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Abstract. In this paper, we prove some inequalities in terms of Gâteaux derivatives for

convex functions defined on linear spaces and also give improvement of Jensen’s inequality.

Furthermore, we give applications for norms, mean f -deviations and f -divergence mea-

sures.

1. Introduction

Undoubtedly, Jensen’s inequality is the most important inequality in analysis,
because it implies at once the main part of the other classical inequalities (e.g.
Hölder’s inequality, Minkowski’s inequality, Young’s inequality, AGM inequality,
generalized triangle inequality, etc.). There is an extensive literature devoted to
Jensen’s inequality concerning different generalizations, refinements, counterparts
and converse results see e.g. [1], [5]-[16] and also the references in them.

Let C be a convex subset of the linear space X and f be a convex function on
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C. If p = (p,..., pn) is a probability sequence and x = (x1, ..., xn) ∈ Cn, then the
Jensen inequality

(1.1) f

(
n∑

i=1

pixi

)
≤

n∑
i=1

pif(xi)

holds.
Assume that f : X → R is a convex function defined on a real linear space X.

Since for any vectors x, y ∈ X, the function gx,y : R → R, gx,y(t) := f(x + ty) is
convex. It follows that the following limit exists

∇+(−)f(x)(y) := lim
t→0+(−)

f(x+ ty)− f(x)

t

and is called the left(right) Gâteaux derivative of the function f at the point x in
the direction y.

It is obvious that for any t > 0 > s, we have

f(x+ ty)− f(x)

t
≥ ∇+f(x)(y) = inf

t>0

[
f(x+ ty)− f(x)

t

]
(1.2)

≥ sup
s<0

[
f(x+ sy)− f(x)

s

]
= ∇−f(x)(y) ≥

f(x+ sy)− f(x)

s

for any x, y ∈ X and in particular,

(1.3) ∇−f(u)(u− v) ≥ f(u)− f(v) ≥ ∇+f(v)(u− v)

for any u, v ∈ X. We call this the gradient inequality for convex function f . It
will be used frequently in the sequel, in order to obtain refinements of Jensen’s
inequality.

The following properties are also of great importance:

(1.4) ∇+f(x)(−y) = −∇−f(x)(y)

and

(1.5) ∇+(−)f(x)(αy) = α∇+(−)f(x)(y)

for any x, y ∈ X and α ≥ 0.
The right Gâteaux derivative is subadditive while the left one is superadditive,

i.e.,

(1.6) ∇+f(x)(y + z) ≤ ∇+f(x)(y) +∇+f(x)(z)

and

(1.7) ∇−f(x)(y + z) ≥ ∇−f(x)(y) +∇−f(x)(z)
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for any x, y, z ∈ X.
Some natural examples can be provided by using the normed spaces.
Assume that (X, ||.||) is a real normed linear space. The function f : X → R

defined by f(x) := 1
2 ||x||

2 is a convex function, which generates the superior and
inferior semi-inner products

⟨y, x⟩s(i) := lim
t→0+(−)

||x+ ty||2 − ||x||2

2t
.

For a comprehensive study of the properties of these mappings in the Geometry of
Banach Spaces see the monograph [10].

For the convex function fp : X → R, fp(x) := ||x||p with p > 1, we have

∇+(−)fp(x)(y) =

{
p||x||p−2⟨y, x⟩s(i), if x ̸= 0,

0, if x = 0,

for any y ∈ X.
If p = 1, then we have

∇+(−)f1(x)(y) =

{
||x||−1⟨y, x⟩s(i), if x ̸= 0,

+(−)||y||, if x = 0,

for any y ∈ X.
This class of functions will be used to illustrate the inequalities obtained in the

general case of convex functions defined on entire linear spaces.
In [9], the author proved the following refinement of Jensen’s inequality. As

applications, inequalities for norms, mean f - deviation and f -divergence measure
are also given.

Theorem 1.1. Let f : X → R be a convex function defined on a real linear space
X. Then for any n-tuple of vectors x = (x1, ..., xn) ∈ Xn and for any probability
distribution p = (p1, ..., pn) ∈ Pn, we have

n∑
j=1

pjf(xj)− f

 n∑
j=1

pjxj

 ≥(1.8)

n∑
k=1

pk∇+f

 n∑
j=1

pjxj

 (xk)−∇+f

 n∑
j=1

pjxj

 n∑
j=1

pjxj

 ≥ 0.

In the same paper author also proved the following reverse of Jensen’s inequality:

Theorem 1.2. Under the assumptions of Theorem 1.1, the following inequality
holds
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n∑
j=1

pjf(xj)− f

 n∑
j=1

pjxj

(1.9)

≤
n∑

k=1

pk∇−f(xk)(xk)−
n∑

k=1

pk∇−f(xk)

 n∑
j=1

pjxj

 .

A particular case of interest is for f(x) = ||x||p, where (X, ||.||) is a normed
linear space. Then for any p ≥ 1, for any n-tuple of vectors x = (x1, ..., xn) ∈ Xn

and any probability distribution p = (p1, ..., pn) ∈ P with
∑n

i=1 pixi ̸= 0, we have

n∑
j=1

pj ||xj ||p −
∣∣∣∣∣∣ n∑

j=1

pjxj

∣∣∣∣∣∣p(1.10)

≥ p
∣∣∣∣∣∣ n∑

j=1

pjxj

∣∣∣∣∣∣p−2

 n∑
j=1

pj

⟨
xj ,

n∑
k=1

pkxk

⟩
s
−
∣∣∣∣∣∣ n∑

j=1

pjxj

∣∣∣∣∣∣2
 .

Also, for any p ≥ 1, for any n-tuple of vectors x = (x1, ..., xn) ∈ Xn \{(0, ..., 0)}
and any probability distribution p = (p1, ..., pn) ∈ P, we have

n∑
j=1

pj ||xj ||p −
∣∣∣∣∣∣ n∑

j=1

pjxj

∣∣∣∣∣∣p(1.11)

≤ p

 n∑
j=1

pj ||xj ||p −
n∑

j=1

pj ||xj ||p−2
⟨ n∑

k=1

pkxk, xj

⟩
i

 .

This paper is organized in the following manner: in Section 2, we prove some
inequalities in terms of Gâteaux derivatives for convex functions defined on linear
spaces, which implies inequalities (1.8) and (1.9). We also discuss a particular case
for norm. In Section 3, we give improvement of Jensen’s inequality. Particularly, we
provide an improvement for the generalized triangle inequality. In the remaining
parts of this paper, we give applications for mean f -deviations and f -divergence
measures.

2. Inequalities for convex functions

Theorem 2.1. Let f : X → R be a convex function defined on a linear space X,
x = (x1, ..., xn) ∈ Xn be any n-tuple of vectors and p = (p1, ..., pn) ∈ Pn be any
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probability distribution. If c, d ∈ X are arbitrary chosen vectors, then we have

f(c) +
n∑

i=1

pi∇+f(c)(xi)−∇+f(c)(c)(2.1)

≤
n∑

i=1

pif(xi) ≤ f(d) +
n∑

i=1

pi∇−f(xi)(xi)−
n∑

i=1

pi∇−f(xi)(d).

Proof. For fix index i, we can take u = xi and v = c in the second inequality of
(1.3) to obtain

(2.2) f(xi)− f(c) ≥ ∇+f(c)(xi − c).

By using the subadditivity of ∇+f(.)(.) in the second variable, we have

(2.3) ∇+f(c)(xi − c) ≥ ∇+f(c)(xi)−∇+f(c)(c).

Combining (2.3) and (2.2), we get

(2.4) f(xi)− f(c) ≥ ∇+f(c)(xi)−∇+f(c)(c).

Now, if we multiply (2.4) by pi and summing over i = 1, 2, ..., n, we deduce the
first inequality in (2.1).

To obtain the second inequality in (2.1), we first put u = xi and v = d in the
first inequality of (1.3) and rewrite it in the form

(2.5) f(xi)− f(d) ≤ ∇−f(xi)(xi − d).

By using the superadditivity of ∇−f(.)(.) in the second variable, we have

(2.6) ∇−f(xi)(xi − d) ≤ ∇−f(xi)(xi)−∇−f(xi)(d).

Combining (2.6) and (2.5), we get

(2.7) f(xi)− f(d) ≤ ∇−f(xi)(xi)−∇−f(xi)(d).

Multiplying by pi and summing over i = 1, 2, ..., n, we get second inequality in
(2.1). 2

Remark 2.2. If we set c = d =
∑n

k=1 pkxk in (2.1), then we have (1.8) and (1.9).

Remark 2.3. Related inequalities in terms of subdifferential of a convex function
defined on linear space, have been proved by Matić and Pečarić in [15].

The following particular case for norms may be stated:

Corollary 2.4. Let (X, ||.||) be a normed linear space, p ≥ 1, x = (x1, ..., xn) ∈
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Xn\{(0, ..., 0)} be any n-tuple of vectors and p = (p1, ..., pn) ∈ Pn be any probability
distribution. If c, d ∈ X, c ̸= 0, are arbitrary chosen vectors, then we have

||c||p + p
n∑

j=1

pj ||c||p−2⟨xj , c⟩s − p||c||p ≤
n∑

j=1

pj ||xj ||p

≤ ||d||p + p

n∑
j=1

pj ||xj ||p − p

n∑
j=1

pj ||xj ||p−2⟨d, xj⟩i.(2.8)

If p ≥ 2, then (2.8) holds for any c, d, xj ∈ X(j = 1, .., n) and any probability
distribution.

In particular, we have the norm inequalities

(2.9)
n∑

j=1

pj⟨xj ,
c

||c||
⟩s ≤

n∑
j=1

pj ||xj || ≤ ||d||+
n∑

j=1

pj ||xj || −
n∑

j=1

pj
⟨
d,

xj

||xj ||
⟩
i
.

for xj , c ̸= 0, j ∈ {1, ..., n} and

2
n∑

j=1

pj⟨xj , c⟩s − ||c||2 ≤
n∑

j=1

pj ||xj ||2(2.10)

≤ ||d||2 + 2
n∑

j=1

pj ||xj ||2 − 2
n∑

j=1

pj⟨d, xj⟩i.

Remark 2.5. If we set c = d =
∑n

k=1 pkxk and apply Corollary 2.1, then we have
(1.10) and (1.11).

3. Improvement of Jensen’s inequality

Theorem 3.1. Let f : X → R be a convex function defined on a linear space X,
x = (x1, ..., xn) ∈ Xn be any n-tuple of vectors and p = (p1, ..., pn) ∈ Pn be any
probability distribution. If c ∈ X is arbitrary chosen vector, then we have

n∑
i=1

pif(xi)− f (c)−∇+f(c)

(
n∑

i=1

pixi − c

)

≥

∣∣∣∣∣
n∑

i=1

pi

∣∣∣f(xi)− f (c)
∣∣∣ − n∑

i=1

pi

∣∣∣∇+f (c) (xi − c)
∣∣∣∣∣∣∣∣ .(3.1)

Proof. From (2.2), we have

(3.2) f(xi)− f(c)−∇+f(c)(xi − c) ≥ 0.
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Therefore

(3.3) f(xi)− f (c)−∇+f (c) (xi − c) = |f(xi)− f (c)−∇+f (c) (xi − c)|

≥
∣∣∣∣∣f(xi)− f (c)

∣∣− ∣∣∇+f (c) (xi − c)
∣∣∣∣∣.

Multiplying (3.3) by pi and summing over i = 1, 2, ..., n, we get

n∑
i=1

pif(xi)− f (c)−
n∑

i=1

pi∇+f (c) (xi − c)

≥
n∑

i=1

pi

∣∣∣∣∣∣∣f(xi)− f (c)
∣∣∣− ∣∣∣∇+f (c) (xi − c)

∣∣∣∣∣∣∣
≥

∣∣∣∣∣
n∑

i=1

pi

∣∣∣f(xi)− f (c)
∣∣∣− n∑

i=1

pi

∣∣∣∇+f (c) (xi − c)
∣∣∣∣∣∣∣∣ .(3.4)

Using (1.5) and (1.6), we have

(3.5) ∇+f(c)

(
n∑

i=1

pixi − c

)
≤

n∑
i=1

pi∇+f(c)(xi − c).

Now, by using (3.5) in (3.4), we have (3.1). 2

The following improvement of Jensen’s inequality is valid:

Corollary 3.2. Let f : X → R be a convex function defined on a linear space
X. Then for any n-tuple of vectors x = (x1, ..., xn) ∈ Xn and any probability
distribution p = (p1, ..., pn) ∈ Pn, we have

(3.6)

n∑
i=1

pif(xi)− f

(
n∑

i=1

pixi

)
≥

∣∣∣∣∣
n∑

i=1

pi

∣∣∣∣f(xi)− f

(
n∑

k=1

pkxk

)∣∣∣∣ − n∑
i=1

pi

∣∣∣∣∇+f

(
n∑

k=1

pkxk

)(
xi −

n∑
k=1

pkxk

)∣∣∣∣
∣∣∣∣∣ .

In particular, for the uniform distribution, we have

(3.7)
1

n

n∑
i=1

f(xi)− f

(
1

n

n∑
i=1

xi

)
≥

∣∣∣∣∣ 1n
n∑

i=1

∣∣∣f(xi)− f

(
1

n

n∑
k=1

xk

)∣∣∣ − 1

n

n∑
i=1

∣∣∣∇+f

(
1

n

n∑
k=1

xk

)(
xi −

1

n

n∑
k=1

xk

)∣∣∣∣∣∣∣∣ .
Proof. By setting c =

∑n
k=1 pkxk in (3.1), we get (3.6). 2



502 M. Adil Khan, Sadia Khalid and J. Pečarić

Remark 3.3. If the function f is defined on the Euclidian space Rn and is differ-
entiable and convex, then from (3.6), we have

n∑
i=1

pif(xi)− f

(
n∑

i=1

pixi

)

≥

∣∣∣∣∣
n∑

i=1

pi

∣∣∣f(xi)−f

(
n∑

k=1

pkxk

)∣∣∣− n∑
i=1

pi

∣∣∣⟨∇f

(
n∑

k=1

pkxk

)
, xi−

n∑
k=1

pkxk

⟩∣∣∣∣∣∣∣∣ ,
(3.8)

where, as usual, xi = (x1
i , ..., x

n
i ) and ∇f(xi) =

(
∂f(xi)
∂x1

i
, ..., ∂f(xi)

∂xn
i

)
.

For one dimensional case, we have

n∑
i=1

pif(xi)− f

(
n∑

i=1

pixi

)
≥

∣∣∣∣∣
n∑

i=1

pi

∣∣∣∣∣f(xi)− f

(
n∑

k=1

pkxk

)∣∣∣∣∣
−

∣∣∣∣∣f ′

(
n∑

k=1

pkxk

)∣∣∣∣∣
n∑

i=1

pi

∣∣∣xi −
n∑

k=1

pkxk

∣∣∣∣∣∣∣∣ ,
(3.9)

that was proved in 2008 by Pečarić et al., see [12] (also see [1]).
The following particular case for norms may be stated:

Corollary 3.4. Let (X, ||.||) be a normed linear space, p ≥ 1, x = (x1, ..., xn) ∈ Xn

be any n-tuple of vectors and p = (p1, ..., pn) ∈ Pn be any probability distribution.
If c ∈ X is non zero arbitrary chosen vector, then we have

n∑
i=1

pi||xi||p − ||c||p − p||c||p−2
⟨ n∑

i=1

pixi − c, c
⟩
s

≥

∣∣∣∣∣
n∑

i=1

pi

∣∣∣||xi||p − ||c||p
∣∣∣− p||c||p−2

n∑
i=1

pi

∣∣∣⟨xi − c, c⟩s
∣∣∣∣∣∣∣∣.

(3.10)

If p ≥ 2, then the inequality holds for any vector c.

In particular, we have the norm inequalities
n∑

i=1

pi||xi|| − ||c|| −
⟨ n∑

i=1

pixi − c,
c

||c||

⟩
s

≥

∣∣∣∣∣
n∑

i=1

pi

∣∣∣||xi|| − ||c||
∣∣∣− n∑

i=1

pi

∣∣∣⟨xi − c,
c

||c||
⟩
s

∣∣∣∣∣∣∣∣
(3.11)

for c ̸= 0 and
n∑

i=1

pi||xi||2 − ||c||2 − 2
⟨ n∑

i=1

pixi − c, c
⟩
s

≥

∣∣∣∣∣
n∑

i=1

pi

∣∣∣||xi||2 − ||c||2
∣∣∣− 2

n∑
i=1

pi

∣∣∣⟨xi − c, c⟩s
∣∣∣∣∣∣∣∣.

(3.12)
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The following particular case that provides an improvement for the generalized
triangle inequality in the normed linear spaces is of interest:

Corollary 3.5. Let (X, ||.||) be a normed linear space. Then for any p ≥ 1,
x = (x1, ..., xn) ∈ Xn and for any probability distribution p = (p1, ..., pn) ∈ Pn with∑n

i=1 pixi ̸= 0, we have

n∑
i=1

pi||xi||p −
∣∣∣∣∣∣ n∑

i=1

pixi

∣∣∣∣∣∣p ≥

∣∣∣∣∣
n∑

i=1

pi

∣∣∣||xi||p −
∣∣∣∣∣∣ n∑

k=1

pkxk

∣∣∣∣∣∣p∣∣∣
− p
∣∣∣∣∣∣ n∑

i=1

pixi

∣∣∣∣∣∣p−2 n∑
i=1

pi

∣∣∣⟨xi −
n∑

k=1

pkxk,
n∑

k=1

pkxk

⟩
s

∣∣∣∣∣∣∣∣.
(3.13)

If p ≥ 2, then the inequality holds for any n-tuple of vectors and for any probability
distribution.

In particular, we have the norm inequalities

n∑
i=1

pi||xi|| −
∣∣∣∣∣∣ n∑

i=1

pixi

∣∣∣∣∣∣ ≥ ∣∣∣∣∣
n∑

i=1

pi

∣∣∣||xi|| −
∣∣∣∣∣∣ n∑

k=1

pkxk

∣∣∣∣∣∣∣∣∣
−

n∑
i=1

pi

∣∣∣⟨xi −
n∑

k=1

pkxk,

∑n
k=1 pkxk∣∣∣∣∣∣∑n
k=1 pkxk

∣∣∣∣∣∣
⟩

s

∣∣∣∣∣∣∣∣
(3.14)

and

n∑
i=1

pi||xi||2 −
∣∣∣∣∣∣ n∑

i=1

pixi

∣∣∣∣∣∣2 ≥

∣∣∣∣∣
n∑

i=1

pi

∣∣∣||xi||2 −
∣∣∣∣∣∣ n∑

k=1

pkxk

∣∣∣∣∣∣2∣∣∣
− 2

n∑
i=1

pi

∣∣∣⟨xi −
n∑

k=1

pkxk,
n∑

k=1

pkxk

⟩
s

∣∣∣∣∣∣∣∣.
(3.15)

Remark 3.6. If in inequality (3.13), we consider the uniform distribution, then we
have

n∑
i=1

||xi||p − n1−p
∣∣∣∣∣∣ n∑

i=1

xi

∣∣∣∣∣∣p ≥

∣∣∣∣∣
n∑

i=1

∣∣∣||xi||p − n−p
∣∣∣∣∣∣ n∑

k=1

xk

∣∣∣∣∣∣p∣∣∣
− pn2−p

∣∣∣∣∣∣ n∑
i=1

xi

∣∣∣∣∣∣p−2 n∑
i=1

∣∣∣⟨xi −
1

n

n∑
k=1

xk,
1

n

n∑
k=1

xk

⟩
s

∣∣∣∣∣∣∣∣.
(3.16)

4. Bounds for the mean f-deviation

Let X be a real linear space. For a convex function f : X → R with the
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property that f(0) ≥ 0, we define the mean f -deviation of n-tuple of vectors
y = (y1, ..., yn) ∈ Xn with the probability distribution p = (p1, ..., pn) ∈ Pn by the
non-negative quantity

(4.1) Kf(.)(p,y) = Kf (p,y) :=

n∑
i=1

pif

(
yi −

n∑
k=1

pkyk

)
.

The fact that Kf (p,y) is non-negative, follows by Jensen’s inequality, namely

(4.2) Kf (p,y) ≥ f

(
n∑

i=1

pi

(
yi −

n∑
k=1

pkyk

))
= f(0) ≥ 0.

Of course the concept can be extended for any function defined on X, however if
the function is not convex or if it is convex but f(0) < 0, then we are not sure about
the positivity of the quantity Kf (p,y).

A natural example of such deviations can be provided by the convex function
f(y) = ||y||r with r ≥ 1, defined on a normed linear space (X; ||.||). We denote this
by

(4.3) Kf (p,y) :=
n∑

i=1

pi

∣∣∣∣∣∣yi − n∑
k=1

pkyk

∣∣∣∣∣∣r
and call it themean r−absolute deviation of the n-tuple of vectors y = (y1, ..., yn) ∈
Xn with the probability distribution p = (p1, ..., pn) ∈ Pn.

Utilizing (1.8) and (1.9), we can state the following result providing a non-trivial
lower and upper bound for the mean f-deviation (see [9]).

Theorem 4.1. Let f : X → [0,∞) be a convex function with f(0) = 0. If
y = (y1, ..., yn) ∈ Xn and p = (p1, ..., pn) ∈ Pn is the probability distribution with
all pi′s (i = 1, ..., n) non zero, then

(4.4) K∇+f(0)(.)(p,y) ≤ Kf(.)(p,y) ≤ K∇−f(.)(.)(p,y).

We have the following double inequality for the f-mean deviation.

Theorem 4.2. Let f : X → [0,∞) be a convex function with f(0) = 0, y =
(y1, ..., yn) ∈ Xn and p = (p1, ..., pn) ∈ Pn be any probability distribution. If c, d ∈
X are arbitrary chosen vectors, then we have

f(c) +K∇+f(c)(.)(p,y)−∇+f(c)(c) ≤ Kf(.)(p,y)

≤ f(d) +K∇−f(.)(.)(p,y)−K∇−f(.)(d)(p,y).

(4.5)
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Proof. If we use the second inequality of (2.1) for xi = yi −
∑n

k=1 pkyk, we have

n∑
i=1

pif

(
yi −

n∑
k=1

pkyk

)
(4.6)

≤ f(d) +

n∑
i=1

pi∇−f

(
yi −

n∑
k=1

pkyk

)(
yi −

n∑
k=1

pkyk

)

−
n∑

i=1

pi∇−f

(
yi −

n∑
k=1

pkyk

)
(d) ,

which is equivalent to the second part of (4.5).
Now, by utilizing the first inequality of (2.1) for the same choice of xi, we have

f(c) +
n∑

i=1

pi∇+f(c)

(
yi −

n∑
k=1

pkyk

)
−∇+f(c)(c)(4.7)

≤
n∑

i=1

pif

(
yi −

n∑
k=1

pkyk

)
,

which in turns is equivalent to the first inequality of (4.5). 2

Remark 4.3. If all the assumptions of Theorem 4.1 are satisfied and if we set
c = d = 0 in (4.5), then we have (4.4).

We have the following inequality for the f -mean deviation.

Theorem 4.4. Let f : X → [0,∞) be a convex function, y = (y1, ..., yn) ∈ Xn and
p = (p1, ..., pn) ∈ Pn be any probability distribution. If c ∈ X is arbitrary chosen
vector, then we have

Kf (p,y)− f (c)−∇+f(c) (−c) ≥

∣∣∣∣∣
n∑

i=1

pi

∣∣∣f (yi − n∑
k=1

pkyk

)
− f (c)

∣∣∣(4.8)

−
n∑

i=1

pi

∣∣∣∇+f (c)

(
yi −

n∑
k=1

pkyk − c

)∣∣∣∣∣∣∣∣ .
Proof. By using the inequality (3.1) for xi = yi −

∑n
k=1 pkyk, we have (4.8). 2

By using Theorem 4.4, we can give the following result providing a non-trivial
lower bound for the mean f -deviation.

Corollary 4.5. Under the assumptions of Theorem 4.1, we have

(4.9) Kf (p,y) ≥

∣∣∣∣∣Kf (p,y)−
n∑

i=1

pi

∣∣∣∇+f(0)

(
yi −

n∑
k=1

pkyk

)∣∣∣∣∣∣∣∣ .
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We can consider the function

(4.10) f(x) := g(||x||), x ∈ X

as an example of convex function defined on the normed linear space (X, ||.||) and
vanishes at 0, where g : [0,∞) → [0,∞) is monotonic nondecreasing convex function
with g(0) = 0. For this kind of functions, by direct computation, we have

(4.11) ∇+f(0)(u) = g′+(0)||u|| for any u ∈ X.

We then have the following norm inequality that is of interest:

Corollary 4.6. Let (X, ||.||) be a normed linear space. If g : [0,∞) → [0,∞) is
a monotonic nondecreasing convex function with g(0) = 0, then for any n-tuple of
vectors y = (y1, ..., yn) ∈ Xn and for any probability distribution p = (p1, ..., pn) ∈
Pn, we have

n∑
i=1

pig

(∣∣∣∣∣∣yi − n∑
k=1

pkyk

∣∣∣∣∣∣)(4.12)

≥

∣∣∣∣∣
n∑

i=1

pig

(∣∣∣∣∣∣yi − n∑
k=1

pkyk

∣∣∣∣∣∣) − g′+(0)

n∑
i=1

pi

∣∣∣∣∣∣yi − n∑
k=1

pkyk

∣∣∣∣∣∣∣∣∣∣∣ .

5. Bounds for f-divergence measure

Given a convex function f : R+ → R+, the f -divergence functional

(5.1) If (p,q) :=
n∑

i=1

qif

(
pi
qi

)
,

where p = (p1, ..., pn), q = (q1, ..., qn) are positive sequences, was introduced by
Csiszár in [3], as a generalized measure of information, a distance function on the
set of probability distributions Pn. As in [3], we interpret undefined expressions by

f(0) = lim
t→0+

f(t), 0f

(
0

0

)
= 0,

0f
(a
0

)
= lim

q→0+
qf

(
a

q

)
, a lim

q→∞

f(t)

t
, a > 0.

The following results were essentially given by Csiszár and Körner [4]:

(i) If f is convex, then If (p,q) is jointly convex in p and q;
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(ii) For every p,q ∈ Rn
+, we have

(5.2) If (p,q) ≥
n∑

j=1

qjf

(∑n
j=1 pj∑n
j=1 qj

)
.

If f is strictly convex, equality holds in (5.2) if and only if

p1
q1

=
p2
q2

= ... =
pn
qn

.

If f is normalized, i.e., f(1) = 0, then for every p,q ∈ Rn
+ with

∑n
i=1 pi =∑n

i=1 qi, we have

(5.3) If (p,q) ≥ 0.

In particular, if p,q ∈ Pn, then (5.3) holds. This is the well-known positivity
property of the f -divergence.

We give some examples of divergence measures in Information Theory which
are particular cases of Csiszár f -divergences such as Kullback-Leibler divergence,
χ2-divergence, α-order entropy distance and Bhattacharyya distance etc..

The Kullback-Leibler divergence (see[14]) can be obtained for the convex func-
tion f : (0,∞) → R defined by f(x) = x log x and is given by

KL(p,q) =
n∑

i=1

pi log

(
pi
qi

)
.

The K. Pearson χ2-divergence can be obtained for the convex function f : (0,∞) →
R defined by f(x) = (1− x)2, x ∈ R and is given by

χ2(p,q) =
n∑

i=1

(pi − qi)
2

qi
.

If we consider the convex function f : (0,∞) → R defined by f(x) = − log x, then
we observe that
(5.4)

If (p,q) :=
n∑

i=1

qif

(
pi
qi

)
= −

n∑
i=1

qi log

(
pi
qi

)
=

n∑
i=1

qi log

(
qi
pi

)
= KL(q,p).

For α > 1, let f(x) = xα, where x > 0. Then α-order entropy (see[17]) is

Iα(p,q) =
n∑

i=1

pαi q
1−α
i .

For the convex function f(x) = −
√
x, x > 0, we have

If (p,q) = −
n∑

i=1

√
piqi = −B(p,q),
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where B(p,q) =
n∑

i=1

√
piqi is Bhattacharyya distance ( see for example [13]).

We endeavour to extend this concept for functions defined on a cone in a linear
space as follows (see [11]).

Firstly, we recall that the subset K in a linear space X is a cone if the following
two conditions are satisfied:

(i) for any x, y ∈ K, we have x+ y ∈ K;

(ii) for any x ∈ K and any α ≥ 0, we have αx ∈ K.

For the convex function f : K → R, we can define the following f -divergence of z
with the distribution q

(5.5) If (z,q) :=
n∑

i=1

qif

(
zi
qi

)
,

where z = (z1, ..., zn) ∈ Kn is the n-tuple of vectors and q ∈ Pn is the probability
distribution with all values non zero.
It is obvious that if X = R, K = [0,∞) and z = p ∈ Pn, then we obtain the usual
concept of the f -divergence associated with a function f : [0,∞) → R.

The following inequalities for the f -divergence of n-tuple of vectors in the linear
spaces hold (see [9]):

Theorem 5.1. Let f : K → R be a convex function on the cone K. Then for
any n-tuple of vectors x = (x1, ..., xn) ∈ Kn and a probability distribution q =
(q1, ..., qn) ∈ Pn with all values non zero, we have

I∇+f(
∑n

i=1 xi)(.)(x, q)−∇+f(
n∑

i=1

xi)(
n∑

i=1

xi)(5.6)

≤ If (x, q)− f
( n∑

i=1

xi

)
≤ I∇−f(.)(.)(x, q)− I∇−f(.)(

∑n
i=1 xi)(x, q).

By using the results of Theorem 2.1, we can provide a lower and upper bound
of If (x,q).

Theorem 5.2. Let f : K → R be a convex function on the cone K, x =
(x1, ..., xn) ∈ Kn be n-tuple of vectors and q = (q1, ..., qn) ∈ Pn be the probabil-
ity distribution with all values non zero. If c, d ∈ X are arbitrary chosen vectors,
then we have

f(c) + I∇+f(c)(.)(x, q)−∇+f(c)(c)(5.7)

≤ If (x, q) ≤ f(d) + I∇−f(.)(.)(x, q)− I∇−f(.)(d)(x, q).
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Remark 5.3. If all the assumptions of Theorem 5.2 are satisfied and if we set
c = d =

∑n
i=1 xi in (5.7), then we have (5.6).

Remark 5.4. Theorem 5.2 for the case of real variable normalized convex function
is useful for applications (see [9]).

By using the results of Theorem 3.1, we can provide a lower bound for If (x,q).

Theorem 5.5. Under the assumptions of Theorem 5.2, we have

If (x, q)− f (c)−∇+f(c)

(
n∑

i=1

xi − c

)
(5.8)

≥

∣∣∣∣∣
n∑

i=1

qi

∣∣∣f (xi

qi

)
− f (c)

∣∣∣ − n∑
i=1

qi

∣∣∣∇+f (c)

(
xi

qi
− c

) ∣∣∣∣∣∣∣∣ .
The special case of Theorem 5.5 provides a lower bound for the positive differ-

ence If (x,q)− f (
∑n

i=1 xi).

Corollary 5.6. Under the assumptions of Theorem 5.2, we have

If (x, q)− f

(
n∑

i=1

xi

)

≥

∣∣∣∣∣
n∑

i=1

qi

∣∣∣f(xi

qi

)
− f

(
n∑

i=1

xi

)∣∣∣ − n∑
i=1

qi

∣∣∣∇+f

(
n∑

i=1

xi

)(
xi

qi
−

n∑
i=1

xi

)∣∣∣∣∣∣∣∣ .
(5.9)

If the function f is differentiable and convex and K is the subset of Euclidean space
Rn, then from (5.9), we have

If (x, q)− f

(
n∑

i=1

xi

)

≥

∣∣∣∣∣
n∑

i=1

qi

∣∣∣f(xi

qi

)
− f

(
n∑

i=1

xi

)∣∣∣ − n∑
i=1

qi

∣∣∣⟨∇f

(
n∑

i=1

xi

)
,
xi

qi
−

n∑
i=1

xi

⟩∣∣∣∣∣∣∣∣ .
(5.10)

The special case of Theorem 5.5 for functions of real variable that is of interest
for applications:

Theorem 5.7. Let f : [0,∞) → R be a differentiable convex function, p, q ∈ Pn

be any two probability distributions with all values nonzero. If c ∈ [0,∞], then we
have

If (p, q)− f (c)− f ′(c) (1− c)(5.11)

≥

∣∣∣∣∣
n∑

i=1

qi

∣∣∣f (pi
qi

)
− f (c)

∣∣∣ − ∣∣∣f ′ (c)
∣∣∣ n∑
i=1

qi

∣∣∣pi
qi

− c
∣∣∣∣∣∣∣∣ .
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Corollary 5.8. For any two probability distributions p, q ∈ Pn with all values
nonzero and c ∈ (0,∞), we have

KL(p, q)− 1 + c− log c(5.12)

≥

∣∣∣∣∣
n∑

i=1

qi

∣∣∣pi
qi

log

(
pi
qi

)
− c log c

∣∣∣ − ∣∣∣ (1 + log c)
∣∣∣ n∑
i=1

qi

∣∣∣pi
qi

− c
∣∣∣∣∣∣∣∣ .

and

KL(q,p) + log c+
1

c
− 1(5.13)

≥

∣∣∣∣∣
n∑

i=1

qi

∣∣∣ log( qi
pi

)
+ log c

∣∣∣ − 1

c

n∑
i=1

qi

∣∣∣pi
qi

− c
∣∣∣∣∣∣∣∣ .

Corollary 5.9. For any two probability distributions p, q ∈ Pn with all values
nonzero and c ∈ R, we have

χ2(p, q) + (1− c)2(5.14)

≥

∣∣∣∣∣
n∑

i=1

qi

∣∣∣(1− pi
qi

)2
− (1− c)2

∣∣∣ − 2
∣∣∣1− c

∣∣∣ n∑
i=1

qi

∣∣∣pi
qi

− c
∣∣∣∣∣∣∣∣ .

Corollary 5.10. For any two probability distributions p, q ∈ Pn with all values
nonzero, c ∈ (0,∞) and for α > 1, we have

Iα(p, q) + cα(α− 1)− αcα−1(5.15)

≥

∣∣∣∣∣
n∑

i=1

qi

∣∣∣pαi q−α
i − cα

∣∣∣ − αcα−1
n∑

i=1

qi

∣∣∣pi
qi

− c
∣∣∣∣∣∣∣∣ .

Corollary 5.11. For any two probability distributions p, q ∈ Pn with all values
nonzero and c ∈ (0,∞), we have

(5.16) −B(p, q) +

√
c

2
+

1

2
√
c
≥

∣∣∣∣∣
n∑

i=1

qi

∣∣∣√pi
qi

−
√
c
∣∣∣ − 1

2
√
c

n∑
i=1

qi

∣∣∣pi
qi

− c
∣∣∣∣∣∣∣∣ .

Remark 5.12. It is obvious that if in the above inequalities, one chooses the other
particular convex functions that generates Jeffreys, Hellinger or other divergence
measures or discrepancies, then one can obtain some results of interest. For some
choice of c, the above results are also useful for finding the lower bound of different
divergences (see [1, 2, 12]).
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[12] S. Hussain, J. Pečarić, An improvement of Jensen’s inequality with some applications,
Asian European Journal of Mathematics, 2(1)(2009), 85-94.

[13] J. N. Kapur, A comparative assessment of various measures of directed divergence,
Advances in Management Studies, 3(1)(1984), 1-16.

[14] S. Kullback and R. A. Leiber, On information and sufficency, Ann. Math. Statist.,
22(1951), 79-86.
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