DOI QR코드

DOI QR Code

누에 중장유래 생체방어 관련 유전자 개발 연구

A Study on the Development of an Immune Related Genes from Midgut of Silkworm

  • 최광호 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 구태원 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 김성렬 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 박승원 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 김성완 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 강석우 (농촌진흥청 국립농업과학원 잠사양봉소재과)
  • Choi, Kwang-Ho (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Goo, Tae-Won (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Seong-Ryul (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Park, Seung-Won (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Sung-Wan (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Kang, Seok-Woo (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA)
  • 투고 : 2012.04.18
  • 심사 : 2012.10.16
  • 발행 : 2012.12.30

초록

본 연구는 누에 중장으로부터 면역 관련 유전자를 대량 발굴하고 발현 특성을 분석함으로서 곤충 유래 신기능성 의약품 개발을 위한 유전자 소재를 발굴하고자 하였다. 우선 곤충병원성 섭식에 의한 누에 품종에 따른 중장 면역원으로서 적성 병원성 세균인 X. nematophila 등을 선발하고 누에 천연 면역인자의 발굴을 위해 최적 감염 조건을 설정하였다. 감염된 누에 중장 mRNA를 순수 분리하여 subtraction cDNA 유전자은행 1종씩 제작하고, subtractive differential display hybridization 방법에 의해 누에 중장 면역관련 유전인자를 선발하였다. 선발된 유전자의 정보 분석 결과, 세포 내 다양한 생물학적 기능을 수행하는 것으로 알려진 ribosomal protein L5 mRNA 등 면역 관련 유전자 9종을 선발하였다. 본 연구에서 선발된 누에 천연 면역 관련 인자는 신기능성 의약품 소재로 개발하기 위해서는 기능분석 연구가 지속되어야 할 것으로 사료된다.

This study was aimed for identification of a useful genetic resources from the entomopathogenic bacteria infected-midgut of the silkworm, Bombyx mori L. We analyzed the appropriately midgut-immunizing condition of $4^{th}$ instar larvae by a feeding infection using several entomopathogenic bacteria. Xenorhabdus nematophila was selected as a suitable bacteria for midgut immunization of Jam 123, B. mori. We constructed a subtraction cDNA library from the mRNA of the immunized midgut, respectively. A total of 1,000 clones were randomly selected from the subtracted cDNA library, and then performed a differential display hybridization analysis with forward and reverse probes. In conclusion, nine clones were identified as differential expressed genes, which presumed that these genes were involved in gut immunity of silkworm. The total number of clones analyzed in this work is not enough to have a brief overview of a understanding on the midgut immunity factors of silkworm. Therefore, further defined studies on these molecules biological roles will give us well-fined information about the innate immune mechanism of silkworm.

키워드

참고문헌

  1. Burge CB, Tuschl T, Sharp PA(1999) Splicing of precursors to mRNAs by the spliceosomes. In: Gesteland RF, Cech TR, Atkins JE, eds. The RNA world, 2nd ed. Cold Spring Harbor, New York: Cold spring Harbor Laboratory Press. pp. 525-560.
  2. Choi KH, Kang SW, Hwang JS, Goo TW, Yun EY, Lee SM, Sohn HD, Jin BR(2003) Construction of a transgenic silkworm carrying the fibroin gene of the Japanese oak silkworm, Antheraea yamamai. Int J Indust Entomol 6, 49-55.
  3. Dales RP(1979) Defence of invertebrates against bacterial infection. J R Soc Med 72(9), 688-696. https://doi.org/10.1177/014107687907200912
  4. Furukawa S, Tanaka H, Nakazawa H, Ishibashi J, Shono T, Yamakawa M(1999) Inducible gene expression of moricin, a unique antibacterial peptide from the silkworm(Bombyx mori). Biochem J 340, 265-271. https://doi.org/10.1042/0264-6021:3400265
  5. Hara S, Yamakawa M(1995) A novel antibacterial peptide family isolated from the silkworm, Bombyx mori. Biochem J 310, 651-656. https://doi.org/10.1042/bj3100651
  6. Hultmark D, Engstrom A, Andersson K, Steiner H, Bennich H, Boman HG(1983) Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO 2(4), 571-576.
  7. Kim GH, Park YG, Kim YG(2002) Identification of pathogenic bacterium, Staphylococcus gallinarum, to Bombyx mori. Korean J Appl Entomol 41(4), 279-284.
  8. Nissen P, Hasen J, Ban N, Moore PB, Steitz TA(2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920-930. https://doi.org/10.1126/science.289.5481.920
  9. Park YG, Kim GH, Kim YG(2003) Comparative analysis of host insect immunodepression induced by two entomopathogenic bacteria, Xenorhabdus nematophilus and Staphylococcus gallinarum, with differential pathogenicities. J Appl Entomol 42(4), 353-360.
  10. Ratcliffe NA, Rowley AF, Fitzgerald SW, Rhodes CP(1985) Invertebrate immunity-basic concepts and recent advances. Invertebr Rev Cytol 97, 183-350. https://doi.org/10.1016/S0074-7696(08)62351-7
  11. Stanley DW(2000) Eicosanoids in invertebrate signal transduction systems. Princeton university Press. pp. 277. New Jersey.
  12. Steiner H, Hultmark D, Engström A, Bennich H, Boman HG(1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292, 246-248. https://doi.org/10.1038/292246a0
  13. Takashi N, Yao M, Kawamura S, Iwasaki K, Kimura M, Tanaka I(2001) Ribosomal protein L5 has a highly twisted concave surface and flexible arms responsible for rRNA binding. RNA 7, 692-701. https://doi.org/10.1017/S1355838201002345