Commutative Ideals in $B E$-algebras

Akbar Rezaei
Department of Mathematics, Peyame Noor University, P.O.BOX. 19395-3697, Tehran, Iran
e-mail: a_rezaei1053@yahoo.com; Rezaei@pnu.ac.ir
Arsham Borumand Saeid*
Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran
e-mail: arsham@mail.uk.ac.ir
Abstract. In this paper we study properties of commutative $B E$-algebras and we give the construction of quotient $(X / I ; *, I)$ of a commutative $B E$-algebra X via an obstinate ideal I of X. We construct upper semilattice and prove that is a nearlattice. Finally we define and study commutative ideals in $B E$-algebras.

1. Introduction

Y. Imai and K. Iseki [5] introduced two classes of abstract algebras: $B C K-$ algebras and $B C I$-algebras. $B C I$-algebras as a class of logical algebras are the algebraic formulations of the set difference together with its properties in set theory and the implicational functor in logical systems. They are closely related to partially ordered commutative monoids as well as various logical algebras. Their names are originated form the combinators $\mathrm{B}, \mathrm{C}, \mathrm{K}$ and I in combinatory logic. It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras [4].

Recently, H. S. Kim and Y. H. Kim [6] defined a $B E-$ algebra. S. S. Ahn and K. S. So $[1,2]$ defined the notion of ideals in $B E$-algebras, and then stated and proved several characterizations of such ideals. A. Walendziak [12] introduced the notion of commutative $B E$-algebra.

In this paper, we investigate several properties of commutative $B E$-algebras, and construct quotient algebra X / I of a transitive $B E$-algebra X via an obstinate ideal I. Finally we define commutative ideals on $B E$-algebras and state the relationship between commutative $B E$-algebras, and prove some theorems.

[^0]
2. Preliminaries

Definition 2.1([6]). An algebra $(X ; *, 1)$ of type $(2,0)$ is called a $B E$-algebra if (BE1) $x * x=1$ for all $x \in X$;
(BE2) $x * 1=1$ for all $x \in X$;
(BE3) $1 * x=x$ for all $x \in X$;
(BE4) $x *(y * z)=y *(x * z)$ for all $x, y, z \in X$ (exchange).
We can define relation " \leq " on X by $x \leq y$ if and only if $x * y=1$.
In a $B E$-algebra X, we have the following identities:
(p1) $x *(y * x)=1$.
(p2) $x *((x * y) * y))=1$.
Example 2.2([6]). Let $X:=\{1, a, b, c, d, 0\}$ be a set with the following table.

$*$	1	a	b	c	d	0
1	1	a	b	c	d	0
a	1	1	a	c	c	d
b	1	1	1	c	c	c
c	1	a	b	1	a	b
d	1	1	a	1	1	a
0	1	1	1	1	1	1

Then $(X ; *, 1)$ is a $B E$-algebra.
Example 2.3([8]). Let $X=\{1,2, \ldots\}$ and the operation $*$ is defined as follows:

$$
x * y= \begin{cases}1 & \text { if } y \leq x \\ y & \text { otherwise }\end{cases}
$$

Then $(X ; *, 1)$ is a $B E$-algebra.
Note. For simplicity of notation we write X instead of $B E$-algebra ($X ; *, 1$).
Definition 2.4([12]). An algebra $(X ; *, 1)$ of type $(2,0)$ is called a dual $B C K-$ algebra if
(BE1) $x * x=1$ for all $x \in X$;
(BE2) $x * 1=1$ for all $x \in X$;
(dBCK1) $x * y=y * x=1 \Longrightarrow x=y$;
(dBCK2) $(x * y) *((y * z) *(x * z))=1$;
(dBCK3) $x *((x * y) * y)=1$.
Lemma 2.5([12]). Let $(X ; *, 1)$ be a dual BCK-algebra and $x, y, z \in X$. Then:
(a) $x *(y * z)=y *(x * z)$,
(b) $1 * x=x$.

Proposition 2.6([12]). Any dual BCK-algebra is a BE-algebra.

Example 2.7. Example 2.2, is a $B E$-algebra, but it is not a dual $B C K$-algebra.
Definition 2.8([2]). A non-empty subset I of X is called an ideal of X if it satisfies:
(I1) $(\forall x \in X)(\forall a \in I) x * a \in I$, i.e, $X * I \subseteq I$;
(I2) $(\forall x \in X)(\forall a, b \in I)(a *(b * x)) * x \in I$.
Example 2.9. In Example 2.2, $\{1, a, b\}$ is an ideal of X, but $\{1, a\}$ is not an ideal of X, because $(a *(a * b)) * b=(a * a) * b=1 * b=b \notin\{1, a\}$.
Proposition 2.10([2]). Let I be an ideal of X. If $a \in I$ and $a \leq x$, then $x \in I$.
Lemma 2.11([11]). A nonempty subset I of X is an ideal of X if and only if it satisfies
(1) $1 \in I$;
(2) $(\forall x, z \in X)(\forall y \in I)(x *(y * z) \in I \Rightarrow x * z \in I)$.

Definition $2.12([7])$. A subset F of X is said to be a filter when it satisfies the conditions:
(F1) $1 \in F$;
(F2) $x, x * y \in F \Rightarrow y \in F$.
Obviously any filter F of a $B E$-algebra X is a subalgebra, i.e., $1 \in F$ and if x, $y \in F$, then $x * y \in F$.

Example 2.13. In Example 2.2, $F_{1}=\{1, a, b\}$ is a filter of X, but $F_{2}=\{1, a\}$ is not a filter of X, since $a * b=a \in F_{2}$ and $a \in F_{2}$ but, $b \notin F_{2}$.
Definition 2.14([6]). A $B E$-algebra X is said to be self distributive if $x *(y * z)=$ $(x * y) *(x * z)$, for all $x, y, z \in X$.
Example 2.15([6]). Let $X:=\{1, a, b, c, d\}$ be a set with the following table.

$*$	1	a	b	c	d
1	1	a	b	c	d
a	1	1	b	c	d
b	1	a	1	c	c
c	1	1	b	1	b
d	1	1	1	1	1

It is easy to see that X is a $B E$-algebra satisfying self distributive.
Note that the $B E$-algebra in Example 2.2, is not self distributive, since $d *(a *$ $0)=d * d=1$ while $(d * a) *(d * 0)=1 * a=a$.

Proposition 2.16([10]). Let X be a self distributive $B E$-algebra. Then for all $x, y, z \in X$ the following statements hold:
(1) if $x \leq y$, then $z * x \leq z * y$;
(2) $y * z \leq(x * y) *(x * z)$.

Definition 2.17([2]). A $B E$-algebra X is said to be transitive if for any $x, y, z \in$ X,

$$
y * z \leq(x * y) *(x * z)
$$

Proposition 2.18([7]). Let X be a transitive BE-algebra. Then for all $x, y, z \in X$ the following statements hold:
(1) $y \leq z$ implies $x * y \leq x * z$;
(2) $y \leq z$ implies $z * x \leq y * x$;
(3) $1 \leq x$ implies $x=1$.

Example 2.19([2]). Let $X:=\{1, a, b, c\}$ be a set with the following table.

$*$	1	a	b	c
1	1	a	b	c
a	1	1	a	a
b	1	1	1	a
c	1	1	a	1

Then X is a transitive $B E$-algebra.
Corollary 2.20([2]). If X is a self distributive $B E$-algebra, then it is transitive.
Note. The converse of Corollary 2.20, need not be true in general. In Example 2.19, X is a transitive $B E$-algebra, but $a *(a * b)=a * a=1$, while $(a * a) *(a * b)=1 * a=a$, showing that X is not self distributive.

Definition 2.21([9]). A mapping $f: X \rightarrow Y$ of $B E$-algebras is called a $B E-$ homomorphism if $f(x * y)=f(x) * f(y)$, for all $x, y \in X$.

Definition $2.22([10])$. Let I be a proper ideal of $B E$-algebra X. Then I said to be obstinate if, for any $x, y \in X, x, y \notin I$ implies $x * y \in I$ and $y * x \in I$.
Example 2.23. In Example 2.2, $I=\{1, a, b\}$ is an obstinate ideal.
Theorem 2.24([10]). Let I be an obstinate ideal of a self distributive BE-algebra X. Then $(X / I ; *, I)$ is also a BE-algebra, which is called to be the quotient algebra via I.

Definition 2.25([12]). Let X be a $B E$-algebra. We say that X is commutative if satisfies $(x * y) * y=(y * x) * x$ for all $x, y \in X$.

Example 2.26. In Example 2.15, X is not a commutative $B E$-algebra because,

$$
(c * a) * a=1 * a=a \neq 1=c * c=(a * c) * c .
$$

Example 2.27([12]). Let $N_{0}=N \cup\{0\}$ and let $*$ be the binary operation of N_{0} defined by

$$
x * y= \begin{cases}1 & \text { if } y \leq x \\ y-x & \text { if } x<y\end{cases}
$$

then $\left(N_{0} ; *, 0\right)$ is a commutative $B E$-algebra.
Example 2.28. In Example 2.3, X is not commutative because, $(4 * 5) * 5=5 * 5=$ $1 \neq 4=1 * 4=(5 * 4) * 4$.

Example 2.29. In Example 2.19, X is not a $B H / B G / B F / B C K / B C I / B$-algebra because $a * 1=1 \neq a$ and is not a d-algebra because $1 * a=a \neq 1$, but it is a commutative $B E$ algebra.

Proposition 2.30([12]). If X is a commutative $B E$-algebra, then for all $x, y \in X$, if $x * y=1$ and $y * x=1$, then $x=y$.

Theorem 2.31([12]). If X is a commutative $B E$-algebra, then X is a dual $B C K-$ algebra.

Corollary 2.32([12]). X is a commutative BE-algebra if and only if it is a commutative dual BCK-algebra.

3. Some results on commutative $B E$-algebras

From definition of commutativity we have the following proposition.
Proposition 3.1. X is a commutative dual BCK-algebra if and only if $(x * y) * y \leq$ $(y * x) * x$ for any $x, y \in X$.

Proposition 3.2. Suppose that X is a dual BCK-algebra. Then the following are equivalent, for $x, y \in X$,
(1) X is commutative;
(2) $x \leq y$ implies $y=(y * x) * x$;
(3) $(y * x) * x=(((y * x) * x) * y) * y$.

Proof. (1) $\Rightarrow(2)$. If $x \leq y$, then $x * y=1$ and so (1) implies $y=1 * y=(x * y) * y=$ $(y * x) * x$.
(2) $\Rightarrow(3)$. Since $y \leq(y * x) * x$, by (2), we have $(y * x) * x=(((y * x) * x) * y) * y$.
$(3) \Rightarrow(1)$. By (3), the following identity holds:

$$
(((y * x) * x) * y) * y=(y * x) * x .
$$

Also, since $x \leq(y * x) * x$, then

$$
((y * x) * x) * y \leq x * y
$$

Hence $(x * y) * y \leq(((y * x) * x) * y) * y=(y * x) * x$ and X is commutative by Proposition 3.1.

Theorem 3.3. An algebra X is a commutative $B E$-algebra if and only if the following identities hold: for $x, y, z \in X$.
(1) $1 * x=x$;
(2) $x * 1=1$;
(3) $(z * x) *(y * x)=(x * z) *(y * z)$;
(4) $x *(y * z)=y *(x * z)$.

Proof. To prove the sufficiency, it suffices to show (BE1) and commutativity. substituting z and y by 1 in (3) and using (2) and (1), we have

$$
\begin{gathered}
(1 * x) *(1 * x)=(x * 1) *(1 * 1) \\
x *(1 * x)=1 * 1=1 \\
x * x=1
\end{gathered}
$$

Hence ($B E 1$) holds. Substituting y by 1 in (3) and using (2) we have

$$
\begin{gathered}
(z * x) *(1 * x)=(x * z) *(1 * z) \\
(z * x) * x=(x * z) * z
\end{gathered}
$$

Then X is commutative.
Necessity. It suffices to prove (3). By (BE4) and commutativity $(z * x) *(y * x)=$ $y *((z * x) * x)=y *((x * z) * z)=(x * z) *(y * z)$.
Then (3) holds.
Theorem 3.4. An algebra X is a commutative $B E$-algebra if and only if the following identities hold: for $x, y, z \in X$
(1) $(y * 1) * x=x$;
(2) $(y * x) *(z * x)=(x * y) *(z * y)$;
(3) $x *(y * z)=y *(x * z)$.

Proof. Necessity. It suffices to prove (2). By (BE4) and hypothesis we have

$$
(y * x) *(z * x)=z *((y * x) * x)=z *((x * y) * y)=(x * y) *(z * y)
$$

Sufficiency. By (1) we have $1 * x=((1 * 1) * 1) * x=x(B E 3)$.
From (1), (2) and $(B E 3)$ we conclude that $1=1 * 1=((1 * x) * 1) *(1 * 1)=$ $(1 *(1 * x)) *(1 *(1 * x))=(1 * x) *(1 * x)=x * x(B E 1)$.
By ($B E 1$) and (1) we have $1=(x * 1) *(x * 1)=x * 1$, hence $(B E 2)$ holds. It suffices to prove commutativity. From (1), (2), (3), we have
$(y * x) * x=(y * x) *((y * 1) * x)=(x * y) *((y * 1) * y)=(x * y) * y$. Then X is commutative.

Proposition 3.5. Let X be a transitive $B E$-algebra. If the least upper bound $x \vee y$ of x and y exists, then for all $z \in X$, the greatest lower bound $(x * z) \wedge(y * z)$ of $x * z$ and $y * z$ exists and $(x \vee y) * z=(x * z) \wedge(y * z)$.
Proof. If the least upper bound $x \vee y$ of x and y exists, by Proposition 2.16, $(x \vee y) * z \leq x * z$. Similarly, $(x \vee y) * z \leq y * z$. Hence $(x \vee y) * z$ is a lower bound
of $(x * z)$ and $(y * z)$. Also, assume that u is any lower bound of $(x * z)$ and $(y * z)$. Then $u \leq x * z$ and $u \leq y * z$. By (BE4) we have $x \leq u * z$ and $y \leq u * z$ and so $x \vee y \leq u * z$. Using $(B E 4) u \leq(x \vee y) * z$. Hence $(x \vee y) * z$ is the greatest lower bound of $(x * z)$ and $(y * z)$. Therefore the greatest lower bound $(x * z)$ and $(y * z)$ exists and $(x * z) \wedge(y * z)=(x \vee y) * z$.

Theorem 3.6. A dual BCK-algebra X is commutative if and only if $(X ; \leq)$ is an upper semilattice with $x \vee y=(y * x) * x$, for any $x, y \in X$.
Proof. Since $y \leq(y * x) * x$ and $x \leq(y * x) * x$, we have $(y * x) * x$ is an upper bound of x and y for any $x, y \in X$. Let z be any upper bound of x and y. Since $x \leq z$, by Proposition 3.2, $z=(z * x) * x$. Also, since $y \leq z$, we obtain $(y * x) * x \leq(z * x) * x$. Hence $(y * x) * x \leq z$ and $(y * x) * x$ must be least upper bound of x and y.

Conversely, since X is an upper semilattice, we have $x \vee y=y \vee x$, then $(y * x) * x=$ $(x * y) * y$. Hence X is commutative.

Proposition 3.7. Let X be a transitive commutative $B E$-algebra. If there is a lower bound a of x and y, then the greatest lower bound $x \wedge y$ of x and y exists and $x \wedge y=((x * a) \vee(y * a)) * a$.
Proof. Since $(X ; \leq)$ is an upper semilattice, then $(y * a) \vee(x * a)$ exist and by Proposition 3.5, we have $((y * a) * a) \wedge((x * a) * a)=((x * a) \vee(y * a)) * a$. Since X is commutative, we have $(x \vee a) \wedge(y \vee a)=((x * a) \vee(y * a)) * a$. Hence $x \wedge y=((x * a) \vee(y * a)) * a$.

Proposition 3.8. Suppose that X is a commutative dual BCK-algebra. Then for any $a, x, y \in X$ the following hold: (1) $x * y=y$ if and only if $x \vee y=1$;
(2) $(x \vee y) * x=x \vee(y * x)=y * x$;
(3) $x * y=y$ implies $y * x=x$;
(4) $a \leq y$ implies $(y * a) *(x * a)=x * y$;
(5) $a \leq x$ implies $(x * a) \vee(y * a)=(y * x) *(y * a)$;
(6) $y \leq z$ implies $x * z=x *(y \vee z)$.

Proof. (1) If $x * y=y$, by Proposition 3.2, we have $x \vee y=y \vee x=(x * y) * y=y * y=1$. Conversely, if $x \vee y=1$, then $x * y=((x * y) * y) * y=(x \vee y) * y=1 * y=y$.
(2) By Proposition 3.2, we have $((y * x) * x) * x=y * x$, it follows

$$
\begin{aligned}
& y * x=(y \vee x) * x=(x \vee y) * x \\
& y * x=(y * x) \vee x=x \vee(y * x)
\end{aligned}
$$

Hence $(x \vee y) * x=x \vee(y * x)=y * x$.
(3) If $x * y=y$, then $x \vee y=1$ by (1). So, (2) gives $y * x=(x \vee y) * x=1 * x=x$.
(4) If $a \leq y$, then $(y * a) *(x * a)=x *((y * a) * a)=x *(y \vee a)=x * y$.
(5) If $a \leq x$, then (4) implies $(x * a) \vee(y * a)=((x * a) *(y * a)) *(y * a)=(y * x) *(y * a)$.
(6) Since $y * z=1$ and $y \vee z=(y * z) * z$ it follows that $x *(y \vee z)=x *((y * z) * z)=$ $(y * z) *(x * z)=1 *(x * z)=(x * z)$.
Theorem 3.9. Let $(X ; \leq)$ be an upper semilattice with the greatest element 1 . Then
$(X ; \leq)$ has its associated commutative BE-algebra $(X ; *, 1)$ if and only if satisfies the following conditions: for any $x, y, z, \in X$,
(1) If $x \leq y$, then there exists one and only one complement y_{x}^{\prime} of y relative to x in the sense that $x \leq y_{x}^{\prime}$ and $\left(y_{x}^{\prime}\right)_{x}^{\prime}=y$;
(2) $\left((x \vee y)_{x}^{\prime} \vee z\right)_{(x \vee y)_{x}^{\prime}}^{\prime}=\left((x \vee z)_{x}^{\prime} \vee y\right)_{(x \vee z)_{x}^{\prime}}^{\prime}$;
(3) $1_{x}^{\prime}=x$.

Proof. (1) Assume that the associated commutative $B E$-algebra $(X ; *, 1)$ of $(X ; \leq)$ exists, then $x \vee y=(y * x) * x$, for any $x, y \in X$. If $x \leq y$, we define $y_{x}^{\prime}=y * x$, then $x \leq y_{x}^{\prime}$ and

$$
\left(y_{x}^{\prime}\right)_{x}^{\prime}=(y * x) * x=y
$$

Let z be any complement of y relative to x. Then $x \leq z$ and $z_{x}^{\prime}=y$. Since $x \leq z$, we have $\left(z_{x}^{\prime}\right)_{x}^{\prime}=z$, then $z=\left(z_{x}^{\prime}\right)_{x}^{\prime}=y_{x}^{\prime}$. So the relative complement y_{x}^{\prime} is unique. Hence (1) is true.

Next, by Proposition 3.8, we have $(x \vee y)_{x}^{\prime}=(x \vee y) * x=y * x$ and so

$$
\left((x \vee y)_{x}^{\prime} \vee z\right)_{(x \vee y)_{x}^{\prime}}^{\prime}=((y * x) \vee z)_{y * x}^{\prime}=z *(y * x)
$$

and

$$
\left((x \vee z)_{x}^{\prime} \vee y\right)_{(x \vee z)_{x}^{\prime}}^{\prime}=((z * x) \vee y) *(z * x)=y *(z * x)
$$

Therefore the ($B E 4$) implies that (2) holds.
(3) $1_{x}^{\prime}=1 * x=x$.

Conversely, because $x \leq x \vee y$ for any $x, y \in X$, by (1), we can define a binary operation $*$ on X by

$$
y * x=(x \vee y)_{x}^{\prime}
$$

No, by (3), we obtain

$$
(y * 1) * x=\left((1 \vee y)_{1}^{\prime} \vee x\right)_{x}^{\prime}=\left(1_{1}^{\prime} \vee x\right)_{x}^{\prime}=(1 \vee x)_{x}^{\prime}=1_{x}^{\prime}=x
$$

Next, by definition of relative complements, we have $x \leq(x \vee y)_{x}^{\prime}$ then

$$
(y * x) * x=\left((x \vee y)_{x}^{\prime} \vee x\right)_{x}^{\prime}=\left((x \vee y)_{x}^{\prime}\right)_{x}^{\prime}=x \vee y
$$

Likewise, $(x * y) * y=y \vee x$. Thus commutativity of \vee gives

$$
(y * x) * x=(x * y) * y(a) .
$$

Note that $x *(y * z)=((y * z) \vee x)_{y * z}^{\prime}=\left((y \vee z)_{z}^{\prime} \vee x\right)_{(y \vee z)_{z}^{\prime}}^{\prime}$ and $y *(x * z)=$ $((x * z) \vee y)_{x * z}^{\prime}=\left((z \vee x)_{z}^{\prime} \vee y\right)_{(y \vee z)_{z}^{\prime}}^{\prime}$. It follows from (2) that

$$
x *(y * z)=y *(x * z)(b)
$$

Now, left $*$ multiplying both sides of above equality (a) by z, the following holds:

$$
\begin{gathered}
z *((y * x) * x)=z *((x * y) * y) \\
z *((y * x) * x)=(y * x) *(z * x)=(x * y) *(z * y)
\end{gathered}
$$

By (b) we conclude that

$$
(y * x) *(z * x)=(x * y) *(z * y)
$$

By Theorem 3.4, X is a commutative $B E$-algebra.
Finally, since $(y * x) * x=x \vee y$ we have $(X ; *, 1)$ is the associated commutative $B E$-algebra of $(X ; \leq)$.

By a nearlattice we mean a join-semilattice (S, \vee) such that for every $a \in A$, the principal order filter $[a)=\{x \in A: x \geq a\}$ is a lattice with respect to the order by $\vee[3]$.
Proposition 3.10. Let X be a commutative BE-algebra. Then
(1) for each $a \in X$, the mapping $f_{a}: x \rightarrow x * a$ is an antitone involution on the section $[a, 1]$.
(2) (A, \leq) is a nearlattice with section antitone involution, where

$$
x \vee y=(x * y) * y
$$

and for every $a \in X$, the antitone involution f_{a} on $[a, 1]$ is given by $f_{a}(x)=x * a$. Proof. (1) Since X is a commutative $B E$-algebra and $a \leq x$, then

$$
f_{a}\left(f_{a}(x)\right)=(x * a) * a=x
$$

If $x \leq y$, then $y * a \leq x * a$ and so $f_{a}(y) \leq f_{a}(x)$.
(2) Let X be a commutative $B E$-algebra. Then we have

1. $x * 1=1$ and $1 * x=x$;
2. $(x * y) * y=(y * x) * x$;
3. Since $x \leq(x * y) * y,((x * y) * y) * z \leq x * z$. Hence $(((x * y) * y) * z) *(x * z)=1$.

By Theorem 6.4.4, $[3],(A, \leq)$ is a nearlattice with section antitone involution, where $x \vee y=(x * y) * y$, and for every $a \in X$, the antitone involution f_{a} on $[a, 1]$ is given by $f_{a}(x)=x * a$.

Theorem 3.11. Let I be an obstinate ideal of a commutative $B E$-algebra X. Then the quotient algebra $(X / I ; *, I)$ is a commutative $B E$-algebra.
Proof. Suppose that $C_{x}, C_{y} \in X / I$. Then
$\left(C_{x} * C_{y}\right) * C_{y}=C_{x * y} * C_{y}=C_{(x * y) * y}=C_{(y * x) * x}=C_{y * x} * C_{x}=\left(C_{y} * C_{x}\right) * C_{x}$.
This shows that $(X / I ; *, I)$ is commutative.
4. Commutative ideals in $B E$-algebras

Definition 4.1. A subset I of X is called a commutative ideal of X if
(1) $1 \in I$;
(2) $x *(y * z) \in I$ and $x \in I$ implies $((z * y) * y) * z \in I$,
for all $x, y, z \in X$.
Example 4.2. In Example 2.2, $I=\{1, a, b\}$ is a commutative ideal.
Example 4.3. In Example 2.19, $I=\{1, c\}$ is not an obstinate ideal but it is a commutative ideal.

Proposition 4.4. If I is a commutative ideal of X, then it is a filter of X.
Proof. Let $x, y \in X$. If $x * y \in I$ and $x \in I$, since $x *(1 * y) \in I$, we have $((y * 1) * 1) * y \in I$, that is,$y \in I$. Hence I is a filter of X.

Proposition 4.5. An ideal I of a $B E$-algebra X is commutative if and only if $x * y \in I$ implies $((y * x) * x) * y \in I$, for any $x, y \in X$.
Proof. Necessity. For any $x, y \in X$, if $x * y \in I$, then by $(B E 3) 1 *(x * y)=x * y \in I$ and $1 \in I$. Since I is commutative, it follows that $((y * x) * x) * y \in I$.

Sufficiency. Obviously, $1 \in I$. For any $x, y, z \in X$, if $x *(y * z) \in I$ and $x \in I$, since I is an ideal of X, we have $y * z \in I$, then our hypothesis implies $((z * y) * y) * z \in I$ therefore I is a commutative ideal of X.

Proposition 4.6. An ideal I of X is commutative if and only if $x * y \in I$ implies $((((y * x) * 1) * 1) *((y * x) * x) * y) \in I$ for any $x, y \in X$.

Proposition 4.7. If $\left\{I_{\lambda}: \lambda \in \Lambda\right\}$ is a family of commutative ideals of X, then so is $\cap_{\lambda \in \Lambda} I_{\lambda}$.
Proof. Clearly $1 \in \cap_{\lambda \in \Lambda} I_{\lambda}$. Let $x * y \in \cap_{\lambda \in \Lambda} I_{\lambda}$. Then $x * y \in I_{\lambda}$, for all $\lambda \in \Lambda$. By Proposition 4.5, we have $((y * x) * x) * y \in I_{\lambda}$, for all $\lambda \in \Lambda$ and so $((y * x) * x) * y \in$ $\cap_{\lambda \in \Lambda} I_{\lambda}$. This completes the proof.

Note. In Example 2.15, $I_{1}=\{1, a, b\}$ and $I_{2}=\{1, a, c\}$ are commutative ideals of X, but $I=I_{1} \cup I_{2}=\{1, a, b . c\}$ is not a commutative ideal, because $c *(a * d) \in I$ and $c \in I$ but $((d * a) * a) * d=(1 * a) * d=a * d=d \notin I$.
Theorem 4.8. Let $f: X \rightarrow Y$ be a homomorphism of $B E$-algebras. If J is a commutative ideal of Y, then $f^{-1}(J)$ is a commutative ideal of X.
Proof. Clearly $1 \in f^{-1}(J)$. Let $x, y \in X$ be such that $x * y \in f^{-1}(J)$.Then $f(x) * f(y)=f(x * y) \in J$. Since J is a commutative ideal of Y, then we have $((f(y) * f(x)) * f(x)) * f(y) \in J$ by Proposition 4.5, it follows that $((f(y) * f(x)) * f(x)) * f(y)=f((y * x) * x) * f(y)=f(((y * x) * x) * y) \in J$, so that $((y * x) * x) * y \in f^{-1}(J)$. This shows that $f^{-1}(J)$ is a commutative ideal of X. \square

Theorem 4.9. (Extension property) Let I and J be ideals of a transitive BEalgebras X, where $I \subseteq J$. If I is a commutative ideal, then J is a commutative ideal.

Proof. Assume that $x * y \in J$ and $u=x * y$. Then $x *(u * y) \in I$. Since I is commutative, by Proposition 4.5, $(((u * y) * x) * x) *(u * y) \in I$. Not that $I \subseteq J$, we have $(((u * y) * x) * x) *(u * y) \in J$. Therefore $u *(((u * y) * x) * x) * y) \in J$. Since $u \in J$, we have $(((u * y) * x) * x) * y) \in J$. Also, since $y \leq u * y$ and X is transitive, then $(((u * y) * x) * x) * y \leq((y * x) * x) * y$. Hence $((y * x) * x) * y \in J$. Therefore J is a commutative ideal of X.

Corollary 4.10. Trivial ideal $\{1\}$ is commutative if and only if all ideals of X are commutative.

Theorem 4.11. A dual $B C K$-algebra X is commutative if and only if $\{1\}$ is a commutative ideal.
Proof. Necessity. If $x * y \in\{1\}$, then $x * y=1$. Since X is commutative, then $y=(y * x) * x$, thus $((y * x) * x) * y=1 \in\{1\}$. Hence $\{1\}$ is a commutative ideal. Sufficiency, if $x * y=1$, then $x * y \in\{1\}$. Since $\{1\}$ is a commutative, by Proposition 4.5, $((y * x) * x) * y \in\{1\}$, that is $((y * x) * x) * y=1$. On the other hand $y *((y * x) * x)=1$, thus we get that $y=(y * x) * x$. Hence X is commutative.

Therefore we have the following relation between commutative ideal and commutative $B E$-algebra.

Theorem 4.12. Let X be a dual BCK-algebra. Then the following statement are equivalent:
(1) X is a commutative $B E$-algebra;
(2) $\{1\}$ is a commutative ideal of X;
(3) every ideal of X is a commutative ideal.

Theorem 4.13. An obstinate ideal A of a dual BCK-algebra X is commutative if and only if the quotient algebra $(X / A ; *, A)$ is commutative.
Proof. Assume that A is commutative. If $A_{x} * A_{y}=A_{1}$, then $A_{x * y}=A_{1}$, and so $x * y \in A$. Hence the commutativity of A implies $((y * x) * x) * y \in A$. Therefore $A_{((y * x) * x) * y}=\left(\left(A_{y} * A_{x}\right) * A_{x}\right) * A_{y}=A_{1}$, proving the ideal A_{1} of X / A is commutative. Therefore X / A is a commutative $B E$-algebra by Theorem 4.12.
Conversely, assume that X / A is a commutative $B E$-algebra, then A_{1} is a commutative ideal of X / A by Theorem 4.12. If $x * y \in A$, we have $A_{x} * A_{y}=A_{1}$, then commutativity of A_{1} implies $\left(\left(A_{y} * A_{x}\right) * A_{x}\right) * A_{y}=A_{1}$. So, $((y * x) * x) * y \in A$. Hence A is a commutative ideal of X.

5. Conclusion

In this paper, we discuss on concept of commutative $B E$-algebras and conclude a dual $B C K$-algebra X is commutative if and only if ($X ; \leq$) is an upper semilattice. Also we conclude quotient algebra of a commutative $B E$-algebra X via an obstinate ideal of X is commutative. We prove that an obstinate ideal I of dual $B C K$-algebra X is commutative if and only if the quotient algebra $(X / I ; *, I)$ is
commutative. Also, notion of commutative ideals in $B E$-algebras are introduced.

Acknowledgements The authors are highly grateful to referees for their valuable comments and suggestions which were helpful in improving this paper.

References

[1] S. S. Ahn and K. S. So, On generalized upper sets in BE-Algebras, Bull. Korean Math. Soc., 46(2)(2009), 281-287.
[2] S. S. Ahn and K. S. So, On ideals and upper sets in BE-algebras, Sci. Math. Jpn., 68(2)(2008), 279-285.
[3] I. Chajda, R. Halas And J. Kuhr, Semilattice Structures, Heldermann Verlag, Germany, 2007.
[4] Y. Huang, BCI-algebra, Science Press, Beijing, China, 2006.
[5] Y. Imai and K. Iseki, On axiom systems of propositional Calculi, XIV Proc. Jpn. Academy, 42(1966), 19-22.
[6] H. S. Kim and Y. H. Kim, On BE-Algebras, Sci. Math. Japon, Online e-2006, 12991302.
[7] B. L. Meng, On Filters in BE-algebras, Sci. Math. Japon, Online, e-2010, 105-111.
[8] A. Rezaei and A. Borumand Saeid, On fuzzy subalgebras of BE-algebras, Afrika Matematika, 22(2)(2011), 115-127.
[9] A. Rezaei, Congruencec relations on BE-algebras, $3^{\text {th }}$ Math. Sci. Con. of PNU, Mashhad, Iran, (2010), 57-64.
[10] A. Rezaei and A. Borumand Saeid, Some results on BE algebras, Analele Universitatii Oradea Fasc. Matematica, Tom XIX (2012), 33-44.
[11] S. Z. Song, Y. B. Jun and K. J. Lee, Fuzzy Ideals in BE-algebras, Bull. Malays. Math. Sci. Soc., 33(2010), 147-153.
[12] A. Walendziak, On commutative BE-algebras, Sci. Math. Japon, Online, e-2008, 585588.

[^0]: * Corresponding Author.

 Received July 18, 2011; accepted May 3, 2012.
 2010 Mathematics Subject Classification: 06F35, 03G25.
 Key words and phrases: $B E$-algebra, obstinate ideal, self distributive, commutative ideal, semilattice, nearlattice.

