KYUNGPOOK Math. J. 52(2012), 473-482 http://dx.doi.org/10.5666/KMJ.2012.52.4.473

Lacunary *I*-Convergent Sequences

BINOD CHANDRA TRIPATHY

Mathematical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati-781 035, Assam, India e-mail: tripathybc@yahoo.com; tripathybc@rediffmail.com

BIPAN HAZARIKA*

Department of Mathematics, Rajiv Gandhi University, Itanagar-791 112, Arunachal Pradesh, India e-mail: bh_rgu@yahoo.co.in; bipanhazarika_rgu@rediffmail.com

BISWESHWAR CHOUDHARY Department of Mathematics, University of Botswana, Private Bag 0022, Gaborone, Botswana e-mail: choudha2000@yahoo.com

ABSTRACT. In this article we introduce the concepts of lacunary I- convergent sequences. We investigate its different properties like solid, symmetric, convergence free etc.

1. Introduction

Throughout this article w, c, $c_0 \ell_{\infty}$ denote the spaces of all, convergent, null and bounded sequences respectively.

The notion of *I*-convergence was studied at initial stage by Kostyrko, Salat and Wilczynski [6]. Later on it was studied by Demirci [1], Salat, Tripathy and Ziman ([8],[9]), Tripathy and Hazarika ([14], [15], [16], [17]), Tripathy and Mahanta [19], Tripathy and Sarma [21] and many others.

A lacunary sequence is an increasing integer sequence $\theta = (k_r)$ such that $k_0 = 0$ and $h_r = k_r - k_{r-1} \to \infty$, as $r \to \infty$. The intervals determined by θ will be defined by $J_r = (k_{r-1}, k_r]$ and the ratio $\frac{k_r}{k_{r-1}}$ will be defined by ϕ_r .

Freedman, Sember and Raphael [3] defined the space N_{θ} in the following way:

Key words and phrases: Ideal, I-convergence, lacunary sequence, solid, symmetric, convergence free.

^{*} Corresponding Author.

Received February 8, 2011; accepted May 14, 2011.

²⁰¹⁰ Mathematics Subject Classification: $40A05,\,40A35,\,46D05,\,46A45.$

For any lacunary sequence $\theta = (k_r)$,

$$N_{\theta} = \left\{ (x_k) : \lim_{r \to \infty} h_r^{-1} \sum_{k \in I_r} |x_k - L| = 0, \text{ for some } L \right\}.$$

The space N_{θ} is a BK space with the norm

$$||(x_k)||_{\theta} = \sup_r h_r^{-1} \sum_{k \in I_r} |x_k|.$$

 N_{θ}^{0} denotes the subset of those sequences in N_{θ} for which L = 0 and we have $(N_{\theta}^{0}, ||.||_{\theta})$ is also a *BK*-space.

The notion of Lacunary convergence has been investigated by Colak [2], Fridy and Orhan ([4], [5]), Tripathy and Baruah [12], Tripathy and Et [13], Tripathy and Mahanta [18] and many others in the recent past.

2. Definition and notations

Definition 2.1. Let X be a non-empty set. Then a family of sets $I \subseteq 2^X$ (power sets of X) is said to be an *ideal* if I is additive i.e. $A, B \in I \Rightarrow A \cup B \in I$ and hereditary i.e. $A \in I, B \subseteq A \Rightarrow B \in I$.

Definition 2.2. A non-empty family of sets $\Im \subseteq 2^X$ is called a *filter* on X if and only if $\phi \notin \Im$, for each $A, B \in \Im \Rightarrow A \cap B \in \Im$ and for each $A \in \Im$ and $B \supseteq A \Rightarrow B \in \Im$.

Definition 2.3. An ideal $I \subseteq 2^X$ is called *non-trivial* if $I \neq 2^X$.

Definition 2.4. A non-trivial ideal $I \subseteq 2^X$ is called *admissible* if and only if $I \supset \{\{x\} : x \in X\}$.

Definition 2.5. A non-trivial ideal I is a *maximal* if there cannot exists any non-trivial ideal $J \neq I$ containing I as a subset.

For each ideal I there is a filter $\Im(I)$ corresponding to I i.e. $\Im(I) = \{K \subseteq N : K^c \in I\}$, where $K^c = N - K$.

Definition 2.6. A sequence (x_k) of complex numbers is said to be *I*-convergent to the number *L* if for every $\varepsilon > 0$, $\{k \in N : |x_k - L| \ge \varepsilon\} \in I$. We write $I - \lim x_k = L$.

Definition 2.7. A sequence (x_k) of complex terms is said to be *I*-null for which L = 0, we write $I - \lim x_k = 0$.

Definition 2.8. A sequence (x_k) of complex numbers is said to be *I*-Cauchy if for every $\varepsilon > 0$ there exists a number $m = m(\varepsilon)$ such that $\{k \in N : |x_k - x_m| \ge \varepsilon\} \in I$.

Definition 2.9. A sequence (x_k) of complex numbers is said to be *I*-bounded if there exists M > 0 such that $\{k \in N : |x_k| > M\} \in I$.

The usual convergence is a particular case of *I*-convergence. In this case $I = I_f$ (the ideal of all finite subsets of N).

Definition 2.10. A subset A of N is said to have asymptotic density or density $\delta(A)$ if $\delta(A) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \chi_A(k)$ exists, where χ_A is the characteristic function of E.

Definition 2.11 A complex sequence (x_k) is said to be *statistically convergent* to L if for every $\varepsilon > 0$, $\delta(\{k \in N : |x_k - L| \ge \varepsilon\}) = 0$. We write *stat* $-\lim x_k = L$.

The statistical convergence is a particular case of *I*-convergence. In this case $I = I_{\delta}$ (the ideal of all subsets of *N* of zero asymptotic density).

The notion of statistical convergence was investigated from sequence space point of view and linked with summability theory by Rath and Tripathy [7], Tripathy ([10], [11]), Tripathya and Baruah [12], Tripathy and Sarma [20], Tripathy and Sen ([22], [23]) and many others.

Definition 2.12. Let $A \subset N$ and $d_n(A) = \frac{1}{s_n} \sum_{k=1}^n \frac{\chi_A(k)}{k}$ for $n \in N$ where $s_n = \sum_{k=1}^n \frac{1}{k}$. If $\lim_{n \to \infty} d_n(A)$ exists, then it is called as the *logarithmic density* of A. $I_d = \{A \subset N : d(A) = 0\}$ is an ideal of N.

Definition 2.13. Let $T = (t_{nk})$ be a regular non-negative matrix. For $A \subset N$, define $d_T^{(n)}(A) = \sum_{k=1}^{\infty} t_{nk}\chi_A(k)$, for all $n \in N$. If $\lim_{n \to \infty} d_T^{(n)}(A) = d_T(A)$ exists, then $d_T(A)$ is called as T - density of A. Clearly $I_{d_T} = \{E \subset N : d_T(A) = 0\}$ is an ideal of N.

Note 1: I_{δ} and I_d are particular cases of I_{d_T} .

(i) Asymptotic density, for

$$t_{nk} = \begin{cases} \frac{1}{n} \text{ if } n \le k;\\ 0, \text{ otherwise} \end{cases}$$

(ii) Logarithmic density, for

$$t_{nk} = \begin{cases} \frac{k^{-1}}{s_n} & \text{if } n \le k;\\ 0, & \text{otherwise} \end{cases}$$

Definition 2.14. Let $A \subset N$ be defined as $A(t+1, t+s) = card\{n \in A : t+1 \le n \le t+s\}$ for $t \ge 0$ and $s \ge 1$. Put $\beta_s = \lim_{t \to \infty} \inf A(t+1, t+s)$, $\beta^s = \lim_{t \to \infty} \sup A(t+1, t+s)$. If both $\underline{u}(A) = \lim_{s \to \infty} \frac{\beta_s}{s}$ and $\overline{u}(A) = \lim_{s \to \infty} \frac{\beta^s}{s}$ exist and if $\underline{u}(A) = \overline{u}(A)(=u(A))$, then u(A) is called the *uniform density* of the subset of A. Clearly $I_u = \{A \subset N : u(A) = 0\}$ is a non-trivial ideal and I_u -convergence is said to be *uniform statistical*

convergence.

Definition 2.15. A sequence space E is said to be *solid* (or *normal*) if $(\alpha_k x_k) \in E$, whenever $(x_k) \in E$ and for all sequence (α_k) of scalars with $|\alpha_k| \leq 1$, for all $k \in N$.

Definition 2.16. A sequence space E is said to be *symmetric* if $(x_k) \in E$ implies $(x_{\pi(k)}) \in E$, where π is a permutation of N.

Definition 2.17. A sequence space E is said to be sequence algebra if $(x_k) \star (y_k) = (x_k y_k) \in E$ whenever $(x_k), (y_k) \in E$.

Definition 2.18. A sequence space E is said to be *convergence free* if $(y_k) \in E$ whenever $(x_k) \in E$ and $x_k = 0$ implies $y_k = 0$.

Definition 2.19. Let $K = \{k_1 < k_2 < ...\} \subseteq N$ and E be a sequence space. A K-step space of E is a sequence space $\lambda_K^E = \{(x_{k_n}) \in w : (k_n) \in E\}$.

A canonical preimage of a sequence $\{(x_{k_n})\}\in \lambda_K^E$ is a sequence $\{y_n\}\in w$ defined by

$$y_n = \begin{cases} x_n, \text{ if } n \in K;\\ 0, \text{ otherwise} \end{cases}$$

Definition 2.20. A canonical preimage of a step space λ_K^E is a set of canonical preimages of all elements in λ_K^E , i.e. y is in canonical preimage of λ_K^E if and only if y is canonical preimage of some $x \in \lambda_K^E$.

Definition 2.21. A sequence space E is said to be *monotone* if it contains the canonical preimages of its step spaces.

Definition 2.22. Let $\theta = (k_r)$ be lacunary sequence. Then a sequence (x_k) is said to be *lacunary I-convergent* if for every $\varepsilon > 0$ such that

$$\left\{ r \in N : h_r^{-1} \sum_{k \in I_r} |x_k - L| \ge \varepsilon \right\} \in I.$$

We write $I_{\theta} - \lim x_k = L.$

Definition 2.23. Let $\theta = (k_r)$ be lacunary sequence. Then a sequence (x_k) is said to be *lacunary I-null* if for every $\varepsilon > 0$ such that

$$\left\{ r \in N : h_r^{-1} \sum_{k \in I_r} |x_k| \ge \varepsilon \right\} \in I.$$

We write $I_{\theta} - \lim x_k = 0.$

Definition 2.24. Let $\theta = (k_r)$ be lacunary sequence. Then a sequence (x_k) is said to be *lacunary I-Cauchy* if there exists a Subsequence $(x_{k'}(r))$ of (x_k) such that $k'(r) \in J_r$ for each $r \in N$, $\lim_{r \to \infty} x_{k'}(r) = L$ and for every $\varepsilon > 0$

$$\left\{ r \in N : h_r^{-1} \sum_{k \in J_r} |x_k - x_{k'(r)}| \ge \varepsilon \right\} \in I.$$

Definition 2.25. A lacunary sequence $\theta' = (k'(r))$ is said to be a *lacunary refinement* of the lacunary sequence $\theta = (k_r)$ if $(k_r) \subset (k'(r))$.

Throughout the article ℓ_{∞}^{I} , c^{I} , c^{I}_{θ} , c^{I}_{θ} and $(c^{I}_{0})_{\theta}$ represents *I*-bounded, *I*-convergent, *I*-null, lacunary *I*-convergent and lacunary *I*-null sequence spaces respectively.

The following result is well known.

Lemma 2.1. Every solid space is monotone.

3. Main results

Theorem 3.1. A sequence (x_k) is I_{θ} -convergent if and only if it is an I_{θ} -Cauchy sequence.

Proof. Let $(x_k) \in c^I_{\theta}$ be a sequence. Then there exists $L \in C$ such that $I_{\theta} - \lim x_k = L$.

Write $H_{(i)} = \left\{ i \in N : |x_k - L| < \frac{1}{i} \right\}$, for each $i \in N$.

Hence for each $i \in N$, $H_{(i)} \supseteq H_{(i+1)}$ and $\left\{ r \in N : \frac{|H_{(r)} \cap J_r|}{h_r} \ge \frac{1}{r} \right\} \in I$.

We choose k_1 such that $r \ge k_1$, implies $\left\{ r \in N : \frac{|H_{(i)} \cap J_r|}{h_r} < 1 \right\} \notin I$.

Next we choose $k_2 > k_1$ such that $r \ge k_2$ implies

$$\left\{r\in N: \tfrac{|H_{(2)}\cap J_r|}{h_r}<1\right\}\notin I.$$

Proceeding in this way inductively we can choose $k_{p+1} > k_p$ such that $r > k_{p+1}$ implies $J_r \cap H(p+1) \neq \emptyset$. Further for all r satisfying $k_p \leq r < k_{p+1}$, choose $k'(r) \in J_r \cap H_{(p)}$ such that

$$|x_{k_r'} - L| < \frac{1}{p}.$$

This implies $\lim_{r \to \infty} x_{k'_r} = L.$

Therefore, for every $\varepsilon > 0$, we have

$$\left\{r \in N : h_r^{-1} \sum_{k, \ k'(r) \in J_r} |x_k - x_{k'(r)}| \ge \varepsilon\right\} \subseteq \left\{r \in N : h_r^{-1} \sum_{k \in J_r} |x_k - L| \ge \frac{\varepsilon}{2}\right\}$$

B. C. Tripathy, B. Hazarika and B. Choudhary

$$\cup \left\{ r \in N : h_r^{-1} \sum_{k'_r \in J_r} |x_{k'_r} - L| \ge \frac{\varepsilon}{2} \right\}.$$

i.e.
$$\left\{ r \in N : h_r^{-1} \sum_{k, \ k'(r) \in J_r} |x_k - x_{k'_r}| \ge \varepsilon \right\} \in I.$$

Then (x_k) is a I_{θ} -Cauchy sequence.

Conversely suppose (x_k) is a I_{θ} -Cauchy sequence. Then for every $\varepsilon > 0$, we have

$$\left\{ r \in N : h_r^{-1} \sum_{k \in J_r} |x_k - L| \ge \varepsilon \right\} \subseteq \left\{ r \in N : h_r^{-1} \sum_{k, k'(r) \in J_r} |x_k - x_{k'(r)}| \ge \frac{\varepsilon}{2} \right\}$$
$$\cup \left\{ r \in N : h_r^{-1} \sum_{k'(r) \in J_r} |x_{k'(r)} - L| \ge \frac{\varepsilon}{2} \right\}.$$

It follows that (x_k) is a I_{θ} -convergent sequence.

Theorem 3.2. If θ' is a lacunary refinement of a lacunary sequence θ and $(x_k) \in c^I_{\theta'}$, then $(x_k) \in c^I_{\theta}$.

Proof. Suppose that for each J_r of θ contains the points $(k'_{r,t})_{t=1}^{\eta(r)}$ of θ' such that

$$k_{r-1} < k'_{r,\ 1} < k'_{r,\ 2} < \dots < k'_{r,\ \eta(r)} = k_r$$
, where $J'_{r,\ t} = (k'_{r,\ t-1}, k'_{r,\ t}]$.

Since $k_r \subseteq (k'(r))$, so $r, \eta(r) \ge 1$.

Let $(J_j^*)_{j=1}^{\infty}$ be the sequence of intervals $(J'_{r,t})$ ordered by increasing right end points. Since $(x_k) \in c^I_{\theta'}$, then for each $\varepsilon > 0$,

$$\left\{ j \in N : (h_j^*)^{-1} \sum_{J_j^* \subset J_r} |x_k - L| \ge \varepsilon \right\} \in I$$

Also since $h_r = k_r - k_{r-1}$, so $h'_{r, t} = k'_{r, t} - k'_{r, t-1}$. For each $\varepsilon > 0$, we have

$$\left\{ r \in N : h_r^{-1} \sum_{k \in J_r} |x_k - L| \ge \varepsilon \right\}$$
$$\subseteq \left\{ r \in N : h_r^{-1} \sum_{k \in J_r} \left\{ j \in N : (h_j^*)^{-1} \sum_{J_j^* \subset J_r \atop k \in J_j^*} |x_k - L| \ge \varepsilon \right\} \right\}.$$
Therefore $\left\{ r \in N : h_r^{-1} \sum_{k \in J_r} |x_k - L| \ge \varepsilon \right\} \in I.$ Hence $(x_k) \in c_{\theta}^I.$

Note 3.1. If θ_1 and θ_2 are lacunary sequences then the union and intersection of θ_1 and θ_2 need not be a lacunary sequence. For example consider $\theta_1 = (3^r - 1)$ and $\theta_2 = (3^r)$.

Theorem 3.3. Let ψ be a set of lacunary sequences

(a) If ψ is closed under arbitrary union, then $c^{I}_{\mu} = \bigcap_{\theta \in \psi} c^{I}_{\theta}$, where $\mu = \bigcup_{\theta \in \psi} \theta$;

(b) If ψ is closed under arbitrary intersection, then $c_{\nu}^{I} = \bigcup_{\theta \in \psi} c_{\theta}^{I}$, where $\nu = \bigcap_{\theta \in \psi} \theta$; (c) If ψ is closed under union and intersection, then $c_{\mu}^{I} \subseteq c_{\theta}^{I} \subseteq c_{\nu}^{I}$.

Proof. (a) By hypothesis we have $\mu \in \psi$ which is a refinement of each $\theta \in \psi$. Then

From theorem 3.2, we have if $(x_k) \in c^I_{\mu}$ implies that $(x_k) \in c^I_{\theta}$.

Thus for each $\theta \in \psi$, we get $c_{\mu}^{I} \subseteq c_{\theta}^{I}$. The reverse inclusion is obvious. Hence $c_{\mu}^{I} = \bigcap_{\theta \in \psi} c_{\theta}^{I}$.

(b) By part (a) and theorem 3.2, we have $c_{\nu}^{I} = \bigcup_{\theta \in \psi} c_{\theta}^{I}$.

(c) By part (a) and (b) we get $c^I_{\mu} \subseteq c^I_{\theta} \subseteq c^I_{\nu}$.

Result 3.1. Let $\theta = (k_r)$ be a lacunary sequence. Then the spaces c_{θ}^I and $(c_0^I)_{\theta}$ are solid and monotone.

Proof. Let (α_k) be a sequence of scalars with $|\alpha_k| \leq 1$, for all $k \in N$. Then we have the space $(c_0^I)_{\theta}$ is solid by the following relation

$$\left\{r \in N : h_r^{-1} \sum_{k \in J_r} |\alpha_k x_k| \ge \varepsilon\right\} \subseteq \left\{r \in N : h_r^{-1} \sum_{k \in J_r} |x_k| \ge \varepsilon\right\}.$$

The space $(c_0^I)_{\theta}$ is monotone by Lemma 2.1. The other part of the result follows in a similar way.

Result 3.2. Let $\theta = (k_r)$ be lacunary sequence. Then the spaces c_{θ}^I and $(c_0^I)_{\theta}$ are not symmetric in general.

Proof of the result follows from the following example.

Example 3.1. For $I = I_c$. Let $T = \{t : t = i^2 \text{ or } j^3, i, j \in N\}$, then $\sum_{t \in T} t^{-1} < \infty$. Let $\theta = (3^r)$, and let (x_k) defined as follows:

 $x_k = 2$, for $k = j^2; j \in N$. $x_k = k$, otherwise. Then $(x_k) \in c_{\theta}^I$. Let (y_k) be a rearrangement of (x_k) , defined by

 $\begin{aligned} (y_k) &= (x_1, x_2, x_4, x_3, x_9, x_5, x_{16}, x_6, \ldots). \\ \text{Then } (y_k) \notin c_\theta^I. \\ \text{Hence } c_\theta^I \text{ is not symmetric.} \end{aligned}$

Similarly the other result follows.

Result 3.3. Let θ be a lacunary sequence. Then the spaces c_{θ}^{I} and $(c_{0}^{I})_{\theta}$ are not convergence free in general.

Proof of the result follows from the following example.

Example 3.2. Let $\theta = (3^r)$ and let (x_k) and (y_k) be two sequences defined by $x_k = \frac{1}{k}$, for all $k \in N$ and $y_k = k^2$, for all $k \in N$. Then (x_k) , (y_k) belongs to c_{θ}^I , but $x_k = 0$ does not imply $y_k = 0$, for all $k \in N$. Hence c_{θ}^I is not convergence free. The result gets in same way.

Result 3.4. Let θ be a lacunary sequence. Then the spaces c_{θ}^{I} and $(c_{0}^{I})_{\theta}$ are not sequence algebra in general.

Proof of the result follows from the following example.

Example 3.3. For $I = I_d$. Let $\theta = (3^r)$ and let (x_k) and (y_k) be two sequences as

$$x_k = \begin{cases} 1 + \frac{1}{k^2}, \text{ if } k \text{ is even};\\ 1, \text{ otherwise} \end{cases}$$

and

$$y_k = \begin{cases} \frac{1}{k^2}, & \text{if } k \text{ is odd;} \\ 0, & \text{otherwise} \end{cases}$$

Then $(x_k) (y_k)$ belongs to c_{θ}^I , but $(x_k).(y_k)$ does not belongs to c_{θ}^I . Hence c_{θ}^I is not a sequence algebra. The other result gets in same way.

Conclusions. In this article we have investigated the notion of lacunary convergence from *I*-convergence of sequences point of view. Still there are a lot to be investigated on sequence spaces applying the notion of *I*-convergence. The workers will apply the techniques used in this article for further investigations on *I*-convergence.

References

- R. Colak, Lacunary strong convergence of difference sequences with respect to a modulus function, Filomat, 17(2003), 9-14.
- [2] K. Demirci, On lacunary statistical limit points, Demonstrato Mathematica, 35(1)(2002), 93-101.

480

- [3] A. R. Freedman, J. J. Sember, M. Raphael, Some Cesaro-type summability spaces, Proc. Lond. Math. Soc., 37(1978), 508-520.
- [4] J. A. Fridy, C. Orhan, Lacunary statistical summability, Jour Math. Anal. Appl. 173(2)(1993), 497-504.
- [5] J. A. Fridy, C. Orhan, Lacunary statistical convergence, Pacific Journal of Math., 160(1)(1993), 43-51.
- [6] P. Kostyrko, T. Salat, W. Wilczynski, *I-convergence*, Real Analysis Exchange, 26(2)(2000-2001), 669-686.
- [7] D. Rath, B. C. Tripathy, Matrix maps on sequence spaces associated with sets of integers, Indian Jour. Pure Appl. Math., bf 27(2)(1996), 197-206.
- [8] T. Salat, B. C. Tripathy, M. Ziman, On some properties of I-convergence, Tatra Mt. Math. Publ, 28(2004), 279-286.
- [9] T. Salat, B. C. Tripathy, M. Ziman, On I-convergence field, Italian Jour. Pure Applied Math, 17(2005), 45-54.
- [10] B. C. Tripathy, Matrix transformation between some classes of sequences, J. Math. Anal. Appl., 206(1997), 448-450.
- [11] B. C. Tripathy, On generalized difference paranormed statistically convergent sequences, Indian J. Pure Appl. Math., 35(5)(2004), 655-663.
- [12] B. C. Tripathy, A. Baruah, Lacunary statistically convergent and lacunary strongly convergent generalized difference sequences of fuzzy real numbers, Kyungpook Math. J., 50(2010), 565-574.
- [13] B. C. Tripathy, M. Et, On generalized difference lacunary statistical convergence, Studia Univ. Babes-Bolyai Mathematica, 50(1)(2005), 119-130.
- [14] B. C. Tripathy, B. Hazarika, *I-convergent sequence spaces associated with multiplier sequence spaces*, Math. Ineq. Appl., **11(3)**(2008), 543-548.
- [15] B. C. Tripathy, B. Hazarika, Paranormed I-convergent sequences spaces, Math. Slovaca, 59(4)(2009), 485-494.
- [16] B. C. Tripathy, B. Hazarika, Some I-convergent sequences spaces defined by Orlicz function, Acta Mathematica Applicatae Sinica, 27(1)(2011), 149-154.
- [17] B. C. Tripathy, B. Hazarika, *I-monotonic and I-convergent sequences*, Kyungpook Math. J., **51(2)**(2011), 233-239.
- [18] B. C. Tripathy, S. Mahanta, On a class of generalized lacunary difference sequence spaces defined by Orlicz function, Acta Math. Appl. Sin.(Eng. Ser), 20(2)(2004), 231-238.
- [19] B. C. Tripathy, S. Mahanta, On I-acceleration convergence of sequences, Jour. Franklin Inst., 347(2010), 591-598.
- [20] B. C. Tripathy, B. Sarma, Statistically convergent difference double sequence spaces, Acta Math. Sin., 24(5)(2008), 737-742.
- [21] B. C. Tripathy, B. Sarma, On I-Convergent Double Sequences of Fuzzy Real Numbers, Kyungpook Math. J., 52(2)(2012), 189-200.
- [22] B. C. Tripathy, M. Sen, On generalized statistically convergent sequences, Indian Jour. Pure Appl. Math., 32(11)(2001), 1689-1694.

[23] B. C. Tripathy, M. Sen, Characterization of some matrix classes involving paranormed sequence spaces, Tamkang Jour. Math., 37(2)(2006), 155-162.