DOI QR코드

DOI QR Code

Effect of Inorganic Mercury on Hematological and Antioxidant Parameters on Olive Flounder Paralichthys olivaceus

  • Kim, Jun-Hwan (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Lee, Jung-Sick (Department of Aqualife Medicine, Chonnam National University) ;
  • Kang, Ju-Chan (Department of Aquatic Life Medicine, Pukyong National University)
  • Received : 2012.04.16
  • Accepted : 2012.08.09
  • Published : 2012.09.30

Abstract

The effects of inorganic mercury on hematological parameters and hepatic oxidative stress enzyme activity were studied in olive flounder Paralichthys olivaceus. Fish were injected twice intraperitoneally with mercuric chloride (2, 4, or 8 mg Hg/kg BW). The major hematological findings were significant decreases in the red blood cell count, hematocrit value, and hemoglobin level in olive flounder exposed to 8 mg Hg/kg BW. Remarkably low levels of calcium and chloride, and reduced osmolality, were also observed at 8 mg Hg/kg BW. In hepatic tissue, significant increases in glutathione peroxidase and catalase activity were observed above 4 mg Hg/kg BW Inorganic mercury also increased glutathione S-transferase and glutathione reductase activity at 8 mg Hg/kg BW in hepatic tissue. The present findings suggest that exposure to a low concentration (${\geq}4$ mg Hg/kg BW) of inorganic mercury can cause significant changes in hematological and antioxidant parameters.

Keywords

References

  1. Allen P. 1994. Changes in the haematological profile of the cichlid Oreochromis aureus (Steindachner) during acute inorganic mercury intoxication. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 108, 117-121. https://doi.org/10.1016/1367-8280(94)90097-3
  2. Benson WH and Di Giulio RT. 1992. Biomarkers in hazard assessments of contaminated sediment. In: Sediment Toxicity Assessment. Burton GA, ed. Lewis, Boca Raton, FL, US, pp. 241-256.
  3. Bouquegneau JM. 1977. ATPase activity in mercury intoxicated eels. Experientia 33, 941-943. https://doi.org/10.1007/BF01951295
  4. Cribb AE, Leeder JS and Spielberg SP. 1989. Use of a microplate reader in an assay of glutathione reductase using 5,5'-dithiobis-2-nitrobenzoic acid. Anal Biochem 183, 195-196. https://doi.org/10.1016/0003-2697(89)90188-7
  5. Cyriac PJ, Antony A and Nambisan PNK. 1989. Hemoglobin and hematocrit values in the fish Oreochromis mossambicus (Peters) after short term exposure to copper and mercury. Bull Environ Contam Toxicol 43, 315-320. https://doi.org/10.1007/BF01701764
  6. Dave G and Xiu RQ. 1991. Toxicity of mercury, copper, nickel, lead, and cobalt to embryos and larvae of zebrafish, Brachydanio rerio. Arch Environ Contam Toxicol 21, 126-134. https://doi.org/10.1007/BF01055567
  7. Davies PE. 1985. The toxicology and metabolism of chlorothalonil in fish. III. Metabolism, enzymatics and detoxication in Salmo spp. and Galaxias spp. Aquat Toxicol 7, 277-299. https://doi.org/10.1016/0166-445X(85)90045-1
  8. Dierickx PJ. 1984. Glutathione S-transferase in aquatic macro-invertebrates and its interaction with different organic micropollutants. Sci Total Environ 40, 93-102. https://doi.org/10.1016/0048-9697(84)90344-9
  9. Di Giulio RT, Habig C and Gallagher EP. 1993. Effects of black rock harbor sediments on indices of biotransformation, oxidative stress and DNA integrity in channel catfish. Aquat Toxicol 26, 1-22. https://doi.org/10.1016/0166-445X(93)90002-I
  10. Duncan DB. 1955. Multiple range and multiple F tests. Biometrics 11, 1-42. https://doi.org/10.2307/3001478
  11. Evans DH. 1987. The fish gill: site of action and model for toxic effects of environmental pollutants. Environ Health Perspect 71, 47-58. https://doi.org/10.1289/ehp.877147
  12. Fair PH. 1986. Interaction of benzo(a)pyrene and cadmium on GSH-Stransferase and benzo(a)pyrene hydroxylase in the black sea bass Centropristis striata. Arch Environ Contam Toxicol 15, 257-263. https://doi.org/10.1007/BF01061102
  13. Fitzgerald WF and Clarkson TW. 1991. Mercury and monomethylmercury: present and future concerns. Environ Health Perspect 96, 159-166. https://doi.org/10.1289/ehp.9196159
  14. Forlin L, Haux C, Karlsson-Norrgren L, Runn P and Larsson A. 1986. Biotransformation enzyme activities and histopathology in rainbow trout, Salmo gairdneri, treated with cadmium. Aquat Toxicol 8, 51-64. https://doi.org/10.1016/0166-445X(86)90072-X
  15. Goyer R. 1991. Toxic effects of metals. In: Casarett and Doull's Toxicology: The Basic Science of Poisons. 4th ed. Amdur MO, Doull J and Klaassen CD, eds. Pergamon Press, New York, pp. 623-680.
  16. Gupta N and Dua A. 2002. Mercury induced architectural alterations in the gill surface of a fresh water fish, Channa punctatus. J Environ Biol 23, 383-386.
  17. Gwozdzinski K, Roche H and Peres G. 1992. The comparison of the effects of heeavy metal ions on antioxidant enzyme activities in human and fish Dicentrarchus labrax erythrocytes. Comp Biochem Physiol 102, 57-60.
  18. Habig WH, Pabst MJ and Jakoby WB. 1974. Glutathione S-transferase: the first enzymatic step in mercapturic acid formation. J Biol Chem 249, 7130-7139.
  19. Hilmy AM, Shabana MB and Said MM. 1980. Haematological responses to mercury toxicity in the marine teleost, Aphanius dispar (Rupp). Comp Biochem Physiol C 67, 147-158. https://doi.org/10.1016/0306-4492(80)90010-6
  20. Houston A, Blahut S, Murad A and Amirkrtharaj P. 1993. Changes in erythron organization during prolonged cadmium exposure: an indicator of heavy metals stress? Can J Fish Aquat Sci 50, 217-222. https://doi.org/10.1139/f93-024
  21. Johansson K, Aastrup M, Andersson A, Bringmark L and Iverfeldt A. 1991. Mercury in Swedish forest soils and waters: assessement of critical load. Water Air Soil Pollut 56, 267-281. https://doi.org/10.1007/BF00342276
  22. Johansson LH and Borg LAH. 1988. A spectrophotometric method for determination of catalase activity in small tissue samples. Anal Biochem 174, 331-336. https://doi.org/10.1016/0003-2697(88)90554-4
  23. Kamohara K, Yagi N and Itokawa Y. 1984. Mechanism of lipid peroxidation in polychlorinated biphenyls (PCB) and dichlorophenyltrichloroethane (DDT)-poisoned rats. Environ Res 34, 18-23. https://doi.org/10.1016/0013-9351(84)90071-9
  24. Klontz GW. 1979. Hematological techniques for fish. In: Fish Health Management: Concepts and Methods of Fish Disease Epidemiology. Vol. 2. Klontz GW, ed. University Of Idaho, Moscow, ID, US, pp. 100-130.
  25. Lock RAC, Cruijsen PMJM and van Overbeeke AP. 1981. Effects of mercuric chloride and methylmercuric chloride on the osmoregulatory function of the gills in rainbow trout, Salmo gairdneri Richardson. Comp Biochem Physiol C Comp Pharmacol 68, 151-159. https://doi.org/10.1016/0306-4492(81)90009-5
  26. Mather-Mihaich EM and Di Giulio RT. 1991. Oxidant, mixed-function oxidase and peroxisomal responses in channel catfish exposed to a bleached kraft mill effluent. Arch Environ Contam Toxicol 20, 391-397. https://doi.org/10.1007/BF01064409
  27. Matkovics B, Witas H, Gabrielak T and Szabo L. 1987. Paraquat as an agent affecting antioxidant enzymes of common carp erythrocytes. Comp Biochem Physiol C Comp Pharmacol 87, 217-219. https://doi.org/10.1016/0742-8413(87)90206-4
  28. Nater EA and Grigal DF. 1992. Regional trends in mercury distribution across the Great Lakes States, north central U.S.A. Nature 358, 139-141. https://doi.org/10.1038/358139a0
  29. Niyogi S, Biswas S, Sarker S and Datta AG. 2001. Antioxidant enzymes in brackishwater oyster, Saccostrea cucullata as potential biomarkers of polyaromatic hydrocarbon pollution in Hooghly Estuary (India): seasonality and its consequences. Sci Total Environ 281, 237-246. https://doi.org/10.1016/S0048-9697(01)00850-6
  30. Nriagu JO and Pacyna JM. 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 12, 134-139.
  31. Otto DME and Moon TW. 1995. 3,3',4,4'-tetrachlorobiphenyl effects on antioxidant enzymes and glutathione status in different tissues of rainbow trout. Pharmacol Toxicol 77, 281-287. https://doi.org/10.1111/j.1600-0773.1995.tb01028.x
  32. Paglia DE and Valentine WN. 1967. Studies on quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70, 158-169.
  33. Radi AAR and Matkovics B. 1988. Effects of metal ions on the antioxidant enzyme activities, protein content and lipid peroxidation of carp tissues. Comp Biochem Physiol C Comp Pharmacol 90, 69-72. https://doi.org/10.1016/0742-8413(88)90099-0
  34. Roche H and Boge G. 1996. Fish blood parameters as a potential tool for identification of stress caused by environmental factors and chemical intoxication. Mar Environ Res 41, 27-43. https://doi.org/10.1016/0141-1136(95)00015-1
  35. Stein JE, Collier TK, Reichert WL, Casillas E, Hom T and Varanasi U. 1992. Bioindicators of contaminant exposure and sublethal effects: studies with benthic fish in puget sound, Washington. Environ Toxicol Chem 11, 701-714. https://doi.org/10.1002/etc.5620110513
  36. Stenersen J, Kobro S, Bjerke M and Arend U. 1987. Glutathione transferases in aquatic and terrestrial animals from nine phyla. Comp Biochem Physiol C Comp Pharmacol 86, 73-82.
  37. Stephensen E, Adolfsson-Erici M, Celander M, Hulander M, Parkkonen J, Hegelund T, Sturve J, Hasselberg L, Bengtsson M and Förlin L. 2003. Biomarker responses and chemical analyses in fish indicate leakage of polycyclic aromatic hydrocarbons and other compounds from car tire rubber. Environ Toxicol Chem 22, 2926-2931. https://doi.org/10.1897/02-444
  38. Stinson C and Mallatt J. 1989. Branchial ion fluxes and toxicant extraction efficiency in lamprey (Petromyzon marinus) exposed to methylmercury. Aquat Toxiccol 15, 237-251. https://doi.org/10.1016/0166-445X(89)90038-6
  39. Swain EB, Engstrom DR, Brigham ME, Henning TA and Brezonik PL. 1992. Increasing rates of atmospheric mercury deposition in Midcontinental North America. Science 257, 784-787. https://doi.org/10.1126/science.257.5071.784
  40. Tewari H, Gill TS and Pant J. 1987. Impact of chronic lead poisoning on the hematological and biochemical profiles of a fish, Barbus conchonius (Ham). Bull Environ Contam Toxicol 38, 748-752. https://doi.org/10.1007/BF01616696
  41. Veignie E, Rafin C, Woisel P and Cazier F. 2004. Preliminary evidence of the role of hydrogen peroxide in the degradation of benzo[a] pyrene by a non-white rot fungus Fusarium solani. Environ Pollut 129, 1-4. https://doi.org/10.1016/j.envpol.2003.11.007
  42. Watson CF and Benson WH. 1987. Comparative activity of gill ATPase in three freshwater teleosts exposed to cadmium. Ecotoxicol Environ Saf 14, 252-259. https://doi.org/10.1016/0147-6513(87)90068-6
  43. Weisbart M. 1973. The distribution and tissue retention of mercury-203 in the goldfish (Carassius auratus). Can J Zool 51, 143-150.

Cited by

  1. -Induced Oxidative Damage of a Chitosan-Coated Diet in the Olive Flounder Paralichthys olivaceus vol.16, pp.3, 2013, https://doi.org/10.5657/FAS.2013.0149
  2. Effect of dietary seaweed supplementation on growth performance, antioxidant and immune responses in European seabass (Dicentrarchus labrax) subjected to rearing temperature and salinity oscillations pp.2008-6970, 2018, https://doi.org/10.1007/s40071-018-0208-3