ON THE STABILITY OF A MIXED TYPE QUADRATIC AND CUBIC FUNCTIONAL EQUATION

Chang-ju Lee ${ }^{\text {a }}$ and Yang-Hi Lee ${ }^{\text {b,* }}$

$$
\begin{aligned}
& \text { Abstract. In this paper, we investigate a fuzzy version of stability for the func- } \\
& \text { tional equation } \\
& \qquad f(x+2 y)-3 f(x+y)+3 f(x)-f(x-y)-3 f(y)+3 f(-y)=0
\end{aligned}
$$

in the sense of M. Mirmostafaee and M. S. Moslehian.

1. Introduction

A classical question in the theory of functional equations is "when is it true that a mapping, which approximately satisfies a functional equation, must be somehow close to an exact solution of the equation?". Such a problem, called a stability problem of the functional equation, was formulated by S. M. Ulam [14] in 1940. In the next year, D. H. Hyers [5] gave a partial solution of Ulam's problem for the case of approximate additive mappings. Subsequently, his result was generalized by T. Aoki [1] for additive mappings and by Th. M. Rassias [12] for linear mappings by considering the stability problem with unbounded Cauchy differences (see $[4,8,9]$).

In 1984, A. K. Katsaras [6] defined a fuzzy norm on a linear space to construct a fuzzy structure on the space. Since then, some mathematicians have introduced several types of fuzzy norm in different points of view. In particular, T. Bag and S.K. Samanta [2], following Cheng and Mordeson [3], gave an idea of a fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [7]. In 2008, M. Mirmostafaee and M. S. Moslehian [10] proved a fuzzy version of stability for the quadratic functional equation:

$$
\begin{equation*}
f(x+y)+f(x-y)-2 f(x)-2 f(y)=0 . \tag{1.1}
\end{equation*}
$$

[^0]In 2009, M. Mursaleen and S. A. Mohiuddine [11] proved a fuzzy version of stability for the cubic functional equation:

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)-2 f(x+y)-2 f(x-y)-12 f(x)=0 . \tag{1.2}
\end{equation*}
$$

A solution of (1.1) is called a quadratic mapping and a solution of (1.2) is called a cubic mapping. The functional equation

$$
\begin{equation*}
f(x+2 y)-3 f(x+y)+3 f(x)-f(x-y)-3 f(y)+3 f(-y)=0 . \tag{1.3}
\end{equation*}
$$

is called the mixed type quadratic and cubic functional equation, since the function $f(x)=a x^{3}+b x^{2}+c$ is its solution. Every solution of the quadratic and cubic functional equation is said to be a quadratic and cubic mapping. In 2010, W. Towanlong and P. Nakmahachalasint [13] obtained a stability of the functional equation (1.3). In their processing, they took a cubic mapping C and a quadratic mapping Q such that C is approximate to the odd part $\frac{f(x)-f(-x)}{2}$ of f and Q is close to the even part $\frac{f(x)+f(-x)}{2}-f(0)$ of f, respectively.

In this paper, we get a general stability result of the functional equation (1.3) in the fuzzy normed linear space in the manner of M. Mirmostafaee and M. S. Moslehian [10]. To do it, we introduce a Cauchy sequence $\left\{J_{n} f(x)\right\}$ starting from a given mapping f, which converges to the desired mapping F in the fuzzy sense. As mentioned above, in previous studies of stability problem of (1.3), they [13] attempted to get stability theorems by handling the odd and even part of f, respectively. According to our proposal in this paper, we can take the desired approximate solution F at once.

2. Fuzzy Stability of the Functional Equation (1.3)

We use the definition of a fuzzy normed space given in [2] to exhibit a reasonable fuzzy version of stability for the mixed type quadratic and cubic functional equation in the fuzzy normed linear space.

Definition 2.1 ([2]). Let X be a real linear space. A function $N: X \times \mathbb{R} \rightarrow[0,1]$ (the so-called fuzzy subset) is said to be a fuzzy norm on X if for all $x, y \in X$ and all $s, t \in \mathbb{R}$,
(N1) $N(x, c)=0$ for $c \leq 0$;
(N2) $x=0$ if and only if $N(x, c)=1$ for all $c>0$;
(N3) $N(c x, t)=N(x, t /|c|)$ if $c \neq 0$;
(N4) $N(x+y, s+t) \geq \min \{N(x, s), N(y, t)\}$;
(N5) $N(x, \cdot)$ is a non-decreasing function on \mathbb{R} and $\lim _{t \rightarrow \infty} N(x, t)=1$.
The pair (X, N) is called a fuzzy normed linear space. Let (X, N) be a fuzzy normed linear space. Let $\left\{x_{n}\right\}$ be a sequence in X. Then $\left\{x_{n}\right\}$ is said to be convergent if there exists $x \in X$ such that $\lim _{n \rightarrow \infty} N\left(x_{n}-x, t\right)=1$ for all $t>0$. In this case, x is called the limit of the sequence $\left\{x_{n}\right\}$ and we denote it by $N-\lim _{n \rightarrow \infty} x_{n}=x$. A sequence $\left\{x_{n}\right\}$ in X is called Cauchy if for each $\varepsilon>0$ and each $t>0$ there exists n_{0} such that for all $n \geq n_{0}$ and all $p>0$ we have $N\left(x_{n+p}-x_{n}, t\right)>1-\varepsilon$. It is known that every convergent sequence in a fuzzy normed space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed space is called a fuzzy Banach space.

Let (X, N) be a fuzzy normed space and $\left(Y, N^{\prime}\right)$ a fuzzy Banach space. For a given mapping $f: X \rightarrow Y$, we use the abbreviation

$$
D f(x, y):=f(x+2 y)-3 f(x+y)+3 f(x)-f(x-y)-3 f(y)+3 f(-y)
$$

for all $x, y \in X$. For given $q>0$, the mapping f is called a fuzzy q-almost mixed-type quadratic and cubic mapping, if

$$
\begin{equation*}
N^{\prime}(D f(x, y), t+s) \geq \min \left\{N\left(x, s^{q}\right), N\left(y, t^{q}\right)\right\} \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$ and all $s, t \in(0, \infty)$. Now we get the general stability result in the fuzzy normed linear space.
Theorem 2.2. Let q be a positive real number with $q \neq \frac{1}{2}, \frac{1}{3}$. And let f be a fuzzy q-almost mixed-type quadratic and cubic mapping from a fuzzy normed space (X, N) into a fuzzy Banach space $\left(Y, N^{\prime}\right)$. Then there is a unique quadratic and cubic mapping $F: X \rightarrow Y$ such that

$$
N^{\prime}(F(x)-f(x), t) \geq \begin{cases}\sup _{s<t}\left\{N\left(x,\left(4-2^{p}\right)^{q} s^{q}\right)\right\} & \text { if } q>\frac{1}{2}, \tag{2.2}\\ \sup _{s<t}\left\{N\left(x,\left(\frac{\left(8-2^{p}\right)\left(2^{p}-4\right)}{4}\right)^{q} s^{q}\right)\right\} & \text { if } \frac{1}{3}<q<\frac{1}{2}, \\ \sup _{s<t}\left\{N\left(x,\left(2^{p}-8\right)^{q} s^{q}\right)\right\} & \text { if } 0<q<\frac{1}{3}\end{cases}
$$

for each $x \in X$ and $t>0$, where $p=1 / q$.
Proof. We will prove the theorem in three cases, $q>\frac{1}{2}, \frac{1}{3}<q<\frac{1}{2}$, and $0<q<\frac{1}{3}$.
Case 1. Let $q>\frac{1}{2}$ and let $J_{n} f: X \rightarrow Y$ be a mapping defined by

$$
J_{n} f(x)=\frac{1}{2}\left(4^{-n}\left(f\left(2^{n} x\right)+f\left(-2^{n} x\right)-2 f(0)\right)+8^{-n}\left(f\left(2^{n} x\right)-f\left(-2^{n} x\right)\right)\right)+f(0)
$$

for all $x \in X$ and $n \in \mathbb{N} \cup\{0\}$. Notice that $J_{0} f(x)=f(x)$ and

$$
\begin{equation*}
J_{j} f(x)-J_{j+1} f(x)=-\frac{2^{j+1}-1}{2^{3 j+4}} D f\left(0,-2^{j} x\right)-\frac{2^{j+1}+1}{2^{3 j+4}} D f\left(0,2^{j} x\right) \tag{2.3}
\end{equation*}
$$

for all $x \in X$ and $j \geq 0$. Together with (N3), (N4) and (2.1), this equation implies that if $n+m>m \geq 0$ then

$$
\begin{aligned}
& N^{\prime}\left(J_{m} f(x)-J_{n+m} f(x), \sum_{j=m}^{n+m-1}\left(\frac{2^{p}}{4}\right)^{j} \frac{t}{4}\right) \\
& \quad \geq N^{\prime}\left(\sum_{j=m}^{n+m-1}\left(J_{j} f(x)-J_{j+1} f(x)\right), \sum_{j=m}^{n+m-1}\left(\frac{2^{p}}{4}\right)^{j} \frac{t}{4}\right) \\
& \quad \geq \min \bigcup_{j=m}^{n+m-1}\left\{N^{\prime}\left(J_{j} f(x)-J_{j+1} f(x),\left(\frac{2^{p}}{4}\right)^{j} \frac{t}{4}\right)\right\} \\
& \quad \geq \min \bigcup_{j=m}^{n+m-1}\left\{\operatorname { m i n } \left\{N^{\prime}\left(-\frac{2^{j+1}+1}{2^{3 j+4}} D f\left(0,2^{j} x\right), \frac{\left(2^{j+1}+1\right) 2^{j p} t}{2^{3 j+4}}\right)\right.\right. \\
& \quad \geq \min \bigcup_{j=m}^{n+m-1}\left\{N\left(0,2^{j}(t-s)^{q}\right), N\left(2^{j} x, 2^{j} s^{q}\right)\right\} \\
& \quad=N\left(x, s^{q}\right)
\end{aligned}
$$

for all $x \in X$ and $t>0$, where $0<s<t$. Hence we have the inequality

$$
\begin{equation*}
N^{\prime}\left(J_{m} f(x)-J_{n+m} f(x), \sum_{j=m}^{n+m-1}\left(\frac{2^{p}}{4}\right)^{j} \frac{t}{4}\right) \geq \sup _{0<s<t}\left\{N\left(x, s^{q}\right)\right\} \tag{2.4}
\end{equation*}
$$

for all $x \in X$ and $t>0$. Let $\varepsilon>0$ be given. Since $\lim _{t \rightarrow \infty} N(x, t)=1$, there is $t_{0}>0$ such that

$$
N\left(x, t_{0}\right) \geq 1-\varepsilon
$$

We observe that for some \tilde{t} with $\tilde{t}^{q}>t_{0}$, the series $\sum_{j=0}^{\infty}\left(\frac{2^{p}}{4}\right)^{j} \frac{\tilde{t}}{4}$ converges for $p=\frac{1}{q}<2$. It guarantees that, for an arbitrary given $c>0$, there exists $n_{0} \geq 0$ such that

$$
\sum_{j=m}^{n+m-1}\left(\frac{2^{p}}{4}\right)^{j} \frac{\tilde{t}}{4}<c
$$

for each $m \geq n_{0}$ and $n>0$. By (N5) and (2.4), we have

$$
\begin{aligned}
& N^{\prime}\left(J_{m} f(x)-J_{n+m} f(x), c\right) \\
& \quad \geq N^{\prime}\left(J_{m} f(x)-J_{n+m} f(x), \sum_{j=m}^{n+m-1}\left(\frac{2^{p}}{4}\right)^{j} \frac{\tilde{t}}{4}\right) \\
& \quad \geq \sup _{0<s<\tilde{t}}\left\{N\left(x, s^{q}\right)\right\} \geq N\left(x, t_{0}\right) \geq 1-\varepsilon .
\end{aligned}
$$

for all $x \in X$. Hence $\left\{J_{n} f(x)\right\}$ is a Cauchy sequence in the fuzzy Banach space $\left(Y, N^{\prime}\right)$, and so we can define a mapping $F: X \rightarrow Y$ by

$$
F(x):=N^{\prime}-\lim _{n \rightarrow \infty} J_{n} f(x) .
$$

Moreover, if we put $m=0$ in (2.4), we have

$$
\begin{equation*}
N^{\prime}\left(f(x)-J_{n} f(x), t\right) \geq \sup _{0<s<t}\left\{N\left(x, \frac{4^{q} s^{q}}{\left(\sum_{j=0}^{n-1}\left(\frac{2^{p}}{4}\right)^{j}\right)^{q}}\right)\right\} \tag{2.5}
\end{equation*}
$$

for all $x \in X$.
Next we will show that F is a quadratic and cubic mapping. Using (N4), we have

$$
\begin{aligned}
N^{\prime}(D F(x, y), t) \geq & \min \left\{N^{\prime}\left(\left(F-J_{n} f\right)(x+2 y), \frac{t}{12}\right)\right. \\
& N^{\prime}\left(3\left(J_{n} f-F\right)(x+y), \frac{t}{12}\right), N^{\prime}\left(3\left(F-J_{n} f\right)(x), \frac{t}{12}\right), \\
& N^{\prime}\left(\left(J_{n} f-F\right)(x-y), \frac{t}{12}\right), N^{\prime}\left(3\left(F-J_{n} f\right)(-y), \frac{t}{12}\right), \\
& \left.N^{\prime}\left(3\left(J_{n} f-F\right)(y), \frac{t}{12}\right), N^{\prime}\left(D J_{n} f(x, y), \frac{t}{2}\right)\right\}
\end{aligned}
$$

for all $x, y \in X$ and $n \in \mathbb{N}$. The first six terms on the right hand side of (2.6) tend to 1 as $n \rightarrow \infty$ by the definition of F and (N2), and the last term satisfies the inequality

$$
\begin{aligned}
N^{\prime}\left(D J_{n} f(x, y), \frac{t}{2}\right) \geq \min \{ & N^{\prime}\left(\frac{D f\left(2^{n} x, 2^{n} y\right)}{2 \cdot 4^{n}}, \frac{t}{8}\right), N^{\prime}\left(\frac{D f\left(-2^{n} x,-2^{n} y\right)}{2 \cdot 4^{n}}, \frac{t}{8}\right), \\
& \left.N^{\prime}\left(\frac{D f\left(2^{n} x, 2^{n} y\right)}{2 \cdot 8^{n}}, \frac{t}{8}\right), N^{\prime}\left(\frac{D f\left(-2^{n} x,-2^{n} y\right)}{2 \cdot 8^{n}}, \frac{t}{8}\right)\right\}
\end{aligned}
$$

for all $x, y \in X$. By (N3) and (2.1), we obtain

$$
\begin{aligned}
N^{\prime}\left(\frac{\left.D f\left(\pm 2^{n} x, \pm 2^{n} y\right)\right)}{2 \cdot 4^{n}}, \frac{t}{8}\right) & =N^{\prime}\left(D f\left(\pm 2^{n} x, \pm 2^{n} y\right), \frac{4^{n} t}{4}\right) \\
& \geq \min \left\{N\left(2^{n} x,\left(\frac{4^{n} t}{8}\right)^{q}\right), N\left(2^{n} y,\left(\frac{4^{n} t}{8}\right)^{q}\right)\right\} \\
& \geq \min \left\{N\left(x, \frac{2^{(2 q-1) n}}{2^{3 q}} t^{q}\right), N\left(y, \frac{2^{(2 q-1) n}}{2^{3 q}} t^{q}\right)\right\}
\end{aligned}
$$

and

$$
N^{\prime}\left(\frac{\left.D f\left(\pm 2^{n} x, \pm 2^{n} y\right)\right)}{2 \cdot 8^{n}}, \frac{t}{8}\right) \geq \min \left\{N\left(x, \frac{2^{(3 q-1) n}}{2^{3 q}} t^{q}\right), N\left(y, \frac{2^{(3 q-1) n}}{2^{3 q}} t^{q}\right)\right\}
$$

for all $x, y \in X$ and $n \in \mathbb{N}$. Since $q>\frac{1}{2}$, together with (N5), we can deduce that the last term of (2.6) also tends to 1 as $n \rightarrow \infty$. It follows from (2.6) that

$$
N^{\prime}(D F(x, y), t)=1
$$

for each $x, y \in X$ and $t>0$. By (N2), this means that $D F(x, y)=0$ for all $x, y \in X$. Next we approximate the difference between f and F in a fuzzy sense. For an arbitrary fixed $x \in X$ and $t>0$, choose $0<\varepsilon<1$ and $0<t^{\prime}<t$. Since F is the limit of $\left\{J_{n} f(x)\right\}$, there is $n \in \mathbb{N}$ such that

$$
N^{\prime}\left(F(x)-J_{n} f(x), t-t^{\prime}\right) \geq 1-\varepsilon
$$

By (2.5), we have

$$
\begin{aligned}
N^{\prime}(F(x)-f(x), t) & \geq \min \left\{N^{\prime}\left(F(x)-J_{n} f(x), t-t^{\prime}\right), N^{\prime}\left(J_{n} f(x)-f(x), t^{\prime}\right)\right\} \\
& \geq \min \left\{1-\varepsilon, \sup _{0<s<t^{\prime}}\left\{N\left(x, \frac{4^{q} s^{q}}{\left(\sum_{j=0}^{n-1}\left(\frac{2^{p}}{4}\right)^{j}\right)^{q}}\right)\right\}\right\} \\
& \geq \min \left\{1-\varepsilon, N\left(x,\left(4-2^{p}\right)^{q} t^{\prime q}\right)\right\} .
\end{aligned}
$$

Because $0<\varepsilon<1$ is arbitrary, we get the inequality (2.2) in this case. Finally, to prove the uniqueness of the quadratic and cubic mapping F, assume that there exists a quadratic and cubic mapping F^{\prime} which satisfies (2.2). Then by (2.3), we get

$$
\left\{\begin{array}{l}
F(x)-J_{n} F(x)=\sum_{j=0}^{n-1}\left(J_{j} F(x)-J_{j+1} F(x)\right)=0 \tag{2.7}\\
F^{\prime}(x)-J_{n} F^{\prime}(x)=\sum_{j=0}^{n-1}\left(J_{j} F^{\prime}(x)-J_{j+1} F^{\prime}(x)\right)=0
\end{array}\right.
$$

for all $x \in X$ and $n \in \mathbb{N}$. Together with (N4) and (2.2), this implies that

$$
\begin{aligned}
& N^{\prime}\left(F(x)-F^{\prime}(x), t\right) \\
& =N^{\prime}\left(J_{n} F(x)-J_{n} F^{\prime}(x), t\right) \\
& \geq \min \left\{N^{\prime}\left(J_{n} F(x)-J_{n} f(x), \frac{t}{2}\right), N^{\prime}\left(J_{n} f(x)-J_{n} F^{\prime}(x), \frac{t}{2}\right)\right\} \\
& \geq \min \left\{N^{\prime}\left(\frac{(F-f)\left(2^{n} x\right)}{2 \cdot 4^{n}}, \frac{t}{8}\right), N^{\prime}\left(\frac{\left(f-F^{\prime}\right)\left(2^{n} x\right)}{2 \cdot 4^{n}}, \frac{t}{8}\right),\right. \\
& \\
& N^{\prime}\left(\frac{(F-f)\left(-2^{n} x\right)}{2 \cdot 4^{n}}, \frac{t}{8}\right), N^{\prime}\left(\frac{\left(f-F^{\prime}\right)\left(-2^{n} x\right)}{2 \cdot 4^{n}}, \frac{t}{8}\right), \\
& \\
& \quad N^{\prime}\left(\frac{(F-f)\left(2^{2} x\right)}{2 \cdot 8^{n}}, \frac{t}{8}\right), N^{\prime}\left(\frac{\left(f-F^{\prime}\right)\left(2^{n} x\right)}{2 \cdot 8^{n}}, \frac{t}{8}\right), \\
& \\
& \left.\quad N^{\prime}\left(\frac{(F-f)\left(-2^{n} x\right)}{2 \cdot 8^{n}}, \frac{t}{8}\right), N^{\prime}\left(\frac{\left(f-F^{\prime}\right)\left(-2^{n} x\right)}{2 \cdot 8^{n}}, \frac{t}{8}\right)\right\} \\
& \geq \sup _{s<t}\left\{N\left(x, 2^{(2 q-1) n-2 q}\left(4-2^{p}\right)^{q} s^{q}\right)\right\}
\end{aligned}
$$

for all $x \in X$ and $n \in \mathbb{N}$. Observe that, for $q=\frac{1}{p}>\frac{1}{2}$, the last term of the above inequality tends to 1 as $n \rightarrow \infty$ by (N5). This implies that

$$
N^{\prime}\left(F(x)-F^{\prime}(x), t\right)=1 .
$$

Hence we conclude that

$$
F(x)=F^{\prime}(x)
$$

for all $x \in X$ by (N2).
Case 2. Let $\frac{1}{3}<q<\frac{1}{2}$ and let $J_{n} f: X \rightarrow Y$ be a mapping defined by

$$
J_{n} f(x)=\frac{1}{2}\left(8^{-n}\left(f\left(2^{n} x\right)-f\left(-2^{n} x\right)\right)+4^{n}\left(f\left(\frac{x}{2^{n}}\right)+f\left(-\frac{x}{2^{n}}\right)-2 f(0)\right)\right)+f(0)
$$

for all $x \in X$. Then we have $J_{0} f(x)=f(x)$ and

$$
\begin{aligned}
J_{j} f(x)-J_{j+1} f(x)= & -\frac{1}{2^{3 j+4}} D f\left(0,2^{j} x\right)+\frac{1}{2^{3 j+4}} D f\left(0,-2^{j} x\right) \\
& +2^{2 j-1} D f\left(0, \frac{x}{2^{j+1}}\right)+2^{2 j-1} D f\left(0, \frac{-x}{2^{j+1}}\right)
\end{aligned}
$$

for all $x \in X$ and $j \geq 0$. If $n+m>m \geq 0$, then we have

$$
N^{\prime}\left(J_{m} f(x)-J_{n+m} f(x), \sum_{j=m}^{n+m-1}\left(\frac{1}{8}\left(\frac{2^{p}}{8}\right)^{j}+\frac{1}{2^{p}}\left(\frac{4}{2^{p}}\right)^{j}\right) t\right)
$$

$$
\begin{aligned}
& \geq \min \bigcup_{j=m}^{n+m-1}\left\{N^{\prime}\left(-\frac{D f\left(0,2^{j} x\right)}{2^{3 j+4}}, \frac{2^{j p} t}{2^{3 j+4}}\right)\right. \\
& N^{\prime}\left(\frac{D f\left(0,-2^{j} x\right)}{2^{3 j+4}}, \frac{2^{j p} t}{2^{3 j+4}}\right), \\
& N^{\prime}\left(2^{2 j-1} D f\left(0, \frac{x}{2^{j+1}}\right), \frac{2^{2 j-1} t}{2^{(j+1) p}}\right), \\
&\left.N^{\prime}\left(2^{2 j-1} D f\left(0,-\frac{x}{2^{j+1}}\right), \frac{2^{2 j-1} t}{2^{(j+1) p}}\right)\right\} \\
& \geq \min \bigcup_{j=m}^{n+m-1}\left\{N\left(2^{j} x, 2^{j} s^{q}\right), N\left(0,2^{j}(t-s)^{q}\right),\right. \\
&=N\left(x, s^{q}\right)\left.N\left(\frac{x}{2^{j+1}}, \frac{s^{q}}{2^{j+1}}\right), N\left(0, \frac{(t-s)^{q}}{2^{j+1}}\right)\right\}
\end{aligned}
$$

for all $x \in X$ and $t>0$, where $0<s<t$. In the similar argument following (2.4) of the previous case, we can define the limit $F(x):=N^{\prime}-\lim _{n \rightarrow \infty} J_{n} f(x)$ of the Cauchy sequence $\left\{J_{n} f(x)\right\}$ in the Banach fuzzy space Y. Moreover, putting $m=0$ in the above inequality, we have

$$
\begin{equation*}
N^{\prime}\left(f(x)-J_{n} f(x), t\right) \geq \sup _{s<t}\left\{N\left(x, \frac{s^{q}}{\left(\sum_{j=0}^{n-1}\left(\frac{1}{8}\left(\frac{2^{p}}{8}\right)^{j}+\frac{1}{2^{p}}\left(\frac{4}{2^{p}}\right)^{j}\right)\right)^{q}}\right)\right\} \tag{2.8}
\end{equation*}
$$

for each $x \in X$ and $t>0$. To prove that F is a quadratic and cubic mapping, we need to show that the last term of (2.6) in Case 1 tends to 1 as $n \rightarrow \infty$. It is from (N3) and (2.1) that

$$
\begin{aligned}
& N^{\prime}\left(D J_{n} f(x, y), \frac{t}{2}\right) \\
& \quad \geq \min \left\{N^{\prime}\left(\frac{D f\left(2^{n} x, 2^{n} y\right)}{2 \cdot 8^{n}}, \frac{t}{8}\right), N^{\prime}\left(\frac{D f\left(-2^{n} x,-2^{n} y\right)}{2 \cdot 8^{n}}, \frac{t}{8}\right)\right. \\
& \left.\quad N^{\prime}\left(2^{2 n-1} D f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right), \frac{t}{8}\right), N^{\prime}\left(2^{2 n-1} D f\left(\frac{-x}{2^{n}}, \frac{-y}{2^{n}}\right), \frac{t}{8}\right)\right\} \\
& \geq \min
\end{aligned} \begin{aligned}
& \left\{N\left(x, 2^{(3 q-1) n-3 q} t^{q}\right), N\left(y, 2^{(3 q-1) n-3 q} t^{q}\right)\right. \\
& \\
& \left.N\left(x, 2^{(1-2 q) n-3 q} t^{q}\right), N\left(y, 2^{(1-2 q) n-3 q} t^{q}\right)\right\}
\end{aligned}
$$

for each $x, y \in X$ and $t>0$. Observe that all the terms on the right hand side of the above inequality tend to 1 as $n \rightarrow \infty$, since $\frac{1}{3}<q<\frac{1}{2}$. Hence, together with the
similar argument after (2.6), we can say that $D F(x, y)=0$ for all $x, y \in X$. Recall that the inequality (2.2) follows from (2.5) in Case 1 . By the same reasoning, we get (2.2) from (2.8) in this case. Now to prove the uniqueness of F, let F^{\prime} be another quadratic and cubic mapping satisfying (2.2). Then, together with (N4), (2.2), and (2.7), we have

$$
\begin{aligned}
& N^{\prime}\left(F(x)-F^{\prime}(x), t\right) \\
& =N^{\prime}\left(J_{n} F(x)-J_{n} F^{\prime}(x), t\right) \\
& \geq \min \left\{N^{\prime}\left(J_{n} F(x)-J_{n} f(x), \frac{t}{2}\right), N^{\prime}\left(J_{n} f(x)-J_{n} F^{\prime}(x), \frac{t}{2}\right)\right\} \\
& \geq \min \left\{N^{\prime}\left(\frac{(F-f)\left(2^{n} x\right)}{2 \cdot 8^{n}}, \frac{t}{8}\right),\left(\frac{\left(f-F^{\prime}\right)\left(2^{n} x\right)}{2 \cdot 8^{n}}, \frac{t}{8}\right),\right. \\
& \\
& \quad N^{\prime}\left(\frac{(F-f)\left(-2^{n} x\right)}{2 \cdot 8^{n}}, \frac{t}{8}\right), N^{\prime}\left(\frac{\left(f-F^{\prime}\right)\left(-2^{n} x\right)}{2 \cdot 8^{n}}, \frac{t}{8}\right), \\
& \\
& \quad N^{\prime}\left(2^{2 n-1}\left((F-f)\left(\frac{x}{2^{n}}\right)\right), \frac{t}{8}\right), N^{\prime}\left(2^{2 n-1}\left(\left(f-F^{\prime}\right)\left(\frac{x}{2^{n}}\right)\right), \frac{t}{8}\right), \\
& \left.\quad N^{\prime}\left(2^{2 n-1}\left((F-f)\left(\frac{-x}{2^{n}}\right)\right), \frac{t}{8}\right), N^{\prime}\left(2^{2 n-1}\left(\left(f-F^{\prime}\right)\left(\frac{-x}{2^{n}}\right)\right), \frac{t}{8}\right)\right\} \\
& \geq \min \left\{\sup _{s<t}\left\{N\left(x, 2^{(3 q-1) n-2 q}\left(\frac{\left(8-2^{p}\right)\left(2^{p}-4\right)}{4}\right)^{q} s^{q}\right)\right\},\right. \\
& \left.\quad \sup _{s<t}\left\{N\left(x, 2^{(1-2 q) n-2 q}\left(\frac{\left(8-2^{p}\right)\left(2^{p}-4\right)}{4}\right)^{q} s^{q}\right)\right\}\right\}
\end{aligned}
$$

for all $x \in X$ and $n \in \mathbb{N}$. Since $\lim _{n \rightarrow \infty} 2^{(3 q-1) n-2 q}=\lim _{n \rightarrow \infty} 2^{(1-2 q) n-2 q}=\infty$ in this case, both terms on the right hand side of the above inequality tend to 1 as $n \rightarrow \infty$ by (N5). This implies that $N^{\prime}\left(F(x)-F^{\prime}(x), t\right)=1$ and so $F(x)=F^{\prime}(x)$ for all $x \in X$ by (N2).

Case 3. Finally, we take $0<q<\frac{1}{3}$ and define $J_{n} f: X \rightarrow Y$ by

$$
J_{n} f(x)=\frac{1}{2}\left(4^{n}\left(f\left(2^{-n} x\right)+f\left(-2^{-n} x\right)-2 f(0)\right)+8^{n}\left(f\left(\frac{x}{2^{n}}\right)-f\left(-\frac{x}{2^{n}}\right)\right)\right)+f(0)
$$

for all $x \in X$. Then we have $J_{0} f(x)=f(x)$ and

$$
\begin{aligned}
J_{j} f(x)-J_{j+1} f(x)= & \left(2^{3 j-1}+2^{2 j-1}\right) D f\left(0, \frac{x}{2^{j+1}}\right) \\
& -\left(2^{3 j-1}-2^{2 j-1}\right) D f\left(0, \frac{-x}{2^{j+1}}\right)
\end{aligned}
$$

which implies that if $n+m>m \geq 0$ then

$$
\begin{aligned}
& N^{\prime}\left(J_{m} f(x)-J_{n+m} f(x), \sum_{j=m}^{n+m-1}\left(\frac{8}{2^{p}}\right)^{j} \frac{t}{2^{p}}\right) \\
& \quad \geq \min \bigcup_{j=m}^{n+m-1}\left\{N^{\prime}\left(\left(2^{3 j-1}+2^{2 j-1}\right) D f\left(0, \frac{x}{2^{j+1}}\right), \frac{\left(2^{3 j-1}+2^{2 j-1}\right) t}{2^{(j+1) p}}\right),\right. \\
& \left.\quad N^{\prime}\left(-\left(2^{3 j-1}-2^{2 j-1}\right) D f\left(0,-\frac{x}{2^{j+1}}\right), \frac{\left(2^{3 j-1}-2^{2 j-1}\right) t}{2^{(j+1) p}}\right)\right\} \\
& \quad \geq \min \bigcup_{j=m}^{n+m-1}\left\{N\left(\frac{x}{2^{j+1}}, \frac{s^{q}}{2^{j+1}}\right), N\left(0, \frac{(t-s)^{q}}{2^{j+1}}\right)\right\} \\
& \quad=N\left(x, s^{q}\right)
\end{aligned}
$$

for all $x \in X$ and $t>0$, where $0<s<t$. Similar to the previous cases, it leads us to define the mapping $F: X \rightarrow Y$ by $F(x):=N^{\prime}-\lim _{n \rightarrow \infty} J_{n} f(x)$. Putting $m=0$ in the above inequality, we have

$$
\begin{equation*}
N^{\prime}\left(f(x)-J_{n} f(x), t\right) \geq \sup _{s<t}\left\{N\left(x, \frac{s^{q}}{\left(\frac{1}{2^{p}} \sum_{j=0}^{n-1}\left(\frac{8}{2^{p}}\right)^{j}\right)^{q}}\right)\right\} \tag{2.9}
\end{equation*}
$$

for all $x \in X$ and $t>0$. Notice that

$$
\begin{aligned}
& N^{\prime}\left(D J_{n} f(x, y), \frac{t}{2}\right) \\
& \quad \geq \min \left\{N^{\prime}\left(\frac{4^{n}}{2} D f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right), \frac{t}{8}\right), N^{\prime}\left(\frac{4^{n}}{2} D f\left(\frac{-x}{2^{n}}, \frac{-y}{2^{n}}\right), \frac{t}{8}\right),\right. \\
& \\
& \left.N^{\prime}\left(2^{3 n-1} D f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right), \frac{t}{8}\right), N^{\prime}\left(2^{3 n-1} D f\left(\frac{-x}{2^{n}}, \frac{-y}{2^{n}}\right), \frac{t}{8}\right)\right\} \\
& \geq \min \left\{N\left(x, 2^{(1-2 q) n-3 q} t^{q}\right), N\left(y, 2^{(1-2 q) n-3 q} t^{q}\right),\right. \\
& \\
& \left.N\left(x, 2^{(1-3 q) n-3 q} t^{q}\right), N\left(y, 2^{(1-3 q) n-3 q} t^{q}\right)\right\}
\end{aligned}
$$

for each $x, y \in X$ and $t>0$. Since $0<q<\frac{1}{3}$, both terms on the right hand side tend to 1 as $n \rightarrow \infty$, which implies that the last term of (2.6) tends to 1 as $n \rightarrow \infty$. Therefore, we can say that $D F \equiv 0$. Moreover, using the similar argument after (2.6) in Case 1, we get the inequality (2.2) from (2.9) in this case. To prove the uniqueness of F, let $F^{\prime}: X \rightarrow Y$ be another quadratic and cubic mapping satisfying (2.2). Then by (2.7), we get

$$
\begin{aligned}
& N^{\prime}\left(F(x)-F^{\prime}(x), t\right) \\
& \geq \min \left\{N^{\prime}\left(J_{n} F(x)-J_{n} f(x), \frac{t}{2}\right), N^{\prime}\left(J_{n} f(x)-J_{n} F^{\prime}(x), \frac{t}{2}\right)\right\} \\
& \geq \min \left\{N^{\prime}\left(\frac{4^{n}}{2}\left((F-f)\left(\frac{x}{2^{n}}\right)\right), \frac{t}{8}\right), N^{\prime}\left(\frac{4^{n}}{2}\left(\left(f-F^{\prime}\right)\left(\frac{x}{2^{n}}\right)\right), \frac{t}{8}\right),\right. \\
& \quad N^{\prime}\left(\frac{4^{n}}{2}\left((F-f)\left(-\frac{x}{2^{n}}\right)\right), \frac{t}{8}\right), N^{\prime}\left(\frac{4^{n}}{2}\left(\left(f-F^{\prime}\right)\left(-\frac{x}{2^{n}}\right)\right), \frac{t}{8}\right), \\
& \\
& N^{\prime}\left(2^{3 n-1}\left((F-f)\left(\frac{x}{2^{n}}\right)\right), \frac{t}{8}\right), N^{\prime}\left(2^{3 n-1}\left(\left(f-F^{\prime}\right)\left(\frac{x}{2^{n}}\right)\right), \frac{t}{8}\right), \\
& \left.\quad N^{\prime}\left(2^{3 n-1}\left((F-f)\left(\frac{-x}{2^{n}}\right)\right), \frac{t}{8}\right), N^{\prime}\left(2^{3 n-1}\left(\left(f-F^{\prime}\right)\left(\frac{-x}{2^{n}}\right)\right), \frac{t}{8}\right)\right\} \\
& \geq \sup _{s<t} N\left\{\left(x, 2^{(1-3 q) n-2 q}\left(2^{p}-8\right)^{q} s^{q}\right)\right\}
\end{aligned}
$$

for all $x \in X$ and $n \in \mathbb{N}$. Observe that, for $0<q<\frac{1}{3}$, the last term tends to 1 as $n \rightarrow \infty$ by (N5). This implies that $N^{\prime}\left(F(x)-F^{\prime}(x), t\right)=1$ and $F(x)=F^{\prime}(x)$ for all $x \in X$ by (N2).

Corollary 2.3. Let f be an even mapping satisfying all of the conditions of Theorem 2.2. Then there is a unique quadratic mapping $F: X \rightarrow Y$ such that

$$
\begin{equation*}
N^{\prime}(\tilde{F}(x)-f(x)+f(0), t) \geq \sup _{s<t} N\left\{\left(x,\left(\left|4-2^{p}\right| s\right)^{q}\right)\right\} \tag{2.10}
\end{equation*}
$$

for all $x \in X$ and $t>0$, where $p=1 / q$.
Proof. Let $J_{n} f$ be defined as in Theorem 2.2. Since f is an even mapping, we obtain

$$
J_{n} f(x)= \begin{cases}\frac{f\left(2^{n} x\right)+f\left(-2^{n} x\right)-2 f(0)}{2 \cdot 4^{n}}+f(0) & \text { if } 0<q<\frac{1}{2} \\ 2^{2 n-1}\left(f\left(2^{-n} x\right)+f\left(-2^{-n} x\right)-2 f(0)\right)+f(0) & \text { if } q>\frac{1}{2}\end{cases}
$$

for all $x \in X$. Notice that $J_{0} f(x)=f(x)$ and

$$
J_{j} f(x)-J_{j+1} f(x)= \begin{cases}\frac{-1}{2^{2 j+3}}\left(D f\left(0,2^{j} x\right)+D f\left(0,-2^{j} x\right)\right) & \text { if } 0<q<\frac{1}{2} \\ 2^{2 j-1}\left(D f\left(0, \frac{x}{2^{j+1}}\right)+D f\left(0, \frac{-x}{2^{j+1}}\right)\right) & \text { if } q>\frac{1}{2}\end{cases}
$$

for all $x \in X$ and $j \in \mathbb{N} \cup\{0\}$. From these, using the similar method in Theorem 2.2 , we obtain a quadratic and cubic mapping F satisfying

$$
N^{\prime}(F(x)-f(x), t) \geq \sup _{s<t} N\left\{\left(x,\left(\left|4-2^{p}\right| s\right)^{q}\right)\right\}
$$

for all $x \in X$ and $t>0$. Notice that F is also even, $F(x):=N^{\prime}-\lim _{n \rightarrow \infty} J_{n} f(x)$ for all $x \in X$, and $D F(x, y)=0$ for all $x, y \in X$. Put $\tilde{F}=F-f(0)$, then

$$
\begin{aligned}
F(x+y)+F(x-y)-2 F(x)-2 F(y) & =\frac{1}{6}(D F(2 y, x)+3 D F(x, y)+D F(x,-y) \\
& -D F(0, x+y)-3 D F(0,2 y))=0
\end{aligned}
$$

for all $x, y \in X$. This means that \tilde{F} is a quadratic mapping satisfying (2.10).
Corollary 2.4. Let f be an odd mapping satisfying all of the conditions of Theorem 2.2. Then there is a unique cubic mapping $F: X \rightarrow Y$ such that

$$
\begin{equation*}
N^{\prime}(F(x)-f(x), t) \geq \sup _{s<t} N\left(x,\left(\left|8-2^{p}\right| s\right)^{q}\right) \tag{2.11}
\end{equation*}
$$

for all $x \in X$ and $t>0$, where $p=1 / q$.
Proof. Let $J_{n} f$ be defined as in Theorem 2.2. Since f is an odd mapping, we obtain

$$
\begin{gathered}
J_{n} f(x)=\left\{\begin{array}{ll}
\frac{f\left(2^{n} x\right)+f\left(-2^{n} x\right)}{2^{3 n-1}\left(f\left(2^{3 n+1} x\right)+f\left(-2^{-n} x\right)\right)} & \text { if } 0<q<\frac{1}{3}, \\
J_{j} f(x)-J_{j+1} f(x)= \begin{cases}\frac{1}{2^{33+4}}\left(D f\left(0,-2^{j} x\right)-D f\left(0,2^{j} x\right)\right) & \text { if } 0<q<\frac{1}{3}, \\
2^{3 j-1}\left(D f\left(0, \frac{x}{2^{j+1}}\right)-D f\left(0, \frac{-x}{2^{j+1}}\right)\right) & \text { if } q>\frac{1}{3}\end{cases}
\end{array} . \begin{array}{l}
\end{array},\right.
\end{gathered}
$$

for all $x \in X$ and $j \in \mathbb{N} \cup\{0\}$. From these, using the similar method in Theorem 2.2, we obtain a quadratic and cubic mapping F satisfying (2.11). Notice that F is also odd, $F(x):=N^{\prime}-\lim _{n \rightarrow \infty} J_{n} f(x)$ for all $x \in X$, and $D F(x, y)=0$ for all $x, y \in X$. Hence, we get

$$
F(x+2 y)-3 F(x+y)+3 F(x)-F(x-y)-6 F(y)=D F(x, y)=0
$$

for all $x, y \in X$. This means that F is an cubic maipping.
We can use Theorem 2.2 to get a classical result in the framework of normed spaces. Let $(X,\|\cdot\|)$ be a normed linear space. Then we can define a fuzzy norm N_{X} on X by following

$$
N_{X}(x, t)= \begin{cases}0, & t \leq\|x\| \\ 1, & t>\|x\|\end{cases}
$$

where $x \in X$ and $t \in \mathbb{R}$, see [17]. Suppose that $f: X \rightarrow Y$ is a mapping into a Banach space $(Y,\| \| \cdot\| \|)$ such that

$$
\|\|D f(x, y)\|\| \leq\|x\|^{p}+\|y\|^{p}
$$

for all $x, y \in X$, where $p>0$ and $p \neq 2,3$. Let N_{Y} be a fuzzy norm on Y. Then we get

$$
N_{Y}(D f(x, y), s+t)= \begin{cases}0, & s+t \leq\| \| D f(x, y)\| \| \\ 1, & s+t>\|D f(x, y)\| \|\end{cases}
$$

for all $x, y \in X$ and $s, t \in \mathbb{R}$. Consider the case $N_{Y}(D f(x, y), s+t)=0$. This implies that

$$
\|x\|^{p}+\|y\|^{p} \geq\|\mid D f(x, y)\| \| \geq s+t
$$

and so either $\|x\|^{p} \geq s$ or $\|y\|^{p} \geq t$ in this case. Hence, for $q=\frac{1}{p}$, we have

$$
\min \left\{N_{X}\left(x, s^{q}\right), N_{X}\left(y, t^{q}\right)\right\}=0
$$

for all $x, y \in X$ and $s, t>0$. Therefore, in every case, the inequality

$$
N_{Y}(D f(x, y), s+t) \geq \min \left\{N_{X}\left(x, s^{q}\right), N_{X}\left(y, t^{q}\right)\right\}
$$

holds. It means that f is a fuzzy q-almost cubic-quadratic mapping, and by Theorem 2.2 , we get the following stability result.

Corollary 2.5 (compare with Corollary 3.4 in [13]). Let $(X,\|\cdot\|)$ be a normed linear space and let $(Y,\||\cdot|\|)$ be a Banach space. If

$$
\|\|D f(x, y)\|\| \leq\|x\|^{p}+\|y\|^{p}
$$

for all $x, y \in X$, where $p>0$ and $p \neq 1,2$, then there is a unique quadratic and cubic mapping $F: X \rightarrow Y$ such that

$$
\left\|\left||F(x)-f(x)| \| \leq \begin{cases}\frac{\|\left. x\right|^{p}}{4-2^{p}} & \text { if } 0<p<2 \\ \frac{4-2^{p} \|^{p}}{(8-4)} & \text { if } 2<p<3 \\ \frac{\left.\|x\|^{p}\right)}{2^{p}-8} & \text { if } 3<p\end{cases}\right.\right.
$$

for all $x \in X$.

References

1. T. Aoki: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2 (1950), 64-66.
2. T. Bag \& S.K. Samanta: Finite dimensional fuzzy normed linear spaces. J. fuzzy Math. 11 (2003), no. 3, 687-705.
3. S.C. Cheng \& J.N. Mordeson: Fuzzy linear operator and fuzzy normed linear spaces. Bull. Calcutta Math. Soc. 86 (1994), 429-436.
4. P. Găvruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436.
5. D. H. Hyers: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27 (1941), 222-224.
6. A. K. Katsaras: Fuzzy topological vector spaces II. Fuzzy Sets and Systems 12 (1984), 143-154.
7. I. Kramosil \& J. Michalek: Fuzzy metric and statistical metric spaces. Kybernetica 11 (1975), 326-334.
8. Y.-H. Lee: On the stability of the monomial functional equation. Bull. Korean Math. Soc. 45 (2008), 397-403.
9. Y.-H. Lee \& K.-W. Jun: On the Stability of Approximately Additive Mappings. Proc. Amer. Math. Soc. 128 (2000), 1361-1369.
10. A. K. Mirmostafaee \& M. S. Moslehian: Fuzzy versions of Hyers-Ulam-Rassias theorem. Fuzzy Sets and Systems 159 (2008), 720-729.
11. M. Mursaleen \& S.A. Mohiuddine: On stability of a cubic functional equation in intuitionistic fuzzy normed spaces. Chaos, Solitons \& Fractals 42 (2009), 2997-3005.
12. Th. M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297-300.
13. W. Towanlong \& P. Nakmahachalasint: A mixed-type quadratic and cubic functional equation and its stability. Thai Journal of Mathematics Special Issue (Annual Meeting in Mathematics) (2010), 61-71.
14. S.M. Ulam: A Collection of Mathematical Problems. Interscience, New York (1960).
${ }^{a}$ Department of Mathematics Education, Gonguu National University of Education, Gonguu 314-711, Republic of Korea
Email address: chjlee@gjue.ac.kr
${ }^{\text {b }}$ Department of Mathematics Education, Gonguu National University of Education, Gonguu 314-711, Republic of Korea
Email address: lyhmzi@gjue.ac.kr

[^0]: Received by the editors August 7, 2012. Accepted October 16, 2012.
 2010 Mathematics Subject Classification. 46S40, 39B52.
 Key words and phrases. fuzzy normed space, fuzzy almost cubic-quadratic mapping.

 * Corresponding author

 This work was supported by Gongju National University of Education Grant.

