DOI QR코드

DOI QR Code

Molecular Characterization of Cytoskeletal Beta-Actin and its Promoter in the Javanese Ricefish Oryzias javanicus

  • Lee, Sang Yoon (Department of Marine Bio-Materials and Aquaculture, Pukyong National University) ;
  • Kim, Dong Soo (Department of Marine Bio-Materials and Aquaculture, Pukyong National University) ;
  • Nam, Yoon Kwon (Department of Marine Bio-Materials and Aquaculture, Pukyong National University)
  • Received : 2012.10.30
  • Accepted : 2012.11.15
  • Published : 2012.12.31

Abstract

We characterized the cytoskeletal beta-actin (${\beta}$-ACT) gene (actb) and its 5'-upstream regulatory region in the Javanese ricefish Oryzias javanicus. The gene and protein structures were deduced from amino acid sequences of the actb gene and conserved in the teleost lineage. The O. javanicus actb gene has common transcription factor binding motifs in its regulatory region found in teleostean orthologues. Following quantitative reverse transcription-PCR, actb gene transcripts were detected in all tissues examined; however, the basal expression levels were different. During early development, O. javanicus actb mRNA levels showed a gradual increase and peaked between late somitogenesis and the heartbeat stage. Microinjection of O. javanicus embryos with the actb gene promoter-driven red fluorescent protein (RFP) gene reporter vector showed a ubiquitous distribution of RFP signals, although most exhibited a mosaic pattern of transgene expression. A small number of microinjected embryos displayed a wide distribution of RFP signals over their entire body, which resembled the expression pattern of endogenous actb. Data from this study provide a basis to develop a transgenic system with ubiquitous expression of foreign genes in O. javanicus.

Keywords

References

  1. Andreassen TK, Skjoedt K and Korsgaard B. 2005. Upregulation of estrogen receptor $\alpha$ and vitellogenin in eelpout (Zoarces viviparus) by waterborne exposure to 4-tert-octylphenol and $17{\beta}$-estradiol. Comp Biochem Physiol C Toxicol Pharmacol 140, 340-346. https://doi.org/10.1016/j.cca.2005.03.003
  2. Brooks C, Hwang G and Maclean N. 2007. Transgene activity following somatic transgenesis in Nile tilapia Oreochromis niloticus. J Fish Biol 70, 234-247. https://doi.org/10.1111/j.1095-8649.2007.01403.x
  3. Burket CT, Montgomery JE, Thummel R, Kassen SC, LaFave MC, Langenau DM, Zon LI and Hyde DR. 2008. Generation and characterization of transgenic zebrafish lines using different ubiquitous promoters. Transgenic Res 17, 265-279. https://doi.org/10.1007/s11248-007-9152-5
  4. Cao J, Cao Z and Wu T. 2007. Generation of antibodies against DMRT1 and DMRT4 of Oreochromis aurea and analysis of their expression profile in Oreochromis aurea tissues. J Genet Genomics 34, 497-509. https://doi.org/10.1016/S1673-8527(07)60055-1
  5. Carvalho L and Heisenberg CP. 2010. The yolk syncytial layer in early zebrafish development. Trends Cell Biol 20, 586-592. https://doi.org/10.1016/j.tcb.2010.06.009
  6. Cho YS, Lee SY, Kim YK, Kim DS and Nam YK. 2011. Functional ability of cytoskeletal ${\beta}-actin$ regulator to drive constitutive and ubiquitous expression of a fluorescent reporter throughout the life cycle of transgenic marine medaka Oryzias dancena. Transgenic Res 20, 1333-1355. https://doi.org/10.1007/s11248-011-9501-2
  7. Fernandes JMO, Mommens M, Hagen O, Babiak I and Solberg C. 2008. Selection of suitable reference genes for real-time PCR studies of Atlantic halibut development. Comp Biochem Physiol B Biochem Mol Biol 150, 23-32. https://doi.org/10.1016/j.cbpb.2008.01.003
  8. Filby AL and Tyler CR. 2007. Appropriate 'housekeeping' genes for use in expression profiling the effects of environmental estrogens in fish. BMC Mol Biol 8, 10. https://doi.org/10.1186/1471-2199-8-10
  9. Gibbs PDL and Schmale MC. 2000. GFP as a genetic marker scorable throughout the life cycle of transgenic zebra fish. Mar Biotechnol 2, 107-125.
  10. Hackett PB and Alvarez MC. 2000. The molecular genetics of transgenic fish. In: Recent Advances in Marine Biotechnology. Vol. 4. Fingerman M and Nagabhushanam R, eds. Science Publishers, Enfield, NH, US, pp. 77-145.
  11. Hsiao CD and Tsai HJ. 2003. Transgenic zebrafish with fluorescent germ cell: a useful tool to visualize germ cell proliferation and juvenile hermaphroditism in vivo. Dev Biol 262, 313-323. https://doi.org/10.1016/S0012-1606(03)00402-0
  12. Kim KY, Lee SY, Cho YS, Bang IC, Kim DS and Nam YK. 2008. Characterization and phylogeny of two $\beta$-cytoskeletal actins from Hemibarbus mylodon (Cyprinidae, Cypriniformes), a threatened fish species in Korea. DNA Seq 19, 87-97. https://doi.org/10.1080/10425170701445691
  13. Kosuke Z, Lee SY, Kim KH and Nam YK. 2009. Functional evaluation of the rockbream (Oplegnathus fasciatus) beta-actin promoter as a candidate regulatory element for DNA vaccination. Fish Aquat Sci 12, 98-103. https://doi.org/10.5657/fas.2009.12.2.098
  14. Koyama J, Kawamata M, Imai S, Fukunaga M, Uno S and Kakuno A. 2008. Java medaka: a proposed new marine test fish for ecotoxicology. Environ Toxicol 23, 487-491. https://doi.org/10.1002/tox.20367
  15. Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonak J, Lind K, Sindelka R, Sjoback R, Sjogreen B, Strombom L, Stahlberg A and Zoric N. 2006. The real-time polymerase chain reaction. Mol Asp Med 27, 95-125. https://doi.org/10.1016/j.mam.2005.12.007
  16. Lee SY, Kim KH and Nam YK. 2009. Molecular characterization of rockbream (Oplegnathus fasciatus) cytoskeletal $\beta$-actin gene and its 5′-upstream regulatory region. Fish Aquat Sci 12, 90-97. https://doi.org/10.5657/fas.2009.12.2.090
  17. Lin CY, Yang PH, Kao CL, Huang HI and Tsai HJ. 2010. Transgenic zebrafish eggs containing bactericidal peptide is a novel food supplement enhancing resistance to pathogenic infection of fish. Fish Shellfish Immunol 28, 419-427. https://doi.org/10.1016/j.fsi.2009.11.019
  18. Liu ZJ, Moav B, Faras AJ, Guise KS, Kapuscinski AR and Hackett PB. 1990. Functional analysis of elements affecting expression of the beta-actin gene of carp. Mol Cell Biol 10, 3432-3440. https://doi.org/10.1128/MCB.10.7.3432
  19. Liu Z, Moav B, Faras AJ, Guise KS, Kapuscinski AR and Hackett P. 1991. Importance of the CArG box in regulation of $\beta$-actinencoding genes. Gene 108, 211-217. https://doi.org/10.1016/0378-1119(91)90436-F
  20. Mitter K, Kotoulas G, Magoulas A, Mulero V, Sepulcre P, Figueras A, Novoa B and Sarropoulou E. 2009. Evaluation of candidate reference genes for QPCR during ontogenesis and of immune-relevant tissues of European seabass (Dicentrarchus labrax). Comp Biochem Physiol B Biochem Mol Biol 153, 340-347. https://doi.org/10.1016/j.cbpb.2009.04.009
  21. Miwa T, Manabe Y, Kurokawa K, Kamada S, Kanda N, Bruns G, Ueyama H and Kakunaga T. 1991. Structure, chromosome location, and expression of the human smooth muscle (enteric type) gamma-actin gene: evolution of six human actin genes. Mol Cell Biol 11, 3296-3306. https://doi.org/10.1128/MCB.11.6.3296
  22. Nam YK, Noh CH and Kim DS. 1999. Transmission and expression of an integrated reporter construct in three generations of transgenic mud loach (Misgurnus mizolepis). Aquaculture 172, 229-245. https://doi.org/10.1016/S0044-8486(98)00433-5
  23. Nam YK, Maclean N, Hwang G and Kim DS. 2008. Autotransgenic and allotransgenic manipulation of growth traits in fish for aquaculture: a review. J Fish Biol 72, 1-26. https://doi.org/10.1111/j.1095-8649.2007.01738.x
  24. Noh JK, Cho KN, Han EH, Kim A, Lee JS, Kim DS and Kim CG. 2003. Genomic cloning of mud loach Misgurnus mizolepis (Cypriniformes, Cobitidae) $\beta$-actin gene and usefulness of its promoter region for fish transgenesis. Mar Biotechnol 5, 244-252. https://doi.org/10.1007/s10126-002-0066-1
  25. Reece KS, McElroy D and Wu R. 1992. Function and evolution of actins. Evol Biol 26, 1-34.
  26. Ruiz S, Tafalla C, Cuesta A, Estepa A and Coll JM. 2008. In vitro search for alternative promoters to the human immediate early cytomegalovirus (IE-CMV) to express the G gene of viral haemorrhagic septicemia virus (VHSV) in fish epithelial cells. Vaccine 26, 6620- 6629. https://doi.org/10.1016/j.vaccine.2008.09.048
  27. Small BC, Murdock CA, Bilodeau-Bourgeois AL, Peterson BC and Waldbieser GC. 2008. Stability of reference genes for real-time PCR analyses in channel catfish (Ictalurus punctatus) tissues under varying physiological conditions. Comp Biochem Physiol B Biochem Mol Biol 151, 296-304. https://doi.org/10.1016/j.cbpb.2008.07.010
  28. Song HY, Nam YK, Bang IC and Kim DS. 2010. Hybridization between marine medaka Oryzias dancena and Javanese medaka Oryzias javanicus. Korean J Fish Aquat Sci 43, 462-473. https://doi.org/10.5657/kfas.2010.43.5.462
  29. Woo S, Yum S, Jung JH, Shim WJ, Lee CH and Lee TK. 2006. Heavy metal-induced differential gene expression of metallothionein in Javanese medaka, Oryzias javanicus. Mar Biotechnol 8, 654-662. https://doi.org/10.1007/s10126-006-6046-0
  30. Woo S, Yum S, Park HS, Lee TK and Ryu JC. 2009. Effects of heavy metals on antioxidants and stress-responsive gene expression in Javanese medaka (Oryzias javanicus). Comp Biochem Physiol C Toxicol Pharmacol 149, 289-299. https://doi.org/10.1016/j.cbpc.2008.08.002
  31. Yu EM, Ye X, Wang HY, Bai JJ, Xia SL, Lao HH and Jian Q. 2010. Isolation of Tanichthys albonubes $\beta$ actin gene and production of transgenic Tanichthys albonubes. Fish Physiol Biochem 36, 173- 180. https://doi.org/10.1007/s10695-008-9238-x
  32. Yu RMK, Wong MML, Kong RYC, Wu RSS and Cheng SH. 2006. Induction of hepatic choriogenin mRNA expression in male marine medaka: a highly sensitive biomarker for environmental estrogens. Aquat Toxicol 77, 348-358. https://doi.org/10.1016/j.aquatox.2006.01.003