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Abstract. In this paper we study properties of commutative BE–algebras and we give

the construction of quotient (X/I; ∗, I) of a commutative BE–algebra X via an obstinate

ideal I of X. We construct upper semilattice and prove that is a nearlattice. Finally we

define and study commutative ideals in BE–algebras.

1. Introduction

Y. Imai and K. Iseki [5] introduced two classes of abstract algebras: BCK–
algebras and BCI–algebras. BCI–algebras as a class of logical algebras are the
algebraic formulations of the set difference together with its properties in set theory
and the implicational functor in logical systems. They are closely related to par-
tially ordered commutative monoids as well as various logical algebras. Their names
are originated form the combinators B, C, K and I in combinatory logic. It is known
that the class of BCK–algebras is a proper subclass of the class of BCI–algebras
[4].

Recently, H. S. Kim and Y. H. Kim [6] defined a BE–algebra. S. S. Ahn and
K. S. So [1, 2] defined the notion of ideals in BE–algebras, and then stated and
proved several characterizations of such ideals. A. Walendziak [12] introduced the
notion of commutative BE–algebra.

In this paper, we investigate several properties of commutative BE–algebras,
and construct quotient algebra X/I of a transitive BE–algebra X via an obstinate
ideal I. Finally we define commutative ideals on BE–algebras and state the rela-
tionship between commutative BE–algebras, and prove some theorems.
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2. Preliminaries

Definition 2.1([6]). An algebra (X; ∗, 1) of type (2, 0) is called a BE–algebra if
(BE1) x ∗ x = 1 for all x ∈ X ;
(BE2) x ∗ 1 = 1 for all x ∈ X ;
(BE3) 1 ∗ x = x for all x ∈ X ;
(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X (exchange).

We can define relation ”≤” on X by x ≤ y if and only if x ∗ y = 1.

In a BE–algebra X, we have the following identities:
(p1) x ∗ (y ∗ x) = 1.
(p2) x ∗ ((x ∗ y) ∗ y)) = 1.

Example 2.2([6]). Let X := {1, a, b, c, d, 0} be a set with the following table.

∗ 1 a b c d 0
1 1 a b c d 0
a 1 1 a c c d
b 1 1 1 c c c
c 1 a b 1 a b
d 1 1 a 1 1 a
0 1 1 1 1 1 1

Then (X; ∗, 1) is a BE–algebra.

Example 2.3([8]). Let X = {1, 2, . . .} and the operation ∗ is defined as follows:

x ∗ y =

{
1 if y ≤ x
y otherwise

Then (X; ∗, 1) is a BE–algebra.

Note. For simplicity of notation we write X instead of BE–algebra (X; ∗, 1).

Definition 2.4([12]). An algebra (X; ∗, 1) of type (2, 0) is called a dual BCK–
algebra if

(BE1) x ∗ x = 1 for all x ∈ X;
(BE2) x ∗ 1 = 1 for all x ∈ X;
(dBCK1) x ∗ y = y ∗ x = 1 =⇒ x = y;
(dBCK2) (x ∗ y) ∗ ((y ∗ z) ∗ (x ∗ z)) = 1;
(dBCK3) x ∗ ((x ∗ y) ∗ y) = 1.

Lemma 2.5([12]). Let (X; ∗, 1) be a dual BCK–algebra and x, y, z ∈ X. Then:
(a) x ∗ (y ∗ z) = y ∗ (x ∗ z),
(b) 1 ∗ x = x.

Proposition 2.6([12]). Any dual BCK–algebra is a BE–algebra.



Commutative Ideals in BE-algebras 485

Example 2.7. Example 2.2, is a BE–algebra, but it is not a dual BCK–algebra.

Definition 2.8([2]). A non-empty subset I of X is called an ideal of X if it
satisfies:

(I1) (∀x ∈ X) (∀a ∈ I) x ∗ a ∈ I , i.e, X ∗ I ⊆ I;
(I2) (∀x ∈ X) (∀a, b ∈ I) (a ∗ (b ∗ x)) ∗ x ∈ I.

Example 2.9. In Example 2.2, {1, a, b} is an ideal of X, but {1, a} is not an ideal
of X, because (a ∗ (a ∗ b)) ∗ b = (a ∗ a) ∗ b = 1 ∗ b = b /∈ {1, a}.

Proposition 2.10([2]). Let I be an ideal of X. If a ∈ I and a ≤ x, then x ∈ I.

Lemma 2.11([11]). A nonempty subset I of X is an ideal of X if and only if it
satisfies

(1) 1 ∈ I;

(2) (∀x, z ∈ X) (∀y ∈ I) (x ∗ (y ∗ z) ∈ I ⇒ x ∗ z ∈ I).

Definition 2.12([7]). A subset F of X is said to be a filter when it satisfies the
conditions:

(F1) 1 ∈ F ;
(F2) x, x ∗ y ∈ F ⇒ y ∈ F .
Obviously any filter F of a BE–algebra X is a subalgebra, i.e., 1 ∈ F and if x,

y ∈ F , then x ∗ y ∈ F .

Example 2.13. In Example 2.2, F1 = {1, a, b} is a filter of X, but F2 = {1, a} is
not a filter of X, since a ∗ b = a ∈ F2 and a ∈ F2 but, b /∈ F2.

Definition 2.14([6]). A BE–algebra X is said to be self distributive if x∗(y∗z) =
(x ∗ y) ∗ (x ∗ z), for all x, y, z ∈ X.

Example 2.15([6]). Let X := {1, a, b, c, d} be a set with the following table.

∗ 1 a b c d
1 1 a b c d
a 1 1 b c d
b 1 a 1 c c
c 1 1 b 1 b
d 1 1 1 1 1

It is easy to see that X is a BE–algebra satisfying self distributive.

Note that the BE-algebra in Example 2.2, is not self distributive, since d ∗ (a ∗
0) = d ∗ d = 1 while (d ∗ a) ∗ (d ∗ 0) = 1 ∗ a = a.

Proposition 2.16([10]). Let X be a self distributive BE–algebra. Then for all
x, y, z ∈ X the following statements hold:

(1) if x ≤ y, then z ∗ x ≤ z ∗ y;
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(2) y ∗ z ≤ (x ∗ y) ∗ (x ∗ z).

Definition 2.17([2]). A BE–algebra X is said to be transitive if for any x, y, z ∈
X,

y ∗ z ≤ (x ∗ y) ∗ (x ∗ z).

Proposition 2.18([7]). Let X be a transitive BE–algebra. Then for all x, y, z ∈ X
the following statements hold:

(1) y ≤ z implies x ∗ y ≤ x ∗ z;
(2) y ≤ z implies z ∗ x ≤ y ∗ x;
(3) 1 ≤ x implies x = 1.

Example 2.19([2]). Let X := {1, a, b, c} be a set with the following table.

∗ 1 a b c
1 1 a b c
a 1 1 a a
b 1 1 1 a
c 1 1 a 1

Then X is a transitive BE–algebra.

Corollary 2.20([2]). If X is a self distributive BE–algebra, then it is transitive.

Note. The converse of Corollary 2.20, need not be true in general. In Example 2.19,
X is a transitive BE–algebra, but a∗(a∗b) = a∗a = 1, while (a∗a)∗(a∗b) = 1∗a = a,
showing that X is not self distributive.

Definition 2.21([9]). A mapping f : X → Y of BE–algebras is called a BE–
homomorphism if f(x ∗ y) = f(x) ∗ f(y), for all x, y ∈ X.

Definition 2.22([10]). Let I be a proper ideal of BE–algebra X. Then I said to
be obstinate if, for any x, y ∈ X, x, y ̸∈ I implies x ∗ y ∈ I and y ∗ x ∈ I.

Example 2.23. In Example 2.2, I = {1, a, b} is an obstinate ideal.

Theorem 2.24([10]). Let I be an obstinate ideal of a self distributive BE–algebra
X. Then (X/I; ∗, I) is also a BE-algebra, which is called to be the quotient algebra
via I.

Definition 2.25([12]). Let X be a BE–algebra. We say that X is commutative
if satisfies (x ∗ y) ∗ y = (y ∗ x) ∗ x for all x, y ∈ X.

Example 2.26. In Example 2.15, X is not a commutative BE–algebra because,

(c ∗ a) ∗ a = 1 ∗ a = a ̸= 1 = c ∗ c = (a ∗ c) ∗ c.
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Example 2.27([12]). Let N0 = N ∪ {0} and let ∗ be the binary operation of N0

defined by

x ∗ y =

{
1 if y ≤ x
y − x if x < y

then (N0; ∗, 0) is a commutative BE–algebra.

Example 2.28. In Example 2.3, X is not commutative because, (4∗5)∗5 = 5∗5 =
1 ̸= 4 = 1 ∗ 4 = (5 ∗ 4) ∗ 4.

Example 2.29. In Example 2.19, X is not a BH/BG/BF/BCK/BCI/B–algebra
because a ∗ 1 = 1 ̸= a and is not a d–algebra because 1 ∗ a = a ̸= 1, but it is a
commutative BE algebra.

Proposition 2.30([12]). If X is a commutative BE–algebra, then for all x, y ∈ X,
if x ∗ y = 1 and y ∗ x = 1, then x = y.

Theorem 2.31([12]). If X is a commutative BE–algebra, then X is a dual BCK–
algebra.

Corollary 2.32([12]). X is a commutative BE–algebra if and only if it is a
commutative dual BCK–algebra.

3. Some results on commutative BE–algebras

From definition of commutativity we have the following proposition.

Proposition 3.1. X is a commutative dual BCK–algebra if and only if (x∗y)∗y ≤
(y ∗ x) ∗ x for any x, y ∈ X.

Proposition 3.2. Suppose that X is a dual BCK-algebra. Then the following are
equivalent, for x, y ∈ X,

(1) X is commutative;
(2) x ≤ y implies y = (y ∗ x) ∗ x;
(3) (y ∗ x) ∗ x = (((y ∗ x) ∗ x) ∗ y) ∗ y.

Proof. (1) ⇒ (2). If x ≤ y, then x∗y = 1 and so (1) implies y = 1∗y = (x∗y)∗y =
(y ∗ x) ∗ x.
(2) ⇒ (3). Since y ≤ (y ∗ x) ∗ x, by (2), we have (y ∗ x) ∗ x = (((y ∗ x) ∗ x) ∗ y) ∗ y.
(3) ⇒ (1). By (3), the following identity holds:

(((y ∗ x) ∗ x) ∗ y) ∗ y = (y ∗ x) ∗ x.

Also, since x ≤ (y ∗ x) ∗ x, then

((y ∗ x) ∗ x) ∗ y ≤ x ∗ y

Hence (x ∗ y) ∗ y ≤ (((y ∗ x) ∗ x) ∗ y) ∗ y = (y ∗ x) ∗ x and X is commutative by
Proposition 3.1. 2
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Theorem 3.3. An algebra X is a commutative BE-algebra if and only if the
following identities hold: for x, y, z ∈ X.

(1) 1 ∗ x = x;
(2) x ∗ 1 = 1;
(3) (z ∗ x) ∗ (y ∗ x) = (x ∗ z) ∗ (y ∗ z);
(4) x ∗ (y ∗ z) = y ∗ (x ∗ z).

Proof. To prove the sufficiency, it suffices to show (BE1) and commutativity.
substituting z and y by 1 in (3) and using (2) and (1), we have

(1 ∗ x) ∗ (1 ∗ x) = (x ∗ 1) ∗ (1 ∗ 1)
x ∗ (1 ∗ x) = 1 ∗ 1 = 1

x ∗ x = 1

Hence (BE1) holds. Substituting y by 1 in (3) and using (2) we have

(z ∗ x) ∗ (1 ∗ x) = (x ∗ z) ∗ (1 ∗ z)
(z ∗ x) ∗ x = (x ∗ z) ∗ z.

Then X is commutative.
Necessity. It suffices to prove (3). By (BE4) and commutativity (z ∗ x) ∗ (y ∗ x) =
y ∗ ((z ∗ x) ∗ x) = y ∗ ((x ∗ z) ∗ z) = (x ∗ z) ∗ (y ∗ z).
Then (3) holds. 2

Theorem 3.4. An algebra X is a commutative BE–algebra if and only if the
following identities hold: for x, y, z ∈ X

(1) (y ∗ 1) ∗ x = x;
(2) (y ∗ x) ∗ (z ∗ x) = (x ∗ y) ∗ (z ∗ y);
(3) x ∗ (y ∗ z) = y ∗ (x ∗ z).

Proof. Necessity. It suffices to prove (2). By (BE4) and hypothesis we have

(y ∗ x) ∗ (z ∗ x) = z ∗ ((y ∗ x) ∗ x) = z ∗ ((x ∗ y) ∗ y) = (x ∗ y) ∗ (z ∗ y).

Sufficiency. By (1) we have 1 ∗ x = ((1 ∗ 1) ∗ 1) ∗ x = x (BE3).
From (1), (2) and (BE3) we conclude that 1 = 1 ∗ 1 = ((1 ∗ x) ∗ 1) ∗ (1 ∗ 1) =
(1 ∗ (1 ∗ x)) ∗ (1 ∗ (1 ∗ x)) = (1 ∗ x) ∗ (1 ∗ x) = x ∗ x (BE1).
By (BE1) and (1) we have 1 = (x ∗ 1) ∗ (x ∗ 1) = x ∗ 1, hence (BE2) holds. It
suffices to prove commutativity. From (1), (2), (3), we have
(y ∗ x) ∗ x = (y ∗ x) ∗ ((y ∗ 1) ∗ x) = (x ∗ y) ∗ ((y ∗ 1) ∗ y) = (x ∗ y) ∗ y. Then X is
commutative. 2

Proposition 3.5. Let X be a transitive BE–algebra. If the least upper bound x∨ y
of x and y exists, then for all z ∈ X, the greatest lower bound (x ∗ z) ∧ (y ∗ z) of
x ∗ z and y ∗ z exists and (x ∨ y) ∗ z = (x ∗ z) ∧ (y ∗ z).
Proof. If the least upper bound x ∨ y of x and y exists, by Proposition 2.16,
(x ∨ y) ∗ z ≤ x ∗ z. Similarly, (x ∨ y) ∗ z ≤ y ∗ z. Hence (x ∨ y) ∗ z is a lower bound
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of (x ∗ z) and (y ∗ z). Also, assume that u is any lower bound of (x ∗ z) and (y ∗ z).
Then u ≤ x ∗ z and u ≤ y ∗ z. By (BE4) we have x ≤ u ∗ z and y ≤ u ∗ z and so
x ∨ y ≤ u ∗ z. Using (BE4) u ≤ (x ∨ y) ∗ z. Hence (x ∨ y) ∗ z is the greatest lower
bound of (x ∗ z) and (y ∗ z). Therefore the greatest lower bound (x ∗ z) and (y ∗ z)
exists and (x ∗ z) ∧ (y ∗ z) = (x ∨ y) ∗ z. 2

Theorem 3.6. A dual BCK–algebra X is commutative if and only if (X;≤) is an
upper semilattice with x ∨ y = (y ∗ x) ∗ x, for any x, y ∈ X.

Proof. Since y ≤ (y ∗x)∗x and x ≤ (y ∗x)∗x, we have (y ∗x)∗x is an upper bound
of x and y for any x, y ∈ X. Let z be any upper bound of x and y. Since x ≤ z, by
Proposition 3.2, z = (z ∗x) ∗x. Also, since y ≤ z, we obtain (y ∗x) ∗x ≤ (z ∗x) ∗x.
Hence (y ∗ x) ∗ x ≤ z and (y ∗ x) ∗ x must be least upper bound of x and y.

Conversely, sinceX is an upper semilattice, we have x∨y = y∨x, then (y∗x)∗x =
(x ∗ y) ∗ y. Hence X is commutative. 2

Proposition 3.7. Let X be a transitive commutative BE–algebra. If there is a
lower bound a of x and y, then the greatest lower bound x∧ y of x and y exists and
x ∧ y = ((x ∗ a) ∨ (y ∗ a)) ∗ a.
Proof. Since (X;≤) is an upper semilattice, then (y ∗ a) ∨ (x ∗ a) exist and by
Proposition 3.5, we have ((y ∗ a) ∗ a) ∧ ((x ∗ a) ∗ a) = ((x ∗ a) ∨ (y ∗ a)) ∗ a. Since
X is commutative, we have (x ∨ a) ∧ (y ∨ a) = ((x ∗ a) ∨ (y ∗ a)) ∗ a. Hence
x ∧ y = ((x ∗ a) ∨ (y ∗ a)) ∗ a. 2

Proposition 3.8. Suppose that X is a commutative dual BCK–algebra. Then for
any a, x, y ∈ X the following hold: (1) x ∗ y = y if and only if x ∨ y = 1;

(2) (x ∨ y) ∗ x = x ∨ (y ∗ x) = y ∗ x;
(3) x ∗ y = y implies y ∗ x = x;
(4) a ≤ y implies (y ∗ a) ∗ (x ∗ a) = x ∗ y;
(5) a ≤ x implies (x ∗ a) ∨ (y ∗ a) = (y ∗ x) ∗ (y ∗ a);
(6) y ≤ z implies x ∗ z = x ∗ (y ∨ z).

Proof. (1) If x∗y = y, by Proposition 3.2, we have x∨y = y∨x = (x∗y)∗y = y∗y = 1.
Conversely, if x ∨ y = 1, then x ∗ y = ((x ∗ y) ∗ y) ∗ y = (x ∨ y) ∗ y = 1 ∗ y = y.

(2) By Proposition 3.2, we have ((y ∗ x) ∗ x) ∗ x = y ∗ x, it follows

y ∗ x = (y ∨ x) ∗ x = (x ∨ y) ∗ x
y ∗ x = (y ∗ x) ∨ x = x ∨ (y ∗ x)

Hence (x ∨ y) ∗ x = x ∨ (y ∗ x) = y ∗ x.
(3) If x ∗ y = y, then x ∨ y = 1 by (1). So, (2) gives y ∗ x = (x ∨ y) ∗ x = 1 ∗ x = x.
(4) If a ≤ y, then (y ∗ a) ∗ (x ∗ a) = x ∗ ((y ∗ a) ∗ a) = x ∗ (y ∨ a) = x ∗ y.
(5) If a ≤ x, then (4) implies (x∗a)∨(y∗a) = ((x∗a)∗(y∗a))∗(y∗a) = (y∗x)∗(y∗a).
(6) Since y ∗z = 1 and y∨z = (y ∗z)∗z it follows that x∗ (y∨z) = x∗ ((y ∗z)∗z) =
(y ∗ z) ∗ (x ∗ z) = 1 ∗ (x ∗ z) = (x ∗ z). 2

Theorem 3.9. Let (X;≤) be an upper semilattice with the greatest element 1. Then
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(X;≤) has its associated commutative BE–algebra (X; ∗, 1) if and only if satisfies
the following conditions: for any x, y, z,∈ X,

(1) If x ≤ y, then there exists one and only one complement y′x of y relative to
x in the sense that x ≤ y′x and (y′x)

′
x = y;

(2) ((x ∨ y)′x ∨ z)′(x∨y)′x
= ((x ∨ z)′x ∨ y)′(x∨z)′x

;

(3) 1′x = x.

Proof. (1) Assume that the associated commutative BE–algebra (X; ∗, 1) of (X;≤)
exists, then x∨ y = (y ∗x) ∗x, for any x, y ∈ X. If x ≤ y, we define y′x = y ∗x, then
x ≤ y′x and

(y′x)
′
x = (y ∗ x) ∗ x = y.

Let z be any complement of y relative to x. Then x ≤ z and z′x = y. Since x ≤ z,
we have (z′x)

′
x = z, then z = (z′x)

′
x = y′x. So the relative complement y′x is unique.

Hence (1) is true.
Next, by Proposition 3.8, we have (x ∨ y)′x = (x ∨ y) ∗ x = y ∗ x and so

((x ∨ y)′x ∨ z)′(x∨y)′x
= ((y ∗ x) ∨ z)′y∗x = z ∗ (y ∗ x)

and

((x ∨ z)′x ∨ y)′(x∨z)′x
= ((z ∗ x) ∨ y) ∗ (z ∗ x) = y ∗ (z ∗ x).

Therefore the (BE4) implies that (2) holds.
(3) 1′x = 1 ∗ x = x.

Conversely, because x ≤ x ∨ y for any x, y ∈ X, by (1), we can define a binary
operation ∗ on X by

y ∗ x = (x ∨ y)′x

No, by (3), we obtain

(y ∗ 1) ∗ x = ((1 ∨ y)′1 ∨ x)′x = (1′1 ∨ x)′x = (1 ∨ x)′x = 1′x = x.

Next, by definition of relative complements, we have x ≤ (x ∨ y)′x then

(y ∗ x) ∗ x = ((x ∨ y)′x ∨ x)′x = ((x ∨ y)′x)
′
x = x ∨ y.

Likewise, (x ∗ y) ∗ y = y ∨ x. Thus commutativity of ∨ gives

(y ∗ x) ∗ x = (x ∗ y) ∗ y (a).

Note that x ∗ (y ∗ z) = ((y ∗ z) ∨ x)′y∗z = ((y ∨ z)′z ∨ x)′(y∨z)′z
and y ∗ (x ∗ z) =

((x ∗ z) ∨ y)′x∗z = ((z ∨ x)′z ∨ y)′(y∨z)′z
. It follows from (2) that

x ∗ (y ∗ z) = y ∗ (x ∗ z) (b)

Now, left ∗ multiplying both sides of above equality (a) by z, the following holds:
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z ∗ ((y ∗ x) ∗ x) = z ∗ ((x ∗ y) ∗ y)
z ∗ ((y ∗ x) ∗ x) = (y ∗ x) ∗ (z ∗ x) = (x ∗ y) ∗ (z ∗ y)

By (b) we conclude that

(y ∗ x) ∗ (z ∗ x) = (x ∗ y) ∗ (z ∗ y).

By Theorem 3.4, X is a commutative BE–algebra.
Finally, since (y ∗x) ∗x = x∨ y we have (X; ∗, 1) is the associated commutative

BE–algebra of (X;≤). 2

By a nearlattice we mean a join-semilattice (S,∨) such that for every a ∈ A,
the principal order filter [a) = {x ∈ A : x ≥ a} is a lattice with respect to the order
by ∨[3].
Proposition 3.10. Let X be a commutative BE–algebra. Then

(1) for each a ∈ X, the mapping fa : x → x ∗ a is an antitone involution on the
section [a, 1].

(2) (A,≤) is a nearlattice with section antitone involution, where

x ∨ y = (x ∗ y) ∗ y,

and for every a ∈ X, the antitone involution fa on [a, 1] is given by fa(x) = x ∗ a.
Proof. (1) Since X is a commutative BE–algebra and a ≤ x, then

fa(fa(x)) = (x ∗ a) ∗ a = x.

If x ≤ y, then y ∗ a ≤ x ∗ a and so fa(y) ≤ fa(x).
(2) Let X be a commutative BE–algebra. Then we have

1. x ∗ 1 = 1 and 1 ∗ x = x;

2. (x ∗ y) ∗ y = (y ∗ x) ∗ x;

3. Since x ≤ (x∗y)∗y, ((x∗y)∗y)∗z ≤ x∗z. Hence (((x∗y)∗y)∗z)∗(x∗z) = 1.

By Theorem 6.4.4, [3], (A,≤) is a nearlattice with section antitone involution, where
x∨ y = (x ∗ y) ∗ y, and for every a ∈ X, the antitone involution fa on [a, 1] is given
by fa(x) = x ∗ a. 2

Theorem 3.11. Let I be an obstinate ideal of a commutative BE–algebra X. Then
the quotient algebra (X/I; ∗, I) is a commutative BE–algebra.

Proof. Suppose that Cx, Cy ∈ X/I. Then
(Cx ∗ Cy) ∗ Cy = Cx∗y ∗ Cy = C(x∗y)∗y = C(y∗x)∗x = Cy∗x ∗ Cx = (Cy ∗ Cx) ∗ Cx.
This shows that (X/I; ∗, I) is commutative. 2

4. Commutative ideals in BE–algebras

Definition 4.1. A subset I of X is called a commutative ideal of X if
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(1) 1 ∈ I;

(2) x ∗ (y ∗ z) ∈ I and x ∈ I implies ((z ∗ y) ∗ y) ∗ z ∈ I,

for all x, y, z ∈ X.

Example 4.2. In Example 2.2, I = {1, a, b} is a commutative ideal.

Example 4.3. In Example 2.19, I = {1, c} is not an obstinate ideal but it is a
commutative ideal.

Proposition 4.4. If I is a commutative ideal of X, then it is a filter of X.

Proof. Let x, y ∈ X. If x ∗ y ∈ I and x ∈ I, since x ∗ (1 ∗ y) ∈ I, we have
((y ∗ 1) ∗ 1) ∗ y ∈ I, that is , y ∈ I. Hence I is a filter of X. 2

Proposition 4.5. An ideal I of a BE–algebra X is commutative if and only if
x ∗ y ∈ I implies ((y ∗ x) ∗ x) ∗ y ∈ I, for any x, y ∈ X.

Proof. Necessity. For any x, y ∈ X, if x∗y ∈ I, then by (BE3) 1∗ (x∗y) = x∗y ∈ I
and 1 ∈ I. Since I is commutative, it follows that ((y ∗ x) ∗ x) ∗ y ∈ I.

Sufficiency. Obviously, 1 ∈ I. For any x, y, z ∈ X, if x ∗ (y ∗ z) ∈ I and
x ∈ I, since I is an ideal of X, we have y ∗ z ∈ I, then our hypothesis implies
((z ∗ y) ∗ y) ∗ z ∈ I therefore I is a commutative ideal of X. 2

Proposition 4.6. An ideal I of X is commutative if and only if x ∗ y ∈ I implies
((((y ∗ x) ∗ 1) ∗ 1) ∗ ((y ∗ x) ∗ x) ∗ y) ∈ I for any x, y ∈ X.

Proposition 4.7. If {Iλ : λ ∈ Λ} is a family of commutative ideals of X, then so
is ∩λ∈ΛIλ.

Proof. Clearly 1 ∈ ∩λ∈ΛIλ. Let x ∗ y ∈ ∩λ∈ΛIλ. Then x ∗ y ∈ Iλ, for all λ ∈ Λ. By
Proposition 4.5, we have ((y ∗ x) ∗ x) ∗ y ∈ Iλ, for all λ ∈ Λ and so ((y ∗ x) ∗ x) ∗ y ∈
∩λ∈ΛIλ. This completes the proof. 2

Note. In Example 2.15, I1 = {1, a, b} and I2 = {1, a, c} are commutative ideals of
X, but I = I1 ∪ I2 = {1, a, b.c} is not a commutative ideal, because c ∗ (a ∗ d) ∈ I
and c ∈ I but ((d ∗ a) ∗ a) ∗ d = (1 ∗ a) ∗ d = a ∗ d = d /∈ I.

Theorem 4.8. Let f : X → Y be a homomorphism of BE–algebras. If J is a
commutative ideal of Y , then f−1(J) is a commutative ideal of X.

Proof. Clearly 1 ∈ f−1(J). Let x, y ∈ X be such that x ∗ y ∈ f−1(J).Then
f(x) ∗ f(y) = f(x ∗ y) ∈ J . Since J is a commutative ideal of Y , then we have
((f(y) ∗ f(x)) ∗ f(x)) ∗ f(y) ∈ J by Proposition 4.5, it follows that
((f(y) ∗ f(x)) ∗ f(x)) ∗ f(y) = f((y ∗ x) ∗ x) ∗ f(y) = f(((y ∗ x) ∗ x) ∗ y) ∈ J , so that
((y ∗ x) ∗ x) ∗ y ∈ f−1(J). This shows that f−1(J) is a commutative ideal of X.2

Theorem 4.9. (Extension property) Let I and J be ideals of a transitive BE–
algebras X, where I ⊆ J . If I is a commutative ideal, then J is a commutative
ideal.
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Proof. Assume that x ∗ y ∈ J and u = x ∗ y. Then x ∗ (u ∗ y) ∈ I. Since I is
commutative, by Proposition 4.5, (((u ∗ y) ∗x) ∗x) ∗ (u ∗ y) ∈ I. Not that I ⊆ J , we
have (((u ∗ y) ∗ x) ∗ x) ∗ (u ∗ y) ∈ J . Therefore u ∗ (((u ∗ y) ∗ x) ∗ x) ∗ y) ∈ J . Since
u ∈ J , we have (((u ∗ y) ∗ x) ∗ x) ∗ y) ∈ J . Also, since y ≤ u ∗ y and X is transitive,
then (((u ∗ y) ∗ x) ∗ x) ∗ y ≤ ((y ∗ x) ∗ x) ∗ y. Hence ((y ∗ x) ∗ x) ∗ y ∈ J . Therefore
J is a commutative ideal of X. 2

Corollary 4.10. Trivial ideal {1} is commutative if and only if all ideals of X are
commutative.

Theorem 4.11. A dual BCK–algebra X is commutative if and only if {1} is a
commutative ideal.

Proof. Necessity. If x ∗ y ∈ {1}, then x ∗ y = 1. Since X is commutative, then
y = (y ∗ x) ∗ x, thus ((y ∗ x) ∗ x) ∗ y = 1 ∈ {1}. Hence {1} is a commutative ideal.
Sufficiency, if x∗y = 1, then x∗y ∈ {1}. Since {1} is a commutative, by Proposition
4.5, ((y ∗ x) ∗ x) ∗ y ∈ {1}, that is ((y ∗ x) ∗ x) ∗ y = 1. On the other hand
y ∗ ((y ∗ x) ∗ x) = 1, thus we get that y = (y ∗ x) ∗ x. Hence X is commutative. 2

Therefore we have the following relation between commutative ideal and com-
mutative BE–algebra.

Theorem 4.12. Let X be a dual BCK–algebra. Then the following statement are
equivalent:

(1) X is a commutative BE–algebra;

(2) {1} is a commutative ideal of X;

(3) every ideal of X is a commutative ideal.

Theorem 4.13. An obstinate ideal A of a dual BCK–algebra X is commutative if
and only if the quotient algebra (X/A; ∗, A) is commutative.

Proof. Assume that A is commutative. If Ax ∗ Ay = A1, then Ax∗y = A1, and so
x ∗ y ∈ A. Hence the commutativity of A implies ((y ∗ x) ∗ x) ∗ y ∈ A. Therefore
A((y∗x)∗x)∗y = ((Ay ∗Ax) ∗Ax) ∗Ay = A1, proving the ideal A1 of X/A is commu-
tative. Therefore X/A is a commutative BE–algebra by Theorem 4.12.
Conversely, assume that X/A is a commutative BE–algebra, then A1 is a commu-
tative ideal of X/A by Theorem 4.12. If x ∗ y ∈ A, we have Ax ∗ Ay = A1, then
commutativity of A1 implies ((Ay ∗ Ax) ∗ Ax) ∗ Ay = A1. So, ((y ∗ x) ∗ x) ∗ y ∈ A.
Hence A is a commutative ideal of X. 2

5. Conclusion

In this paper, we discuss on concept of commutative BE–algebras and conclude
a dual BCK–algebra X is commutative if and only if (X;≤) is an upper semilat-
tice. Also we conclude quotient algebra of a commutative BE–algebra X via an
obstinate ideal of X is commutative. We prove that an obstinate ideal I of dual
BCK–algebra X is commutative if and only if the quotient algebra (X/I; ∗, I) is
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commutative. Also, notion of commutative ideals in BE–algebras are introduced.
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