References
- 금융감독원 보도자료, 신용카드사 경영실적, 2002-2006.
- 강필성, 이형주, 조성준, "데이터 불균형 문제에서의 SVM 앙상블 기법의 적용", 한국정보과학회 추계학술대회논문집, 제31권, 제2호 (2005), pp.706-708.
- 김화경, 한상범, 지원철, "축소된 앙상블을 이용한 현금융통 적발 모형", 지능정보연구, 제16권(2010), pp.93-116.
- 노태협, 유명환, 한인구, "러프집합 이론과 사례기반추론을 결합한 기업신용평가 모형", 정보시스템연구, 제14권(2005), pp.41-65.
- 이영섭, 오현정, 김미경, "데이터마이닝에서 배깅, 부스팅, SVM 분류 알고리즘 비교 분석", 응용통계연구, 제18권(2005), pp.343-354.
- 이영찬, "인공신경망과 Support Vector Machine의 기업부도예측 성과 비교:Support Vector Machine의 유용성을 중심으로", 한국지능정보시스템학회 2004년 춘계학술대회 논문집, 2004.
- 정석훈, 서영무, "Rough Set 기법을 이용한 신용카드 연체자 분류", Entrue Journal of Information Technology, 제7권(2008), pp.141- 150.
- 하성호, 양정원, 민지홍, "코호넨 네트워크와 생존분석을 활용한 신용예측", 한국경영과학회지, 제34권(2009), pp.35-54.
- Allen, L. N. and L. C. Rose, "Financial survival Analysis of default debtors", Journal of the Operational Research society, Vol.57 (2006), pp.630-636. https://doi.org/10.1057/palgrave.jors.2602038
- Awad, M., L. Khan, F. Bastani, and I. L. Yen, "An effective support vector machine SVMs performance using hierarchical clustering", Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence(ICTAI), 2004.
- Breiman, L., "Bagging Predictors", Machine Learning, Vol.24(1996), pp.123-140.
- Breiman, L., "Arcing Classifiers", Annals of Statistics, Vol.26(1998), pp.801-849. https://doi.org/10.1214/aos/1024691079
- Chawla, N. V., N. Japkowicz, and A. Kolcz, "Editorial:Special Issue on Learning from Imbalanced Data Sets", SIGKDD Exploration, Vol.6(2004), pp.1-6. https://doi.org/10.1145/1007730.1007733
- Cervantes, J., X Li, and W Yu, "Support vector machine classification for large data sets via minimum enclosing ball clustering", Neurocomputing, 2008.
- Chen, M. C. and Huang, S. H., "Credit Scoring and Rejected Instances Reassigning through Evolutionary Computation Techniques", Expert Systems with Application, Vol.24(2003), pp.433-441. https://doi.org/10.1016/S0957-4174(02)00191-4
- Collobert, R. and S. Bengio, "SVMTorch: Support vector machines for large regression problems", 2001.
- Cristianini, N. and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge University Press, 2000.
- Dietterich, T., "An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees:Bagging, Boosting and Randomization", Machine Learning, Vol.40, No.2(2000), pp.139-157. https://doi.org/10.1023/A:1007607513941
- Fan, R. E. and P. H. Chen, "Working set selection using second order information for training SVM", Journal of Machine Learning Research, 2005.
- Freund, Y. and R. Shapiro, "A Decisiontheoretic Generalization of On-line Learning and an Application to Boosting", Journal of Computer and System Sciences, Vol.55 (1997), pp.119-139.
- Gustavo, E. A., P. A. Batista, and R. C. Prati, "A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data", SIGKDD Explorations, 2004.
- Hansen, L. and P. Salomon, "Neural Network Ensembles", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.12(1990), pp.993-1001. https://doi.org/10.1109/34.58871
- Huang, Z., H. Chen, C. J. Hsu, and W. H. Chen. "Credit rating analysis with support vector machines and neural networks:a market comparative study", Decision support systems, 2004.
- Huang, C. L. and M. C. Chen. "Credit scoring with a data mining approach based on support vector machines", Expert Systems with Applications, 2007.
- Hsigh, N. C., "Hybrid mining approach in the design of credit scoring models", Expert Systems wih Application, Vol.28(2005), pp.655-665. https://doi.org/10.1016/j.eswa.2004.12.022
- Japkowicz N. and S. Stephen, "The Class Imbalance Problem:A Systematic Study", Intelligent Data Analysis, Vol.6, No.5(2002), pp.429-450.
- Min, J. H., C. W. Jeong, and M. S. Kim, "Tuning the Architecture of Support Vector Machine:The Case of Bankruptcy Prediction", Int'l Journal of Management Science, Vol.17, No.1(2011), pp.19-43.
- Min, J. H,. "Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters", Expert Systems with Applications, 2005.
- Opitz, D., "Feature Selection for Ensembles", Proc. of the 16th National Conf. on Artificial Intelligence, AAAI, (1999), pp.379- 384.
- Platt, J., Advances in Kernel Methods: Support Vector Machine:Fast training of support vector machine using sequential minimal optimization, MIT Press, 1998.
- Rooney, N., D. Patterson and C. Nugent, "Pruning Extension to Stacking", Intelligent Data Analysis, Vol.10(2006), pp.47-66.
- Scholkopf, B., K. K. Sung and C. J. C. Burges, "Comparing support vector machines with Gaussian kernels to radial basis function classifiers", Signal Processing, 2002.
- Siddiqi, N., Credit Risk Scorecards. John Wiley and Sons, 2006.
- Tang, Y., Y. Q. Zhang, and N. V. Chawla, "SVMs Modeling for Highly Imbalanced Classification", IEEE Transactions on Systems, Man, and Cybernetics, 2009.
- Thomas, L. C., "A Survey of Credit and Behavioral Scoring:Forecasting Financial Risk of Lending to Consumers", International Journal of Forecasting, Vol.16(2000), pp.149-172. https://doi.org/10.1016/S0169-2070(00)00034-0
- Japkowicz, N. and S. Stephen, "The Class Imbalance Problem:A Systematic Vapnik, V.", The Nature of Statistical Learning Theory, Springer-Verlag, 1995.
- Wen, T. and A. Edelman, "A fast projected conjugate gradient algorithm for training support vector machines", 2003.
- West, D., "Neural network credit scoring models", Computers and Operations Research, 2000.
- Wolpert, D., "Stacked Generalization", Neural Networks, Vol.5(1992), pp.241-259. https://doi.org/10.1016/S0893-6080(05)80023-1
- Wu, G. and E. Y. Chang, "Class-Boundary Alignment for Imbalanced Dataset Learning", ICML, 2003.
- Yang, C. Y., J. S. Yang and J. J. Wang, "Margin calibration in SVM class-imbalanced learning", Neurocomputing, 2009.
- Yu, H., J. Yang and J. Han, "Classifying large data sets using SVMs with hierarchical clusters", Proceedings of the 9th ACM SIGKDD, 2003.
Cited by
- Do trade area grades really affect credit ratings of small businesses? An application of big data vol.55, pp.9, 2017, https://doi.org/10.1108/MD-11-2016-0834