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ON THE FUZZY STABILITY OF CUBIC MAPPINGS
USING FIXED POINT METHOD

Heejeong Koh

Abstract. Let X and Y be vector spaces. We introduce a new type of a cubic
functional equation f : X → Y . Furthermore, we assume X is a vector space and
(Y, N) is a fuzzy Banach space and then investigate a fuzzy version of the generalized
Hyers-Ulam stability in fuzzy Banach space by using fixed point method for the cubic
functional equation.

1. Introduction

The stability problem of functional equations originated from the question of
Ulam [26] concerning the stability of group homomorphisms. It was answered by
Hyers [10] on the assumption that the spaces are Banach spaces and generalized by
Aoki [1] for the stability of the additive mapping and Rassias [23] for the stability of
the linear mapping by considering the unbounded Cauchy difference. The paper [23]
has influentially provided in development of what we call the Hyers-Ulam stability
or the Hyers-Ulam-Rassias stability of functional equations. Since then the stabil-
ity problems of several functional equations and various normed spaces have been
extensively investigated and generalized by a number of authors [7], [9], [11], [23]
and [2].

In [13], Jun et al. considered the following cubic functional equation

(1.1) f(ax + y) + f(ax− y) = a
(
f(x + y) + f(x− y)

)
+ 2a(a2 − 1)f(x)

for all x, y ∈ X and a ∈ Z (a 6= 0 ,±1) . They investigated the Hyers-Ulam-Rassias
stability problem for the functional equation (1.1).

In this paper, we will consider a new type of the following cubic functional equa-
tion
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(1.2) (a + 1)f(ax + y) + (a− 1)f(ax− y) + 2(a2 − 1)f(y)

= 2a2f(x + y) + 2a2(a2 − 1)f(x)

for all x, y ∈ X and a ∈ Z (a 6= 0 ,±1) .

In 1984, Katsaras [14] and Wu and Fang [27] independently introduced a notion
of a fuzzy norm and also Wu and Fang gave the generalization of Kolmogoroff nor-
malized theorem for fuzzy topological linear space. Since then some mathematicians
have defined fuzzy metrics and norms on a linear space from various points of view;
see [3], [8], [16], [28] and [19]. In 1994, Cheng and Mordeson [6] introduced a defini-
tion of fuzzy norm on a linear space in such a manner that the corresponding induced
fuzzy metric is of Kramosil and Michalek type [15]. In 2003, Bag and Samanta [3]
modified the definition of Cheng and Mordeson [6]. Bag and Samanta [3] introduced
the following definition of fuzzy normed spaces. We will use the definition to prove
a fuzzy version of the generalized Hyers-Ulam stability for the functional equation
(1.2) in the fuzzy normed vector space setting.

Definition 1.1. Let X be a real vector space. A function N : X × R → [0, 1] is
called a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R ,

(N1) N(x, t) = 0 for t ≤ 0 ;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0 ;
(N3) N(cx, t) = N(x, t

|c|) if c 6= 0 ;
(N4) N(x + y, s + t) ≥ min {N(x, s), N(y, t)} ;
(N5) N(x, ·) is a non-decreasing function of R and limt→∞N(x, t) = 1 ;
(N6) for x 6= 0 , N(x, ·) is continuous on R .

The pair (X, N) is called a fuzzy normed vector space.

Mirmostafaee et al. [19] and Mirzavaziri and Moslehian [20] introduced some
properties of fuzzy normed vector spaces and examples of fuzzy norms.

Example 1.2. Let (X, || · ||) be a real normed space. Define

N(x, t) =

{
t

t+||x|| when t > 0, t ∈ R
0 when t ≤ 0 ,

where x ∈ X . Then (X, N) is a fuzzy normed space.

The following definitions in fuzzy normed vector space were given in [3].

Definition 1.3. Let (X, N) be s fuzzy normed vector space. A sequence {xn} in X

is said to be convergent or converge if there exists an x ∈ X such that limn→∞ N(xn−
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x, t) = 1 for all t > 0 . In this case, x is called the limit of the sequence {xn} and
we denote it by N- limn→∞ xn = x .

Definition 1.4. Let (X, N) be s fuzzy normed vector space. A sequence {xn} in
X is called Cauchy if for each ε > 0 and each t > 0 there exists an n0 ∈ N such that
for all n ≥ n0 and all d > 0 , we have N(xn+d − xn, t) > 1− ε .

It is well-known that every convergent sequence in a fuzzy normed vector space
is Cauchy. If each Cauchy sequaence is convergent, then the fuzzy normed space
is said to be complete and the fuzzy normed vector space is called a fuzzy Banach
space.

Now, we will state the theorem, the alternative of fixed point in a generalized
metric space.

Definition 1.5. Let X be a set. A function d : X × X → [0, ∞] is called a
generalized metric on X if d satisfies

(1) d(x, y) = 0 if and only if x = y ;
(2) d(x, y) = d(y, x) for all x, y ∈ X ;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

Theorem 1.6 (The alternative of fixed point [17], [25] ). Suppose that we are given
a complete generalized metric space (X, d) and a strictly contractive mapping J :
X → X with Lipschitz constant 0 < L < 1 . Then for each given x ∈ X , either

d(Jnx, Jn+1x) = ∞ for all n ≥ 0 ,

or there exists a natural number n0 such that

(1) d(Jnx, Jn+1x) < ∞ for all n ≥ n0 ;
(2) The sequence {Jnx} is convergent to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set

Y = {y ∈ X|d(Jn0x, y) < ∞} ;

(4) d(y, y∗) ≤ 1
1−L d(y, Jy) for all y ∈ Y .

In 1996, Isac and Rassias [12] were first to provide applications of new fixed
point theorems for the proof of stability theory of functional equations. By using
fixed point methods the stability problems of several functional equations have been
extensively investigated by a number of authors; see [4], [5], [21] and [24].

In this paper, we will prove the generalized Hyers-Ulam stability of the cubic
functional equation (1.2) in fuzzy Banach spaces by using fixed point method.
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2. Cubic Functional Equations

Theorem 2.1. If a mapping f : X → Y satisfies the functional equation (1.2) if
and only if f satisfies the functional equation (1.1).

Proof. Suppose the mapping f : X → Y satisfies the equation (1.2). It is easy to
show that

f(0) = 0 , f(−x) = −f(x) and f(ax) = a3f(x)

for all x ∈ X and a ∈ Z (a 6= 0 ,±1) . Letting y = ay in the equation (1.2), we have

(2.1) a(a + 1)f(x + y) + a(a− 1)f(x− y) + 2a(a2 − 1)f(y)

= 2f(x + ay) + 2(a2 − 1)f(x)

for all x, y ∈ X . Now putting y = −ay in (1.2), we get

(2.2) a(a + 1)f(x− y) + a(a− 1)f(x + y)− 2a(a2 − 1)f(y)

= 2f(x− ay) + 2(a2 − 1)f(x)

for all x, y ∈ X . Adding two equations (2.1) and (2.2),

a2f(x + y) + a2f(x− y) = f(x + ay) + f(x− ay) + 2(a2 − 1)f(x)

for all x, y ∈ X . Replacing x by ax in the previous equation,

f(ax + y) + f(ax− y) = a
(
f(x + y) + f(x− y)

)
+ 2a(a2 − 1)f(x) ,

that is, it satisfies the equation (1.1) .
Conversely, suppose the mapping f : X → Y satisfies the equation (1.1). It also

satisfies the following properties :

f(0) = 0 , f(−x) = −f(x) and f(ax) = a3f(x)

for all x ∈ X and a ∈ Z (a 6= 0 ,±1) . Letting y = ay in the equation (1.1) , we get

(2.3) a3f(x + y) + a3f(x− y) = a
(
f(x + ay) + f(x− ay)

)
+ 2a(a2 − 1)f(x)

for all x, y ∈ X . Exchanging x and y in the previous equation,

(2.4) f(ax + y)− f(ax− y) + 2(a2 − 1)f(y) = a2
(
f(x + y)− f(x− y)

)

for all x, y ∈ X . Replacing x by ax in the equation (2.3),

(2.5) af(ax + y) + af(ax− y) = a2
(
f(x + y) + f(x− y)

)
+ 2a2(a2 − 1)f(x)

for all x, y ∈ X . Now adding two equations (2.4) and (2.5), we have the equation
(1.2), as desired. ¤
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3. Fuzzy Stability of Cubic Mappings

Let us fix some notations which will be used throughout this paper. We assume X

is a vector space and (Y, N) is a fuzzy Banach space. Using fixed point method, we
will prove the generalized Hyers-Ulam stability of the functional equation satisfying
equation (1.2) in fuzzy Banach space. For a given mapping f : X → Y , let

(3.1) Daf(x, y) := (a + 1)f(ax + y) + (a− 1)f(ax− y)

−2a2f(x + y)− 2a2(a2 − 1)f(x) + 2(a2 − 1)f(y)

for all x, y ∈ X and a ∈ Z (a 6= 0 ,±1) .

Theorem 3.1. Let a ∈ Z (a 6= 0 ,±1) and φ : X2 → [0,∞) be a function such that
there exists an 0 < L < 1 with

φ(x, y) ≤ L

|a|3 φ(ax, ay)

for all x, y ∈ X . Let f : X → Y be a mapping satisfying

(3.2) N(Daf(x, y), t) ≥ t

t + φ(x, y)

for all x, y ∈ X and all t > 0 . Then C(x) := N- limn→∞ a3nf
(

x
an

)
exists for each

x ∈ X and defines a cubic mapping C : X → Y such that

(3.3) N(f(x)− C(x), t) ≥ 2a4(1− L) t

2a4(1− L) t + Lφ(x, 0)

for all x ∈ X and all t > 0 .

Proof. By letting y = 0 in the inequality (3.2), we have

(3.4) N
(
2af(ax)− 2a4f(x), t

)
≥ t

t + φ(x, 0)

for all x ∈ X and all t > 0 . We consider the set

S := {g : X → X}
and the mapping d defined on S × S by

d(g, h) = inf{µ ∈ R+ |N
(
g(x)− h(x), µt

)
≥ t

t + φ(x, 0)
, ∀x ∈ X and t > 0}

where inf ∅ = +∞ , as usual. Then (S, d) is a complete generalized metric space;
see [18, Lemma 2.1]. Now let’s consider the linear mapping J : S → S such that

Jg(x) := a3g
(x

a

)
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for all x ∈ X . Let g , h ∈ S be given such that d(g , h) = ε . Then

N
(
g(x)− h(x), εt

)
≥ t

t + φ(x, 0)

for all x ∈ X and all t > 0 .

N
(
Jg(x)− Jh(x), Lεt

)
= N

(
a3g

(x

a

)
− a3h

(x

a

)
, Lεt

)

= N
(
g
(x

a

)
− h

(x

a

)
,

L

|a|3 εt
)
≥

L
|a|3 t

L
|a|3 t + φ(x

a , 0)

≥
L
|a|3 t

L
|a|3 t + L

|a|3 φ(x, 0)
=

t

t + φ(x, 0)

for all x ∈ X and all t > 0 . d(g, h) = ε implies that d(Jg, Jh) ≤ Lε . Hence we get

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S . The inequality (3.4) implies that

N
(
f(x)− a3f

(x

a

)
,

L

2a4
t
)
≥ t

t + φ(x, 0)

for all x ∈ X and all t > 0 . Hence we have d(f, Jf) ≤ L
2a4 . By Theorem 1.6, there

exists a mapping C : X → Y such that

(1) C is a fixed point of J , that is,

(3.5) C
(x

a

)
=

1
a3

C(x)

for all x ∈ X . The mapping C is a unique fixed point of J in the set
M = {g ∈ S | d(f, g) < ∞} . This means that C is a unique mapping
satisfying the equation (3.5) such that

inf {µ ∈ R+ |N
(
f(x)− C(x), µt

)
≥ t

t + φ(x, 0)
,∀x ∈ X and t > 0}

for all x ∈ X and all t > 0 ;
(2) d(Jnf, C) → 0 as n →∞ . This implies the following equality

N- lim
n→∞ a3nf

( x

an

)
= C(x)

for all x ∈ X and all t > 0 ;
(3) d(f, C) ≤ 1

1−L d(f, Jf) , which implies the inequality

d(f, C) ≤ 1
1− L

· L

2a4
=

L

2a4(1− L)
.
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It implies that

N
(
f(x)− C(x),

L

2a4(1− L)
t
)
≥ t

t + φ(x, 0)

for all x ∈ X and all t > 0 . By replacing t by 2a4(1−L)
L t , we have

N
(
f(x)− C(x), t

)
≥ 2a4(1− L) t

2a4(1− L) t + Lφ(x, 0)

for all x ∈ X and all t > 0 . That is, the inequality (3.3) holds. By letting x = x
an

and y = y
an in the inequality (3.2), we have

N
(
a3nDaf

( x

an
,

y

an

)
, |a|3n t

)
≥ t

t + φ( x
an , y

an )

for all x, y ∈ X , all t > 0 and all n ∈ N . Replacing t by t
|a|3n ,

N
(
a3nDaf

( x

an
,

y

an

)
, t

)
≥

t
|a|3n

t
|a|3n + φ( x

an , y
an )

≥ t

t + Ln φ(x, y)

for all x, y ∈ X , all t > 0 and all n ∈ N . Since limn→∞ t
t+Ln φ(x, y) = 1 for all

x, y ∈ X and all t > 0 , we may conclude that

N
(
DaC(x, y), t

)
= 1

for all x, y ∈ X and all t > 0 . Thus the mapping C : X → Y is the cubic mapping.
¤

Corollary 3.2. Let θ ≥ 0 , p > 3 be a real number and X be a normed linear space
with norm || · || . Suppose f : X → Y is a mapping satisfying

(3.6) N(Daf(x, y), t) ≥ t

t + θ(||x||p + ||y||p)
for all x, y ∈ X and all t > 0 . Then C(x) := N- limn→∞ a3nf

(
x
an

)
exists for each

x ∈ X and defines a cubic mapping C : X → Y such that

N(f(x)− C(x), t) ≥ 2a(ap − a3) t

2a(ap − a3) t + θ ||x||p
for all x ∈ X and all t > 0 .

Proof. The proof follows from Theorem 3.1 by taking φ(x, y) = θ(||x||p + ||y||p) for
all x , y ∈ X and L = a3−p . ¤

Theorem 3.3. Let a ∈ Z (a 6= 0 ,±1) and φ : X2 → [0,∞) be a function such that
there exists an 0 < L < 1 with

φ(x, y) ≤ |a|3 Lφ(
x

a
,
y

a
)



404 Heejeong Koh

for all x, y ∈ X . Let f : X → Y be a mapping satisfying

(3.7) N(Daf(x, y), t) ≥ t

t + φ(x, y)

for all x, y ∈ X and all t > 0 . Then C(x) := N- limn→∞ a−3nf(an x) exists for each
x ∈ X and defines a cubic mapping C : X → Y such that

(3.8) N(f(x)− C(x), t) ≥ 2a4(1− L) t

2a4(1− L) t + φ(x, 0)

for all x ∈ X and all t > 0 .

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 3.1.
Consider the linear mapping J : S → S such that

Jg(x) :=
1
a3

g(ax)

for all x ∈ X . Let g , h ∈ S be given such that d(g , h) = ε . Then

N
(
g(x)− h(x), εt

)
≥ t

t + φ(x, 0)

for all x ∈ X and all t > 0 .

N
(
Jg(x)− Jh(x), Lεt

)
= N

( 1
a3

g(ax)− 1
a3

h(ax), Lεt
)

= N
(
g(ax)− h(ax), |a|3Lεt

)
≥ |a|3Lt

|a|3Lt + φ(ax, 0)

≥ |a|3Lt

|a|3Lt + |a|3Lφ(x, 0)
=

t

t + φ(x, 0)

for all x ∈ X and all t > 0 . d(g, h) = ε implies that d(Jg, Jh) ≤ Lε . Hence we get

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S . The inequality (3.4) implies that

N
(
f(x)− 1

a3
f(ax),

1
2a4

t
)
≥ t

t + φ(x, 0)

for all x ∈ X and all t > 0 . Hence we have d(f, Jf) ≤ 1
2a4 . By Theorem 1.6, there

exists a mapping C : X → Y such that

(1) C is a fixed point of J , that is,

(3.9) C(ax) = a3 C(x)

for all x ∈ X . The mapping C is a unique fixed point of J in the set
M = {g ∈ S | d(f, g) < ∞} . This means that C is a unique mapping
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satisfying the equation (3.9) such that

inf {µ ∈ R+ |N
(
f(x)− C(x), µt

)
≥ t

t + φ(x, 0)
,∀x ∈ X and t > 0}

for all x ∈ X and all t > 0 ;
(2) d(Jnf, C) → 0 as n →∞ . This implies the following equality

N- lim
n→∞

1
a3n

f(anx) = C(x)

for all x ∈ X and all t > 0 ;
(3) d(f, C) ≤ 1

1−L d(f, Jf) , which implies the inequality

d(f, C) ≤ 1
1− L

· 1
2a4

=
1

2a4(1− L)
.

This implies the inequality (3.8) holds. The remains of the proof is similar to the
proof of Theorem 3.1. ¤

Corollary 3.4. Let θ ≥ 0 , p < 3 be a real number and X be a normed linear space
with norm || · || . Suppose f : X → Y is a mapping satisfying

(3.10) N(Daf(x, y), t) ≥ t

t + θ(||x||p + ||y||p)
for all x, y ∈ X and all t > 0 . Then C(x) := N- limn→∞ 1

a3n f
(
anx

)
exists for each

x ∈ X and defines a cubic mapping C : X → Y such that

N(f(x)− C(x), t) ≥ 2a(a3 − ap) t

2a(a3 − ap) t + θ ||x||p
for all x ∈ X and all t > 0 .

Proof. The proof follows from Theorem 3.3 by taking φ(x, y) = θ(||x||p + ||y||p) for
all x , y ∈ X and L = ap−3 . ¤
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