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ON THE STABILITY OF A MIXED TYPE QUADRATIC AND
CUBIC FUNCTIONAL EQUATION

CHANG-JU LEE? AND YANG-HI LEEP*

ABSTRACT. In this paper, we investigate a fuzzy version of stability for the func-
tional equation

J@+2y) = 3f(x+y) +3f(z) — flx —y) = 3f(y) +3f(-y) =0

in the sense of M. Mirmostafaece and M. S. Moslehian.

1. INTRODUCTION

A classical question in the theory of functional equations is “when is it true that
a mapping, which approximately satisfies a functional equation, must be somehow
close to an exact solution of the equation?”. Such a problem, called a stability
problem of the functional equation, was formulated by S. M. Ulam [14] in 1940. In
the next year, D. H. Hyers [5] gave a partial solution of Ulam’s problem for the case
of approximate additive mappings. Subsequently, his result was generalized by T.
Aoki [1] for additive mappings and by Th. M. Rassias [12] for linear mappings by
considering the stability problem with unbounded Cauchy differences (see [4,8,9]).

In 1984, A. K. Katsaras [6] defined a fuzzy norm on a linear space to construct
a fuzzy structure on the space. Since then, some mathematicians have introduced
several types of fuzzy norm in different points of view. In particular, T. Bag and
S.K. Samanta [2], following Cheng and Mordeson [3], gave an idea of a fuzzy norm
in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek
type [7]. In 2008, M. Mirmostafaece and M. S. Moslehian [10] proved a fuzzy version

of stability for the quadratic functional equation:

(1.1) flx+y)+ flx—y) —2f(z) —2f(y) =0.
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In 2009, M. Mursaleen and S. A. Mohiuddine [11] proved a fuzzy version of stability

for the cubic functional equation:

(1.2) fQr+y)+ f(22 —y) —2f(z +y) —2f(x —y) — 12f(x) = 0.

A solution of (1.1) is called a quadratic mapping and a solution of (1.2) is called a

cubic mapping. The functional equation

(1.3) flz+2y) =3f(x+y)+3f(z) — f(z—y) —3f(y) +3f(~y) =0.

is called the mized type quadratic and cubic functional equation, since the function
f(z) = ax® + bz? + ¢ is its solution. Every solution of the quadratic and cubic func-
tional equation is said to be a quadratic and cubic mapping. In 2010, W. Towanlong
and P. Nakmahachalasint [13] obtained a stability of the functional equation (1.3).
In their processing, they took a cubic mapping C' and a quadratic mapping @ such

that C is approximate to the odd part w of f and @ is close to the even

W — f(0) of f, respectively.

part

In this paper, we get a general stability result of the functional equation (1.3) in
the fuzzy normed linear space in the manner of M. Mirmostafaee and M. S. Mosle-
hian [10]. To do it, we introduce a Cauchy sequence {.J, f(x)} starting from a given
mapping f, which converges to the desired mapping F in the fuzzy sense. As men-
tioned above, in previous studies of stability problem of (1.3), they [13] attempted
to get stability theorems by handling the odd and even part of f, respectively. Ac-
cording to our proposal in this paper, we can take the desired approximate solution

F' at once.
2. Fuzzy STABILITY OF THE FUNCTIONAL EQUATION (1.3)

We use the definition of a fuzzy normed space given in [2] to exhibit a reasonable
fuzzy version of stability for the mixed type quadratic and cubic functional equation

in the fuzzy normed linear space.

Definition 2.1 ([2]). Let X be a real linear space. A function N : X x R — [0, 1]
(the so-called fuzzy subset) is said to be a fuzzy norm on X if for all z,y € X and
all s,t € R,

(N1) N(z,c) =0 for ¢ <0;

(N2) z =0 if and only if N(x,¢) =1 for all ¢ > 0;

(N3) N(cz,t) = N(x,t/|c|) if ¢ #0;

(N4) N(z+y,s+t) > min{N(z,s), N(y,t)};
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(N5) N(z,-) is a non-decreasing function on R and lim; . N(z,t) = 1.

The pair (X, N) is called a fuzzy normed linear space. Let (X, N) be a fuzzy normed
linear space. Let {z,,} be a sequence in X. Then {z,} is said to be convergent if
there exists € X such that lim,,_,oo N(z, — z,t) = 1 for all ¢ > 0. In this case, =
is called the limit of the sequence {x,} and we denote it by N — limy,_,0c z,, = 2. A
sequence {x,} in X is called Cauchy if for each € > 0 and each ¢ > 0 there exists
no such that for all n > ng and all p > 0 we have N(zpqp — 2pn,t) > 1 —c. It is
known that every convergent sequence in a fuzzy normed space is Cauchy. If each
Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the
fuzzy normed space is called a fuzzy Banach space.

Let (X, N) be a fuzzy normed space and (Y, N’) a fuzzy Banach space. For a

given mapping f: X — Y, we use the abbreviation

Df(x,y) :=f(x+2y) = 3f(x+y) +3f(x) — flx —y) = 3f(y) +3f(~y)

for all z,y € X. For given ¢ > 0, the mapping f is called a fuzzy q-almost mized-type

quadratic and cubic mapping, if
(2.1) N'(Df(z,y),t + s) > min{N(z,s?), N(y, )}

for all z,y € X and all s,t € (0,00). Now we get the general stability result in the

fuzzy normed linear space.

Theorem 2.2. Let g be a positive real number with q # %, % And let f be a
fuzzy g-almost mized-type quadratic and cubic mapping from a fuzzy normed space
(X,N) into a fuzzy Banach space (Y,N'). Then there is a unique quadratic and

cubic mapping F': X —'Y such that

(2.2)
sup,; {N (z, (4 — 2P)1s7)} if q>3,
N'(F(2) = f(2),) 2§ supoe, {N (2, (W)qsq)} if L<g<l,
sup,; {NV (, (27 — 8)7s7)} if 0<g<j

for each v € X and t > 0, where p=1/q.

Proof. We will prove the theorem in three cases, ¢ > %, % <g< %, and 0 < ¢ < %
Case 1. Let ¢ > % and let J,f : X — Y be a mapping defined by

Inf(x) = % (47" (f(2"2) + f(=2"2) — 2£(0)) + 87" (f(2"x) — f(—2"x))) + £(0)

for all x € X and n € NU {0}. Notice that Jyf(z) = f(z) and
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9i+1 _ 1 ) 2i+1 41 )
(2.3) Jif (@) = Jjpaf(z) = —WDf(Oa —2z) - WDf((), )

for all x € X and j > 0. Together with (N3), (N4) and (2.1), this equation implies
that if n +m > m > 0 then

N,<Jmf($) = Jnmf(x)’n*f:‘l (T)j it1>

Jj=m

ntm—1 ntm—1 /o 5\ j
>N Y if(@) = T f@). Y <24> 2

j=m j=

m
' n+m—1 ) op 7 +
>win (J 8 (5350 - st () 4
j=m
n+m—1 ; ; ;
: . 0+l 41 : 20+1 4 1)2dp¢
> min U {mm{N’ <—WDf(O,2]:r),W> ,
j=m

20+l 1 C (27 —1)20Pt
!/
Y (‘wa ”*2“‘)’23]%) }}

n+m—1 ' ' '
>min | {N(0,27(t - 5)9), N(27z,2/57)}
j=m

= N(z,s7)

—~

for all x € X and t > 0, where 0 < s < t. Hence we have the inequality

28 N (10 hns@. S (2) 1) 2 s (V)

j=m 0<s<t

for all x € Xand t > 0. Let ¢ > 0 be given. Since limy_, N(z,t) = 1, there is
to > 0 such that

N(:L‘,to) > 1—e.
- . = /2PN @
We observe that for some t with t¢ > {3, the series Z <4> 1 converges for
§=0

p= % < 2. It guarantees that, for an arbitrary given ¢ > 0, there exists ng > 0 such

that
n+m—1 op jt~
> (7)) i<

Jj=m
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for each m > ng and n > 0. By (N5) and (2.4), we have

N/(Jmf(x) — Jntm f(x), )

n+m—1 J 7
SYENEREAE YN

Jj=m

> sup {N(z,s1)} > N(z,tp) >1—e.
0<s<i

for all z € X. Hence {J,f(z)} is a Cauchy sequence in the fuzzy Banach space
(Y, N"), and so we can define a mapping F': X — Y by

F(z):=N'— nh_)rrolo Jnf(z).

Moreover, if we put m = 0 in (2.4), we have

4954
(2.5) N'(f(z) — Juf(z),t) > sup ¢ N |z, ~—
0<s<t (Z?:—& (%TP)J>

for all z € X.
Next we will show that F' is a quadratic and cubic mapping. Using (N4), we have

N(DF(a).) min {8 ((F = Juf)(o +20). 35 ).

N (307 = P+ ). g5 ) o (35— Juf (o). 35).
N (= P =) 5 ) N (3= D) -0) 35 )
(2.6) N’ (3(Jnf - F)(v), f2> N (DJnf(w,y), ;) }

for all z,y € X and n € N. The first six terms on the right hand side of (2.6)
tend to 1 as n — oo by the definition of F' and (N2), and the last term satisfies the

inequality

, t i , (Df(2"x,2™y) t , (Df(=2"z,—2"y) t
2 > ZJ\E = J) 2 Z
N (DJnf(a:,y),2>_m1n{N < 5 an '3 , N W 5

2.8" '8) 2.8" '8

for all z,y € X. By (N3) and (2.1), we obtain
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N< W '3 Df(£2"z, £2"y ,4
4™ 4™
>min{ N (2" N (2"
—mm{ ( %(8))’ (2 (5))}
9(2¢—1)n 2(2¢—1)n
2min{N< , >’ <y’3 14
( ) (

)
3¢g—1)n

T t1| N
23q
and
Df(£2"x, £27 t 2B¢=1)n

2.8" '8
for all z,y € X and n € N. Since q > %, together with (N5), we can deduce that the
last term of (2.6) also tends to 1 as n — oo. It follows from (2.6) that

234
234

N'(DF(x,y),t) =1

for each z,y € X and ¢t > 0. By (N2), this means that DF(x,y) = 0 for all z,y € X.
Next we approximate the difference between f and F' in a fuzzy sense. For an
arbitrary fixed z € X and ¢ > 0, choose 0 < ¢ < 1 and 0 < t’ < ¢. Since F is the
limit of {J,, f(z)}, there is n € N such that

N' (F(z) = Jnf(z),t —t') >1—¢.
By (2.5), we have

N/(F(:L') - f(l’),t) > min {N, (F($) - Jnf($)7t - t/) 7N, (Jnf(l:) - f(:E)vt,)}

495

>min<1—¢, sup ¢( N | z, T
U n— P

O<s<t (ijo () )

>min {1 —¢,N (z,(4 —2P)7'7)}.

q

Because 0 < ¢ < 1 is arbitrary, we get the inequality (2.2) in this case. Finally,
to prove the uniqueness of the quadratic and cubic mapping F', assume that there
exists a quadratic and cubic mapping F’ which satisfies (2.2). Then by (2.3), we get
n—1
F(z) = JoF(x) = » (JiF(z) = Jj1F(x)) =0
(2.7) 7
F'(x) — J,F'(x)

Il
=)

1
(JjF/(l') - Jj+1F’($)) =0
0

for all x € X and n € N. Together with (N4) and (2.2), this implies that

Il
3
|

<.
Il
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J, t)
> min {N’ <JnF(m) — Jnf(x),
{0 (IE5 ), 1
(

;) N <Jn F(z) — JoF'(2), ;)}
N

,<(f—F’)(2”fv)’ t) ’

v (2 ) (U i, )
(R ) v (R )
v ((F “he) ;) N,<(f—§f)§n—2”x)’ ;)}

Zsup{ (:U 2(2¢-1)n—2q (4 - 2p)qsq)}
s<t

for all x € X and n € N. Observe that, for ¢ = % > %, the last term of the above
inequality tends to 1 as n — oo by (N5). This implies that

N/(F(x) - F’(x),t) = 1.
Hence we conclude that
F(z) = F'(z)

for all z € X by (N2).
Case 2. Let % <q< % and let J,f : X — Y be a mapping defined by

Tf(e) = 3 (87 (@) — f2m) 44 (5 () + 7 () — 270)) ) + F(O)

for all z € X. Then we have Jof(z) = f(z) and

ij(x)_Jj+1f(m)_ 233+4Df(0 2z ) 23J+4Df( )
2j—1 2j—1 -
+2970Df (0,5 ) + 2 Df( 2j+1>
forall x € X and j > 0. If n4+m > m > 0, then we have

N’(Jmf(af) - Jn+mf(a;),n+f:1 (é (2;)] + 2% @)j) t)

j=m
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n+m—1 ; ;
D 27 27P¢
>min | J {N,<_ f(0,27z) )

923j+4 7 937+4

N <Df(0, —2x) 2Pt > |

23j+4 7 935+4

2j—1

N (2 Df <0’ 2i+1 ) 9(i+1)p )’
2j—1

N (2 Df (0’ 2i+1 ) 9(j+1)p

> min U {N(2jm,2jsq),N(0,2j(t—s)q),

x st (t —s)4
)N (5))

for all x € X and ¢t > 0, where 0 < s < t. In the similar argument following (2.4)

= N(z,s7)

of the previous case, we can define the limit F(z) := N’ — lim, . J,, f(x) of the
Cauchy sequence {.J,,f(z)} in the Banach fuzzy space Y. Moreover, putting m = 0

in the above inequality, we have

Sq

(2.8)  N'(f(x) — Jnf(x),t) >sup{ N | z, : g
-1
(5 (33 + % (3))
for each x € X and t > 0. To prove that F' is a quadratic and cubic mapping, we

need to show that the last term of (2.6) in Case 1 tends to 1 as n — oo. It is from
(N3) and (2.1) that

N’ (DJnf(fCay)v ;)

) Df(2"x,2"y) t Df(-2"x,—2"y) t
> N (22 T °
—mm{ ( 2.8n  '8)’ 2.8n  '8)’

_ t _ - -y t
N’ 22n lD ii v N/ 22n lD o d -
( o) 5): 55 ) g

> min {N(gj, 2(3q—1)n—3qtq)’ N(y, 2(3q—1)n—3qtq)’

N (z, 2007207 =3049) N (4, 2(1—2q)n—3qtq)}

for each z,y € X and t > 0. Observe that all the terms on the right hand side of

the above inequality tend to 1 as n — oo, since % <qg< % Hence, together with the
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similar argument after (2.6), we can say that DF(z,y) = 0 for all z,y € X. Recall
that the inequality (2.2) follows from (2.5) in Case 1. By the same reasoning, we get
(2.2) from (2.8) in this case. Now to prove the uniqueness of F, let F’ be another
quadratic and cubic mapping satisfying (2.2). Then, together with (N4), (2.2), and
(2.7), we have

N'(F(x) - F'(2).1)
— N'(J F(2) - JuF'(2), 1)

Zmin{ <Jn (:c),;>,N’(Jnf(x)—JnF'(x),;>}
v (54m.) (=mn
v (E=DCZ 1) o (U=F12) 1y
v e (-0 ) ) v (e (0P () )
v (E=n(5) ) v (2 (0-m(5)) 5)
i S}
o o (BT

for all z € X and n € N. Since lim,_o, 269" D72¢ — Jj;y,,_ 20720020 — o iy
this case, both terms on the right hand side of the above inequality tend to 1 as
n — oo by (N5). This implies that N'(F(z) — F'(x), t) = 1 and so F(z) = F'(x)
for all z € X by (N2).

Case 3. Finally, we take 0 < ¢ < % and define J,f : X — Y by

> min

Tuf(e) = 5 (0 (7@ ) + 5270~ 2£(0) +8" (F ()~ £ (o)) +£(0)

for all z € X. Then we have Jyf(z) = f(z) and

Jif (@) = Ty flw) =297+ 257Dy (0,5

2j+1
03j—1 _ 62j—1 —Z
C >Df(a2ﬂ4)

which implies that if n +m > m > 0 then
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N (Jmf(x) — Jntmf (@), n%l <28p>] 2tp>

j=m

n+m—1

3j—1 | 921
31, 92j—1 x (29771 42271y
2 min U { <2 +297)Df (O’ 2]'+1)’ 2G+1p ’

N’ (—(233'—1 —9%=lpy (0, _ ) i 22j_1)t> }

2j+1 2(i+1)p
n+m—1
) x st (t —s)4
T e 2) ¥ 52)
j=m
= N(z,s7)

for all x € X and t > 0, where 0 < s < t. Similar to the previous cases, it leads us
to define the mapping F': X — Y by F(z) :== N’ —lim,,—.o J,, f(z). Putting m =0
in the above inequality, we have

(2.9) N'(f(z) = Juf(z),t) > sup ¢ N | =, N
(#2550 (3))

for all x € X and ¢ > 0. Notice that

N’ (DJnf(ar, Y), ;)

. , (4" Ty t , —y t
=i {V (501 (5 gr) )V (500 (53 ) )
N <23n 1Df<7 Qyn>’8> Nl<23n 1Df<2n?;ny>7;)}

> min {N (x, 2(1_2‘])”_3‘125‘1) N (y, 2(1_2‘])”_3‘125‘1) ,

N (x, 2(1*3f1)n*3th) N <y’ 2(173q)n73qtq> }

for each z,y € X and ¢t > 0. Since 0 < ¢ < %, both terms on the right hand side
tend to 1 as n — oo, which implies that the last term of (2.6) tends to 1 as n — oo.
Therefore, we can say that DF = 0. Moreover, using the similar argument after
(2.6) in Case 1, we get the inequality (2.2) from (2.9) in this case. To prove the
uniqueness of F, let I’ : X — Y be another quadratic and cubic mapping satisfying
(2.2). Then by (2.7), we get
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o (5 (r-0(3))-£) v (5 (- 3)-5)
(Z(-n(5)§) > (5 -M(5)) §

V(e (0 () )y (2 (-7 (50),

) D e ) )

>sup N (x, o(1=3a)n=2q(9p _ 8)qsq>}

s<t

for all z € X and n € N. Observe that, for 0 < ¢ < %, the last term tends to 1 as
n — oo by (N5). This implies that N'(F(x) — F'(z),t) = 1 and F(z) = F'(z) for
all x € X by (N2). O

Corollary 2.3. Let f be an even mapping satisfying all of the conditions of Theorem
2.2. Then there is a unique quadratic mapping F : X — Y such that

(2.10) N'(F(z) = f(x) + f(0),t) > sup N {(z, (|4 — 2°|s)")}

s<t

for all x € X and t > 0, where p=1/q.

Proof. Let J, f be defined as in Theorem 2.2. Since f is an even mapping, we obtain

B f(Q"x)+f(.— n"x)—Qf(O) + f(O) if 0<qg< l’
(@) = { 201 (f(2-10) + f(—2Ma) — 20(0)) + F0) if q> L

for all x € X. Notice that Jyf(x) = f(x) and

—1 ; ; . 1
_ 573 (Df(0,27x) + Df(0,-2'x)) if 0<qg<s,
ij(x)_JjJrlf(w)_ { §2jt1 (Df (0, 2jﬁl)+Df (0, 2;$1)) if q> % 2

for all x € X and j € NU{0}. From these, using the similar method in Theorem

2.2, we obtain a quadratic and cubic mapping F' satisfying

N'(F(2) = f(a),1) = sup N {(x, (14 = 2]s)")}
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for all z € X and ¢t > 0. Notice that F' is also even, F(x) := N’ — lim,, o0 Jp f()
for all z € X, and DF(z,y) = 0 for all z,y € X. Put F = F — £(0), then

1
Flz+y)+ Fz —y) = 2F(z) - 2F(y) = 5 (DF(2y,2) + 3DF(z,y) + DF(z, —y)
— DF(0,z +y) — 3DF(0,2y)) = 0
for all z,y € X. This means that F is a quadratic mapping satisfying (2.10). O

Corollary 2.4. Let f be an odd mapping satisfying all of the conditions of Theorem
2.2. Then there is a unique cubic mapping F' : X — 'Y such that

(2.11) N'(F(z) = f(z),) > sup N (z, (8 — 27]5)")
s<t
forallz € X and t > 0, where p=1/q.

Proof. Let J, f be defined as in Theorem 2.2. Since f is an odd mapping, we obtain
f@ z)+f(=2"x) . 1
Jnf(ﬂf) _ 5 7%3n+1 - - lf 0< ({ <3,
2 (f27e) + f(=27"x) i g > 5
1 j j . 1
sz (Df(0,—27x) — D f(0,27x)) it 0<g< s
J' ) — J ) = 23]‘t4( 9 9 - ) 3
1=t =SB0 2 6
for all z € X and j € NU{0}. From these, using the similar method in Theorem
2.2, we obtain a quadratic and cubic mapping F' satisfying (2.11). Notice that F
is also odd, F(z) := N’ — limy, o0 Jnf(x) for all z € X, and DF(z,y) = 0 for all

x,y € X. Hence, we get
F(x+2y)—3F(x+vy)+3F(x) — F(zx —y) —6F(y) = DF(z,y) =0
for all x,y € X. This means that F' is an cubic maipping. O

We can use Theorem 2.2 to get a classical result in the framework of normed
spaces. Let (X, |- ||) be a normed linear space. Then we can define a fuzzy norm

Nx on X by following

0, t<|al
NX“‘”“—{ 1, t> |

where z € X and t € R, see [17]. Suppose that f : X — Y is a mapping into a
Banach space (Y, ||| - |||) such that

1IDf (@ o)l < ll=[” + [[yl”

for all z,y € X, where p > 0 and p # 2,3. Let Ny be a fuzzy norm on Y. Then we

get
[0, s+t<||Df(z, )|l
N“”““”“{ 1, s+t >|[[Df(zy)]
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for all z,y € X and s,t € R. Consider the case Ny (D f(z,y),s+t) = 0. This implies
that

[z]|” + lyl[” = [[[Df (2, y)ll| = s+t
and so either ||x||? > s or ||y||P > ¢ in this case. Hence, for ¢ = %, we have
min{ Ny (z,s?), Nx(y,t?)} =0
for all x,y € X and s,t > 0. Therefore, in every case, the inequality
Ny (Df (@), 5 +1) = min{ Nx (z, s7), Nx (3, 1)}

holds. It means that f is a fuzzy ¢g-almost cubic-quadratic mapping, and by Theorem
2.2, we get the following stability result.

Corollary 2.5 (compare with Corollary 3.4 in [13]). Let (X,| - |) be a normed
linear space and let (Y,||| - |||) be a Banach space. If

1IDf (@ o)l < ll=[” + [[yl”

for all x;y € X, where p > 0 and p # 1,2, then there is a unique quadratic and
cubic mapping F': X —'Y such that

b if 0<p<2,
4||z||P .
I1F(z) = @)l <{ gy o 2<p<3,
|[=([? f 3
2P—_8 if 3<p
forallx € X.
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