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ON THE STABILITY OF A MIXED TYPE QUADRATIC AND
CUBIC FUNCTIONAL EQUATION

Chang-ju Lee a and Yang-Hi Lee b, ∗

Abstract. In this paper, we investigate a fuzzy version of stability for the func-
tional equation

f(x + 2y)− 3f(x + y) + 3f(x)− f(x− y)− 3f(y) + 3f(−y) = 0

in the sense of M. Mirmostafaee and M. S. Moslehian.

1. Introduction

A classical question in the theory of functional equations is “when is it true that
a mapping, which approximately satisfies a functional equation, must be somehow
close to an exact solution of the equation?”. Such a problem, called a stability
problem of the functional equation, was formulated by S. M. Ulam [14] in 1940. In
the next year, D. H. Hyers [5] gave a partial solution of Ulam’s problem for the case
of approximate additive mappings. Subsequently, his result was generalized by T.
Aoki [1] for additive mappings and by Th. M. Rassias [12] for linear mappings by
considering the stability problem with unbounded Cauchy differences (see [4,8,9]).

In 1984, A. K. Katsaras [6] defined a fuzzy norm on a linear space to construct
a fuzzy structure on the space. Since then, some mathematicians have introduced
several types of fuzzy norm in different points of view. In particular, T. Bag and
S.K. Samanta [2], following Cheng and Mordeson [3], gave an idea of a fuzzy norm
in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek
type [7]. In 2008, M. Mirmostafaee and M. S. Moslehian [10] proved a fuzzy version
of stability for the quadratic functional equation:

(1.1) f(x + y) + f(x− y)− 2f(x)− 2f(y) = 0.
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In 2009, M. Mursaleen and S. A. Mohiuddine [11] proved a fuzzy version of stability
for the cubic functional equation:

(1.2) f(2x + y) + f(2x− y)− 2f(x + y)− 2f(x− y)− 12f(x) = 0.

A solution of (1.1) is called a quadratic mapping and a solution of (1.2) is called a
cubic mapping. The functional equation

(1.3) f(x + 2y)− 3f(x + y) + 3f(x)− f(x− y)− 3f(y) + 3f(−y) = 0.

is called the mixed type quadratic and cubic functional equation, since the function
f(x) = ax3 + bx2 + c is its solution. Every solution of the quadratic and cubic func-
tional equation is said to be a quadratic and cubic mapping. In 2010, W. Towanlong
and P. Nakmahachalasint [13] obtained a stability of the functional equation (1.3).
In their processing, they took a cubic mapping C and a quadratic mapping Q such
that C is approximate to the odd part f(x)−f(−x)

2 of f and Q is close to the even
part f(x)+f(−x)

2 − f(0) of f , respectively.
In this paper, we get a general stability result of the functional equation (1.3) in

the fuzzy normed linear space in the manner of M. Mirmostafaee and M. S. Mosle-
hian [10]. To do it, we introduce a Cauchy sequence {Jnf(x)} starting from a given
mapping f , which converges to the desired mapping F in the fuzzy sense. As men-
tioned above, in previous studies of stability problem of (1.3), they [13] attempted
to get stability theorems by handling the odd and even part of f , respectively. Ac-
cording to our proposal in this paper, we can take the desired approximate solution
F at once.

2. Fuzzy Stability of the Functional Equation (1.3)

We use the definition of a fuzzy normed space given in [2] to exhibit a reasonable
fuzzy version of stability for the mixed type quadratic and cubic functional equation
in the fuzzy normed linear space.

Definition 2.1 ([2]). Let X be a real linear space. A function N : X × R → [0, 1]
(the so-called fuzzy subset) is said to be a fuzzy norm on X if for all x, y ∈ X and
all s, t ∈ R,

(N1) N(x, c) = 0 for c ≤ 0;
(N2) x = 0 if and only if N(x, c) = 1 for all c > 0;
(N3) N(cx, t) = N(x, t/|c|) if c 6= 0;
(N4) N(x + y, s + t) ≥ min{N(x, s), N(y, t)};
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(N5) N(x, ·) is a non-decreasing function on R and limt→∞N(x, t) = 1.

The pair (X, N) is called a fuzzy normed linear space. Let (X, N) be a fuzzy normed
linear space. Let {xn} be a sequence in X. Then {xn} is said to be convergent if
there exists x ∈ X such that limn→∞N(xn − x, t) = 1 for all t > 0. In this case, x

is called the limit of the sequence {xn} and we denote it by N − limn→∞ xn = x. A
sequence {xn} in X is called Cauchy if for each ε > 0 and each t > 0 there exists
n0 such that for all n ≥ n0 and all p > 0 we have N(xn+p − xn, t) > 1 − ε. It is
known that every convergent sequence in a fuzzy normed space is Cauchy. If each
Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the
fuzzy normed space is called a fuzzy Banach space.

Let (X, N) be a fuzzy normed space and (Y, N ′) a fuzzy Banach space. For a
given mapping f : X → Y , we use the abbreviation

Df(x, y) :=f(x + 2y)− 3f(x + y) + 3f(x)− f(x− y)− 3f(y) + 3f(−y)

for all x, y ∈ X. For given q > 0, the mapping f is called a fuzzy q-almost mixed-type
quadratic and cubic mapping, if

(2.1) N ′(Df(x, y), t + s) ≥ min{N(x, sq), N(y, tq)}

for all x, y ∈ X and all s, t ∈ (0,∞). Now we get the general stability result in the
fuzzy normed linear space.

Theorem 2.2. Let q be a positive real number with q 6= 1
2 , 1

3 . And let f be a
fuzzy q-almost mixed-type quadratic and cubic mapping from a fuzzy normed space
(X, N) into a fuzzy Banach space (Y, N ′). Then there is a unique quadratic and
cubic mapping F : X → Y such that
(2.2)

N ′(F (x)− f(x), t) ≥





sups<t {N (x, (4− 2p)qsq)} if q > 1
2 ,

sups<t

{
N

(
x,

(
(8−2p)(2p−4)

4

)q
sq

)}
if 1

3 < q < 1
2 ,

sups<t {N (x, (2p − 8)qsq)} if 0 < q < 1
3

for each x ∈ X and t > 0, where p = 1/q.

Proof. We will prove the theorem in three cases, q > 1
2 , 1

3 < q < 1
2 , and 0 < q < 1

3 .
Case 1. Let q > 1

2 and let Jnf : X → Y be a mapping defined by

Jnf(x) =
1
2

(
4−n (f(2nx) + f(−2nx)− 2f(0)) + 8−n (f(2nx)− f(−2nx))

)
+ f(0)

for all x ∈ X and n ∈ N ∪ {0}. Notice that J0f(x) = f(x) and
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(2.3) Jjf(x)− Jj+1f(x) = −2j+1 − 1
23j+4

Df(0,−2jx)− 2j+1 + 1
23j+4

Df(0, 2jx)

for all x ∈ X and j ≥ 0. Together with (N3), (N4) and (2.1), this equation implies
that if n + m > m ≥ 0 then

N ′
(

Jmf(x)− Jn+mf(x),
n+m−1∑

j=m

(
2p

4

)j t

4

)

≥ N ′




n+m−1∑

j=m

(Jjf(x)− Jj+1f(x)) ,

n+m−1∑

j=m

(
2p

4

)j t

4




≥ min
n+m−1⋃

j=m

{
N ′

(
Jjf(x)− Jj+1f(x),

(
2p

4

)j t

4

)}

≥ min
n+m−1⋃

j=m

{
min

{
N ′

(
−2j+1 + 1

23j+4
Df(0, 2jx),

(2j+1 + 1)2jpt

23j+4

)
,

N ′
(
−2j+1 − 1

23j+4
Df(0,−2jx),

(2j+1 − 1)2jpt

23j+4

)}}

≥ min
n+m−1⋃

j=m

{
N(0, 2j(t− s)q), N(2jx, 2jsq)

}

= N(x, sq)

for all x ∈ X and t > 0, where 0 < s < t. Hence we have the inequality

(2.4) N ′
(

Jmf(x)− Jn+mf(x),
n+m−1∑

j=m

(
2p

4

)j t

4

)
≥ sup

0<s<t
{N(x, sq)}

for all x ∈ Xand t > 0. Let ε > 0 be given. Since limt→∞N(x, t) = 1, there is
t0 > 0 such that

N(x, t0) ≥ 1− ε.

We observe that for some t̃ with t̃q > t0, the series
∞∑

j=0

(
2p

4

)j t̃

4
converges for

p = 1
q < 2. It guarantees that, for an arbitrary given c > 0, there exists n0 ≥ 0 such

that
n+m−1∑

j=m

(
2p

4

)j t̃

4
< c
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for each m ≥ n0 and n > 0. By (N5) and (2.4), we have

N ′(Jmf(x)− Jn+mf(x), c)

≥ N ′


Jmf(x)− Jn+mf(x),

n+m−1∑

j=m

(
2p

4

)j t̃

4




≥ sup
0<s<t̃

{N(x, sq)} ≥ N(x, t0) ≥ 1− ε.

for all x ∈ X. Hence {Jnf(x)} is a Cauchy sequence in the fuzzy Banach space
(Y,N ′), and so we can define a mapping F : X → Y by

F (x) := N ′ − lim
n→∞Jnf(x).

Moreover, if we put m = 0 in (2.4), we have

(2.5) N ′(f(x)− Jnf(x), t) ≥ sup
0<s<t



N


x,

4qsq

(∑n−1
j=0

(
2p

4

)j
)q








for all x ∈ X.
Next we will show that F is a quadratic and cubic mapping. Using (N4), we have

N ′(DF (x, y), t) ≥min
{

N ′
(

(F − Jnf)(x + 2y),
t

12

)
,

N ′
(

3(Jnf − F )(x + y),
t

12

)
, N ′

(
3(F − Jnf)(x),

t

12

)
,

N ′
(

(Jnf − F )(x− y),
t

12

)
, N ′

(
3(F − Jnf)(−y),

t

12

)
,

N ′
(

3(Jnf − F )(y),
t

12

)
, N ′

(
DJnf(x, y),

t

2

)}
(2.6)

for all x, y ∈ X and n ∈ N. The first six terms on the right hand side of (2.6)
tend to 1 as n →∞ by the definition of F and (N2), and the last term satisfies the
inequality

N ′
(

DJnf(x, y),
t

2

)
≥ min

{
N ′

(
Df(2nx, 2ny)

2 · 4n
,
t

8

)
, N ′

(
Df(−2nx,−2ny)

2 · 4n
,
t

8

)
,

N ′
(

Df(2nx, 2ny)
2 · 8n

,
t

8

)
, N ′

(
Df(−2nx,−2ny)

2 · 8n
,
t

8

)}

for all x, y ∈ X. By (N3) and (2.1), we obtain
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N ′
(

Df(±2nx,±2ny))
2 · 4n

,
t

8

)
=N ′

(
Df(±2nx,±2ny),

4nt

4

)

≥min
{

N

(
2nx,

(
4nt

8

)q)
, N

(
2ny,

(
4nt

8

)q)}

≥min

{
N

(
x,

2(2q−1)n

23q
tq

)
, N

(
y,

2(2q−1)n

23q
tq

)}

and

N ′
(

Df(±2nx,±2ny))
2 · 8n

,
t

8

)
≥min

{
N

(
x,

2(3q−1)n

23q
tq

)
, N

(
y,

2(3q−1)n

23q
tq

)}

for all x, y ∈ X and n ∈ N. Since q > 1
2 , together with (N5), we can deduce that the

last term of (2.6) also tends to 1 as n →∞. It follows from (2.6) that

N ′(DF (x, y), t) = 1

for each x, y ∈ X and t > 0. By (N2), this means that DF (x, y) = 0 for all x, y ∈ X.
Next we approximate the difference between f and F in a fuzzy sense. For an
arbitrary fixed x ∈ X and t > 0, choose 0 < ε < 1 and 0 < t′ < t. Since F is the
limit of {Jnf(x)}, there is n ∈ N such that

N ′ (F (x)− Jnf(x), t− t′
) ≥ 1− ε.

By (2.5), we have

N ′(F (x)− f(x), t) ≥ min
{
N ′ (F (x)− Jnf(x), t− t′

)
, N ′ (Jnf(x)− f(x), t′

)}

≥ min



1− ε, sup

0<s<t′



N


x,

4qsq

(∑n−1
j=0

(
2p

4

)j
)q












≥ min
{
1− ε,N

(
x, (4− 2p)qt′q

)}
.

Because 0 < ε < 1 is arbitrary, we get the inequality (2.2) in this case. Finally,
to prove the uniqueness of the quadratic and cubic mapping F , assume that there
exists a quadratic and cubic mapping F ′ which satisfies (2.2). Then by (2.3), we get

(2.7)





F (x)− JnF (x) =
n−1∑

j=0

(JjF (x)− Jj+1F (x)) = 0

F ′(x)− JnF ′(x) =
n−1∑

j=0

(
JjF

′(x)− Jj+1F
′(x)

)
= 0

for all x ∈ X and n ∈ N. Together with (N4) and (2.2), this implies that
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N ′(F (x)− F ′(x), t)

=N ′(JnF (x)− JnF ′(x), t)

≥min
{

N ′
(

JnF (x)− Jnf(x),
t

2

)
, N ′

(
Jnf(x)− JnF ′(x),

t

2

)}

≥min
{

N ′
(

(F − f)(2nx)
2 · 4n

,
t

8

)
, N ′

(
(f − F ′)(2nx)

2 · 4n
,

t

8

)
,

N ′
(

(F − f)(−2nx)
2 · 4n

,
t

8

)
, N ′

(
(f − F ′)(−2nx)

2 · 4n
,

t

8

)
,

N ′
(

(F − f)(2nx)
2 · 8n

,
t

8

)
, N ′

(
(f − F ′)(2nx)

2 · 8n
,

t

8

)
,

N ′
(

(F − f)(−2nx)
2 · 8n

,
t

8

)
, N ′

(
(f − F ′)(−2nx)

2 · 8n
,

t

8

) }

≥ sup
s<t

{
N

(
x, 2(2q−1)n−2q(4− 2p)qsq

)}

for all x ∈ X and n ∈ N. Observe that, for q = 1
p > 1

2 , the last term of the above
inequality tends to 1 as n →∞ by (N5). This implies that

N ′(F (x)− F ′(x), t) = 1.

Hence we conclude that

F (x) = F ′(x)

for all x ∈ X by (N2).
Case 2. Let 1

3 < q < 1
2 and let Jnf : X → Y be a mapping defined by

Jnf(x) =
1
2

(
8−n

(
f(2nx)− f(−2nx)

)
+ 4n

(
f

( x

2n

)
+ f

(
− x

2n

)
− 2f(0)

))
+ f(0)

for all x ∈ X. Then we have J0f(x) = f(x) and

Jjf(x)− Jj+1f(x) =− 1
23j+4

Df(0, 2jx) +
1

23j+4
Df(0,−2jx)

+ 22j−1Df
(
0,

x

2j+1

)
+ 22j−1Df

(
0,
−x

2j+1

)

for all x ∈ X and j ≥ 0. If n + m > m ≥ 0, then we have

N ′
(

Jmf(x)− Jn+mf(x),
n+m−1∑

j=m

(
1
8

(
2p

8

)j

+
1
2p

(
4
2p

)j
)

t

)
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≥ min
n+m−1⋃

j=m

{
N ′

(
−Df(0, 2jx)

23j+4
,

2jpt

23j+4

)
,

N ′
(

Df(0,−2jx)
23j+4

,
2jpt

23j+4

)
,

N ′
(

22j−1Df
(
0,

x

2j+1

)
,

22j−1t

2(j+1)p

)
,

N ′
(

22j−1Df
(
0,− x

2j+1

)
,

22j−1t

2(j+1)p

)}

≥ min
n+m−1⋃

j=m

{
N(2jx, 2jsq), N(0, 2j(t− s)q),

N

(
x

2j+1
,

sq

2j+1

)
, N

(
0,

(t− s)q

2j+1

)}

= N(x, sq)

for all x ∈ X and t > 0, where 0 < s < t. In the similar argument following (2.4)
of the previous case, we can define the limit F (x) := N ′ − limn→∞ Jnf(x) of the
Cauchy sequence {Jnf(x)} in the Banach fuzzy space Y . Moreover, putting m = 0
in the above inequality, we have

(2.8) N ′(f(x)− Jnf(x), t) ≥ sup
s<t



N


x,

sq

(∑n−1
j=0

(
1
8

(
2p

8

)j + 1
2p

(
4
2p

)j
))q








for each x ∈ X and t > 0. To prove that F is a quadratic and cubic mapping, we
need to show that the last term of (2.6) in Case 1 tends to 1 as n →∞. It is from
(N3) and (2.1) that

N ′
(

DJnf(x, y),
t

2

)

≥ min
{

N ′
(

Df(2nx, 2ny)
2 · 8n

,
t

8

)
, N ′

(
Df(−2nx,−2ny)

2 · 8n
,
t

8

)
,

N ′
(

22n−1Df
( x

2n
,

y

2n

)
,
t

8

)
, N ′

(
22n−1Df

(−x

2n
,
−y

2n

)
,
t

8

)}

≥ min
{

N(x, 2(3q−1)n−3qtq), N(y, 2(3q−1)n−3qtq),

N(x, 2(1−2q)n−3qtq), N(y, 2(1−2q)n−3qtq)
}

for each x, y ∈ X and t > 0. Observe that all the terms on the right hand side of
the above inequality tend to 1 as n →∞, since 1

3 < q < 1
2 . Hence, together with the
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similar argument after (2.6), we can say that DF (x, y) = 0 for all x, y ∈ X. Recall
that the inequality (2.2) follows from (2.5) in Case 1. By the same reasoning, we get
(2.2) from (2.8) in this case. Now to prove the uniqueness of F , let F ′ be another
quadratic and cubic mapping satisfying (2.2). Then, together with (N4), (2.2), and
(2.7), we have

N ′(F (x)− F ′(x), t)

= N ′(JnF (x)− JnF ′(x), t)

≥ min
{

N ′
(

JnF (x)− Jnf(x),
t

2

)
, N ′

(
Jnf(x)− JnF ′(x),

t

2

) }

≥ min
{

N ′
(

(F − f)(2nx)
2 · 8n

,
t

8

)
,

(
(f − F ′)(2nx)

2 · 8n
,
t

8

)
,

N ′
(

(F − f)(−2nx)
2 · 8n

,
t

8

)
, N ′

(
(f − F ′)(−2nx)

2 · 8n
,
t

8

)
,

N ′
(

22n−1
(
(F − f)

( x

2n

))
,
t

8

)
, N ′

(
22n−1

(
(f − F ′)

( x

2n

))
,
t

8

)
,

N ′
(

22n−1

(
(F − f)

(−x

2n

))
,
t

8

)
, N ′

(
22n−1

(
(f − F ′)

(−x

2n

))
,
t

8

)}

≥ min
{

sup
s<t

{
N

(
x, 2(3q−1)n−2q

(
(8− 2p)(2p − 4)

4

)q

sq

)}
,

sup
s<t

{
N

(
x, 2(1−2q)n−2q

(
(8− 2p)(2p − 4)

4

)q

sq

)}}

for all x ∈ X and n ∈ N. Since limn→∞ 2(3q−1)n−2q = limn→∞ 2(1−2q)n−2q = ∞ in
this case, both terms on the right hand side of the above inequality tend to 1 as
n → ∞ by (N5). This implies that N ′(F (x) − F ′(x), t) = 1 and so F (x) = F ′(x)
for all x ∈ X by (N2).

Case 3. Finally, we take 0 < q < 1
3 and define Jnf : X → Y by

Jnf(x) =
1
2

(
4n

(
f(2−nx) + f(−2−nx)− 2f(0)

)
+ 8n

(
f

( x

2n

)
− f

(
− x

2n

)))
+ f(0)

for all x ∈ X. Then we have J0f(x) = f(x) and

Jjf(x)− Jj+1f(x) =(23j−1 + 22j−1)Df
(
0,

x

2j+1

)

− (23j−1 − 22j−1)Df

(
0,
−x

2j+1

)

which implies that if n + m > m ≥ 0 then
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N ′
(

Jmf(x)− Jn+mf(x),
n+m−1∑

j=m

(
8
2p

)j t

2p

)

≥ min
n+m−1⋃

j=m

{
N ′

(
(23j−1 + 22j−1)Df

(
0,

x

2j+1

)
,
(23j−1 + 22j−1)t

2(j+1)p

)
,

N ′
(
−(23j−1 − 22j−1)Df

(
0,− x

2j+1

)
,
(23j−1 − 22j−1)t

2(j+1)p

)}

≥ min
n+m−1⋃

j=m

{
N

(
x

2j+1
,

sq

2j+1

)
, N

(
0,

(t− s)q

2j+1

)}

= N(x, sq)

for all x ∈ X and t > 0, where 0 < s < t. Similar to the previous cases, it leads us
to define the mapping F : X → Y by F (x) := N ′ − limn→∞ Jnf(x). Putting m = 0
in the above inequality, we have

(2.9) N ′(f(x)− Jnf(x), t) ≥ sup
s<t



N


x,

sq

(
1
2p

∑n−1
j=0

(
8
2p

)j
)q








for all x ∈ X and t > 0. Notice that

N ′
(

DJnf(x, y),
t

2

)

≥ min
{

N ′
(

4n

2
Df

( x

2n
,

y

2n

)
,
t

8

)
, N ′

(
4n

2
Df

(−x

2n
,
−y

2n

)
,
t

8

)
,

N ′
(

23n−1Df
( x

2n
,

y

2n

)
,
t

8

)
, N ′

(
23n−1Df

(−x

2n
,
−y

2n

)
,
t

8

)}

≥ min
{

N
(
x, 2(1−2q)n−3qtq

)
, N

(
y, 2(1−2q)n−3qtq

)
,

N
(
x, 2(1−3q)n−3qtq

)
, N

(
y, 2(1−3q)n−3qtq

)}

for each x, y ∈ X and t > 0. Since 0 < q < 1
3 , both terms on the right hand side

tend to 1 as n →∞, which implies that the last term of (2.6) tends to 1 as n →∞.
Therefore, we can say that DF ≡ 0. Moreover, using the similar argument after
(2.6) in Case 1, we get the inequality (2.2) from (2.9) in this case. To prove the
uniqueness of F , let F ′ : X → Y be another quadratic and cubic mapping satisfying
(2.2). Then by (2.7), we get
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N ′(F (x)− F ′(x), t)

≥ min
{

N ′
(

JnF (x)− Jnf(x),
t

2

)
, N ′

(
Jnf(x)− JnF ′(x),

t

2

)}

≥ min
{

N ′
(

4n

2

(
(F − f)

( x

2n

))
,
t

8

)
, N ′

(
4n

2

(
(f − F ′)

( x

2n

))
,
t

8

)
,

N ′
(

4n

2

(
(F − f)

(
− x

2n

))
,
t

8

)
, N ′

(
4n

2

(
(f − F ′)

(
− x

2n

))
,
t

8

)
,

N ′
(

23n−1
(
(F − f)

( x

2n

))
,
t

8

)
, N ′

(
23n−1

(
(f − F ′)

( x

2n

))
,
t

8

)
,

N ′
(

23n−1

(
(F − f)

(−x

2n

))
,
t

8

)
, N ′

(
23n−1

(
(f − F ′)

(−x

2n

))
,
t

8

)}

≥ sup
s<t

N
{(

x, 2(1−3q)n−2q(2p − 8)qsq
)}

for all x ∈ X and n ∈ N. Observe that, for 0 < q < 1
3 , the last term tends to 1 as

n → ∞ by (N5). This implies that N ′(F (x) − F ′(x), t) = 1 and F (x) = F ′(x) for
all x ∈ X by (N2). ¤

Corollary 2.3. Let f be an even mapping satisfying all of the conditions of Theorem
2.2. Then there is a unique quadratic mapping F : X → Y such that

(2.10) N ′(F̃ (x)− f(x) + f(0), t) ≥ sup
s<t

N {(x, (|4− 2p|s)q)}

for all x ∈ X and t > 0, where p = 1/q.

Proof. Let Jnf be defined as in Theorem 2.2. Since f is an even mapping, we obtain

Jnf(x) =
{

f(2nx)+f(−2nx)−2f(0)
2·4n + f(0) if 0 < q < 1

2 ,
22n−1 (f(2−nx) + f(−2−nx)− 2f(0)) + f(0) if q > 1

2

for all x ∈ X. Notice that J0f(x) = f(x) and

Jjf(x)− Jj+1f(x) =
{ −1

22j+3 (Df(0, 2jx) + Df(0,−2jx)) if 0 < q < 1
2 ,

22j−1
(
Df

(
0, x

2j+1

)
+ Df

(
0, −x

2j+1

))
if q > 1

2

for all x ∈ X and j ∈ N ∪ {0}. From these, using the similar method in Theorem
2.2, we obtain a quadratic and cubic mapping F satisfying

N ′(F (x)− f(x), t) ≥ sup
s<t

N {(x, (|4− 2p|s)q)}
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for all x ∈ X and t > 0. Notice that F is also even, F (x) := N ′ − limn→∞ Jnf(x)
for all x ∈ X, and DF (x, y) = 0 for all x, y ∈ X. Put F̃ = F − f(0), then

F (x + y) + F (x− y)− 2F (x)− 2F (y) =
1
6
(DF (2y, x) + 3DF (x, y) + DF (x,−y)

−DF (0, x + y)− 3DF (0, 2y)) = 0

for all x, y ∈ X. This means that F̃ is a quadratic mapping satisfying (2.10). ¤

Corollary 2.4. Let f be an odd mapping satisfying all of the conditions of Theorem
2.2. Then there is a unique cubic mapping F : X → Y such that

(2.11) N ′(F (x)− f(x), t) ≥ sup
s<t

N (x, (|8− 2p|s)q)

for all x ∈ X and t > 0, where p = 1/q.

Proof. Let Jnf be defined as in Theorem 2.2. Since f is an odd mapping, we obtain

Jnf(x) =
{

f(2nx)+f(−2nx)
23n+1 if 0 < q < 1

3 ,
23n−1 (f(2−nx) + f(−2−nx)) if q > 1

3

Jjf(x)− Jj+1f(x) =
{

1
23j+4 (Df(0,−2jx)−Df(0, 2jx)) if 0 < q < 1

3 ,
23j−1

(
Df

(
0, x

2j+1

)−Df
(
0, −x

2j+1

))
if q > 1

3

for all x ∈ X and j ∈ N ∪ {0}. From these, using the similar method in Theorem
2.2, we obtain a quadratic and cubic mapping F satisfying (2.11). Notice that F

is also odd, F (x) := N ′ − limn→∞ Jnf(x) for all x ∈ X, and DF (x, y) = 0 for all
x, y ∈ X. Hence, we get

F (x + 2y)− 3F (x + y) + 3F (x)− F (x− y)− 6F (y) = DF (x, y) = 0

for all x, y ∈ X. This means that F is an cubic maipping. ¤

We can use Theorem 2.2 to get a classical result in the framework of normed
spaces. Let (X, ‖ · ‖) be a normed linear space. Then we can define a fuzzy norm
NX on X by following

NX(x, t) =
{

0, t ≤ ‖x‖
1, t > ‖x‖

where x ∈ X and t ∈ R, see [17]. Suppose that f : X → Y is a mapping into a
Banach space (Y, ||| · |||) such that

|||Df(x, y)||| ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X, where p > 0 and p 6= 2, 3. Let NY be a fuzzy norm on Y . Then we
get

NY (Df(x, y), s + t) =
{

0, s + t ≤ |||Df(x, y)|||
1, s + t > |||Df(x, y)|||
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for all x, y ∈ X and s, t ∈ R. Consider the case NY (Df(x, y), s+t) = 0. This implies
that

‖x‖p + ‖y‖p ≥ ‖|Df(x, y)‖| ≥ s + t

and so either ‖x‖p ≥ s or ‖y‖p ≥ t in this case. Hence, for q = 1
p , we have

min{NX(x, sq), NX(y, tq)} = 0

for all x, y ∈ X and s, t > 0. Therefore, in every case, the inequality

NY (Df(x, y), s + t) ≥ min{NX(x, sq), NX(y, tq)}
holds. It means that f is a fuzzy q-almost cubic-quadratic mapping, and by Theorem
2.2, we get the following stability result.

Corollary 2.5 (compare with Corollary 3.4 in [13]). Let (X, ‖ · ‖) be a normed
linear space and let (Y, ||| · |||) be a Banach space. If

|||Df(x, y)||| ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X, where p > 0 and p 6= 1, 2, then there is a unique quadratic and
cubic mapping F : X → Y such that

|||F (x)− f(x)||| ≤





||x||p
4−2p if 0 < p < 2,

4||x||p
(8−2p)(2p−4) if 2 < p < 3,
||x||p
2p−8 if 3 < p

for all x ∈ X.
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