional Context Instructional Context
Inquiry Reflective Inquiry Reflective
M D M S M D M D

Grade 6

Syntactic 198 42 210 52 367 111 399 87
Semantic 341 115 389 95 493 82 515 42
Schematic 130 53 159 45 216 91 223 41
Strategic

Design 1.3 09 58 40 35 21 92 57

Debugging 25 23 60 18 62 45 180 81

Syntactic knowledge. The results of ANCOVA
applied to a composite variable of the smple recal of
commands across time indicated no reliable differences

between instructional methods, but reliable differences

between grades. F (1, 45) = 546, p < .05 The
blocking variable accounted for a significant portion of
the within-groups regression, F (I, 45)= 6.50, p < .05.
Semantic  knowledge. The results of the anadysis
indicated no significant differences between inquiry and
reflective forms of instruction at either grade level.
The blocking variable at both grades accounted for a
significant percentage of the within-group regression
for this measure: F (1, 21) = 8.02, P < .01 at grade
three and F (I, 23) = 13.19, P < .01 at grade six.
Schematic knowledge. Students  schematic  knowledge
was represented by a composite standard score consisting
of the sum of standard scores within each grade for the
postinstructional  adminigtration of command  triads,
procedure triads, and the cued recal of commands
fitted by the ordered tree algorithm. The results
suggested  relisble  differences  between instructional
conditions at the third grade, F (1, 21) = 1068, p <
.01, but not a the sixth grade. The blocking variable
did not account for a sdgnificant portion of the
within-groups regression a the third grade, but it did a
the sixth grade, F (I, 23) = 5.79, p < .01
Srategic knomedge. Strategic knowledge was assessed
by designing a graphic program and by debugging.
Different forms of these measures were administered to
each grade. The results of the andysis of the measure of
program design suggest reliable differences between
instructional conditions a each grade leve: F (1, 21 )=
1399, p < .01, a grade three and F (1, 23) = 11.64, p
< .01, a grade six. The blocking variable was unrelated
to performance on this measure. The results of the
andysis of the measure of debugging adso indicated
reliable differences between instructional conditions at
each grade leve: F (1, 21) = 1868, p < .01, a grade
three and F (1, 23)= 23.87, P < .01, & grade six. The
blocking variable accounted for a significant portion of
the within-group regression: F (I, 21) = 518, p < .05, a
grade three and F (I, 23) = 6.08, p < .05, a grade six.
In summary, after a prolonged period of teaching
and learning, there was no difference in student
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learning between instructional contexts with respect to
either syntax or semantics, although sixth graders
learned more on average about both forms of
knowledge than did the third graders. Students in the
third grade participating in the reflective context
developed more schematic knowledge than their
counterparts participating in the inquiry context. No
such advantage was found for sixth-grade students.
Students participating in the reflective context at both
grade levels were better able to put their knowledge
to use. The pattern of results conformed to the
cognitive-chain hypothesis. At the sixth grade, the
benefits of reflection were evident only at the top of
the chain, strategic knowledge, whereas for younger
students, the benefits of reflection started at the
schematic level.

4.3 Transfer

Student performance on measures of transfer by
grade and instructional condition is shown in Table 4.
The ANCOVA results of the measure of error
detection indicate  reliable between
instructional conditions at each grade F (1, 21) =
14.46, p < .01, a grade three, and F (I, 23) = 4.84,
p < .05, at grade six. The correlation between student
performance on debugging and error detection was
substantial at each grade: r (22) = .77, p < .05, and r
(24) = .60, p < .05, respectively. The results for the
transfer measure of summarization aso suggests
reliable differences between instructional conditions: F
(I, 21) = 25.22, p < .01, for grade three and F (I, 23)
= 464, p < .05 for grade six. The composite
blocking variable did not account for a significant

differences

portion of the within-groups regression. As expected,
contexts at either grade level for the more genera
transfer measures of planning or inducing numeric and
spatial patterns. In summary, the pattern of results for
the measures of transfer conformed to that of other
studies of programming: When genera skills are taught

and assessed specifically, transfer is evident[20][23].

<Table 4> Means and standard deviations for measures of transfer,
atitude, and beliefs

Grade 3 Grade 6
Instructional Context Instructional Context
Inquiry Reflective  Inquiry  Reflective
M D M D M D M D
Error detection 45 39 111 45 96 71 139 31
Summarization 65 31 112 27 104 45 139 35
Planning
Violations 41 24 30 14 26 25 19 16
Path length 213 15 216 1.7 199 28 205 32
Patterns
Numeric 57 25 68 23 124 29 128 36
Spatial 11 038 14 08 16 08 19 10
Attitude 653 84 598 129 588 159 633 139
Beliefs
Debugging 104 23 124 26

128 24 168 27
114 29 148 22
12 08 17 05

Problem heuristics
Program design - -
Program preference 0.8 0.7 1.7 07

4.4 Attitude and Beliefs

standard  deviations  for

postinstructional measures of attitude toward and

The means and

beliefs about programming are shown in Table 4.

Attitude. No differences between grades or instructiona
conditions were detected for student attitude toward their
programming experiences, with the mean judgment
centered around the agree point of the scale.

Beliefs. The measure of programming preference
suggests a higher endorsement of modular programming
practices, using procedures and subprocedures, in the
reflective group a each grade level, dthough the
difference was rdiable only at the third grade F (I, 21)
= 11.08, p < .01. The andyses of students beliefs
about programming practices were confined to the sixth
grade. Students in the reflective condition were more
likely to report agreement with statements reflecting
ideal practices about debugging,
heuristics, and program design; debugging, t (24) =
2.08, p < .05, problem-solving heurigtics, t (24) = 4.00,
p < .01, and program design, t (24) = 3.23, p < .0L

problem-solving
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5. Conclusion

This study examined the cognitive consequences of
constructivist teaching practices on the acquisition and
transfer of programming. Students worked on a variety
of programming and design problems in either an
inquiry or reflective instructional context. The inquiry
represented research-tested  best
practices in which teachers dlicited predictions, asked

context former,
leading questions, and assisted students when they
encountered programming impasses. The reflective
context was designed to improve on these practices by
providing explicit encouragement of a design stance
where students assumed roles as potential designers as
well as actud roles as the designers of their own
programs[22]. Genera instructional methods like the
adoption of a student-designer approach and the use of
programming templates were intended to promote the
growth of reflection across a wide range of computer
programming activities. Other instructional methods
made specific elements of programming more visible
as objects for reflection. In each instructional context
and grade, the study assessed students' learning of (a)
multiple forms of programming knowledge, (b)
transferable components of learning, and (c) students
attitude toward and beliefs about their learning
experiences. At each grade level, consistent and
persistent differences between the inquiry and reflective
instructional contexts were found. However, rather than
simple mean differences between instructional contexts,
the results on most measures conformed to a pattern
suggested by a chain of cognitive consequences2][17].

The pattern of mean differences  between
instructional contexts among the measures of the four
levels of programming knowledge supports a chain of
cognitive consequences, in which learning of lower
levels of knowledge supports the acquisition of higher
levels of competence[10][15]. In this study, lower
levels of knowledge were embedded within higher
levels of knowledge, as suggested by theories of

cognitive apprenticeship that caution against learning
skills in isolation[6], so the clam is not that one
level must be mastered before learning anything about
the next. Instead, the clam of the theory as applied
to this study is that lower levels of learning are
consolidated before higher levels are consolidated.

The results suggest that students in the reflective
a both grade levels
components of learning to related contexts. Transfer of
specific skills like detecting errors is feasible to the
extent to which acquisition and transfer tasks share
mental  units in common[24]. The results obtained
generally support this line of work: Students in the
reflective context recelved more effective instruction

context transferred  some

about skills like summarization and program debugging,
and they transferred these skills more readily than did
their counterparts. Transfer of general skills was often
the lodestone of earlier research about the utility of
learning programming languages, but more than a
decade of research suggests otherwise. While important
and interesting findings have been reveded, the study
needs to be replicated. In addition, Future research
employing other types of approaches to programming
instruction may be worth further investigation.
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