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Abstract. In this paper, we use a computational algorithm for the inversion of the one

and two-dimensional L2-transform based on the Bromwich’s integral and the Fourier series.

The new inversion formula can evaluate the inverse of the L2-transform with considerable

accuracy over a wide range of values of the independent variable and can be devised for the

functions which are not Laplace transformable and have damping motion in small interval

near origin.

1. Introduction

The Laplace-type integral transform called the L2-transform was introduced by
Yurekli and Sadek [16] and is denoted as follows

(1.1) L2{f(t); s} =

∫ ∞

0

te−s2t2f(t)dt,

where f(t) is piecewise continuous and of the exponential order α (i.e. | f(t) |≤
Meαt

2

for real number α and positive constant M) and s is complex parameter.
Authors [1-4] generalized definition (1-1) for the two-dimensional L2-transform of
the function f(t1, t2) by the following relation

(1.2) L
(s1,s2)
2 {f(t1, t2)} =

∫ ∞

0

∫ ∞

0

t1t2e
−s21t

2
1−s22t

2
2f(t1, t2)dt1dt2,
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where in the above integral, s1, s2 are complex parameters determining a point
(s1, s2) in the plane of two complex dimensions and f(t1, t2) is a real valued function

of two real variables and exponential orders α1, α2 (i.e. | f(t1, t2) |≤ Meα1t
2
1+α2t

2
2

for real numbers α1, α2 and positive constant M).
Also, the inversion integral formulas for the one and two-dimensional L2-transform
in terms of the Bromwich’s integral can be presented [1] as follows

(1.3) L−1
2 {F (s)} = f(t) =

1

2πi

∫ c+i∞

c−i∞
2F (

√
s)est

2

ds,

L−1
2 {F (s1, s2)} = f(t1, t2)

= (
1

2πi
)2
∫ c1+i∞

c1+i∞

∫ c2+i∞

c2+i∞
22F (

√
s1,

√
s2)e

s1t
2
1+s2t

2
2ds1ds2,

(1.4)

where F (s) is analytic for ℜs2 > α and c can be chosen to satisfy the condition
c > α, and in the two dimensional case F (s1, s2) is analytic for ℜs21 > α1 , ℜs22 > α2

and c1, c2 can be taken to hold the conditions c1 > α1, c2 > α2.
Some contributions and applications of the one the L2-transform are shown by

Yurekli [17] and authors [1-4]. Yurekli showed the Parseval-Goldstein theorems in-
volving the L2-transform and the Laplace transform may be used to yield identities
involving several well-known integral transforms and infinite integrals of elemen-
tary and special functions. Moreover, authors [1-4] presented roles of the one and
two-dimensional L2-transform in linear partial differential equations and system of
differential and integral equations and utilized this transform as a useful and sup-
plementary tool for analyzing the systems which the Laplace transform can not
easily or never solve them.
Our aim in this article is based on the inversion of the functions which the Laplace
transform of them does not exist and can be expressed as functions with damping
motions near the zero point. We intend to extend the inversion methods of Dubner
and Abate [8] and Crump [5] for the one-dimensional Laplace transform and Moor-
thy’s method [11] for the two-dimensional Laplace transform in terms of the Fourier
series which are noted for their accuracy with several different types of functions.
In this regard, in Sections 2 and 3, we introduce numerical inversion techniques for
the one and two-dimensional L2-transform based on the Fourier series and analyze
the errors of these computations. These inversions can be obtained at any value of
the independent variable by means of a simple series summation and are expressed
as the trapezoidal rule of quadrature for infinite-range integral.
In Section 4, the accuracy of these algorithms is shown for the functions which
are not Laplace transformable. At the end, in Section 5, applicability of the L2-
transform and its numerical inversion technique for solving fractional partial differ-
ential equations are discussed and the main conclusions are drawn.
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2. Inversion method for the one-dimensional L2-transform and error
analysis

For the one-dimensional L2-Transform and inversion integral formula in term
of the Bromwich’s integral

L2{f(t); s} =

∫ ∞

0

te−s2t2f(t)dt, L−1
2 {F (s)} = f(t) =

1

2πi

∫ c+i∞

c−i∞
2F (

√
s)est

2

ds,

we can consider the following cosine transform-like and sine transform-like pairs for
the real-valued function f(t) and exponential order α

f(t) =
4ect

2

π

∫ ∞

0

ℜ(F (
√
s)) cos(wt2)dw, 2ℜ(F (

√
s))

=

∫ ∞

0

te−ct2f(t) cos(wt2)dt,

(2.1)

f(t) =
−4ect

2

π

∫ ∞

0

ℑ(F (
√
s)) sin(wt2)dw, 2ℑ(F (

√
s))

=

∫ ∞

0

te−ct2f(t) sin(wt2)dt,

(2.2)

or, alternatively

(2.3) f(t) =
2ect

2

π

∫ ∞

0

[ℜ(F (
√
s)) cos(wt2)−ℑ(F (

√
s)) sin(wt2)]dw,

where s = c+ iw and c can be any real number greater than α.
We want to obtain the procedure of computing algorithm for the function f(t) in
relation (2-3) in terms of the Fourier series. In this sense, we write the Fourier

series for a function g0(t) that is periodic with period 2T and equals to f(t)e−ct2

on the interval (0, 2T ) and for n = 0, 1, 2, · · · ,−∞ < t < ∞, we define gn(t) by

gn(t) = f(t)e−ct2 , 2nT ≤ t < 2(n+ 1)T .
In order to converge the Fourier series to g0(t) at points of discontinuity, we impose
the condition f(t) = 1

2 (f(t
+) + f(t−)) for all t at which f(t) is discontinuous.

Therefore, the Fourier series representation of each gn(t) is given by

(2.4) gn(t) =
1

2
An,0 +

∞∑
k=1

[An,k cos(
kπt2

T
) +Bn,k sin(

kπt2

T
)],

where the Fourier coefficients are

An,k =
1

2T

∫ 2(n+1)T

2nT

te−ct2f(t) cos(
kπt2

T
)dt,

Bn,k =
1

2T

∫ 2(n+1)T

2nT

te−ct2f(t) sin(
kπt2

T
)dt.
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By summing (2-4) with respect to n and using (2-1) and (2-2), we find that

(2.5)

∞∑
n=0

gn(t)

=
1

T

(
1

2
F (c) +

∞∑
k=1

[2ℜ(F (

√
c+

kπi

T
)) cos(

kπt2

T
)− 2ℑ(F (

√
c+

kπi

T
)) sin(

kπt2)

T
)]

)
.

Since on the interval (0, 2T ), g0(t) = f(t)e−ct2 , therefore from (2-5) we obtain the

approximation f̂(t) to the inverse transform in the form

f̂(t) =
ect

2

T

(
1

2
F (c)

+

∞∑
k=1

[2ℜ(F (

√
c+

kπi

T
)) cos(

kπt2

T
)− 2ℑ(F (

√
c+

kπi

T
)) sin(

kπt2)

T
)]

)
,

(2.6)

where f(t) = f̂(t)− Ed and the error Ed is given by

(2.7) Ed = ect
2

∞∑
n=1

gn(t) = ect
2

∞∑
n=1

e−c(2nT+t)2f(2nT + t).

The relation (2-6) is the desired approximation formula for f(t) and the relation
(2-7) is the error of the computation which there are two major sources of error in
the approximation besides the round-off error. One of them is the discretization
error given by Ed and the other is the truncation error Et. At first, we intend to find
a bound for Ed and then control the truncation error Et by imposing a condition
for choosing N in the series

f̂N (t) =
ect

2

T

(
1

2
F (c)

+
N∑

k=1

[2ℜ(F (

√
c+

kπi

T
)) cos(

kπt2

T
)− 2ℑ(F (

√
c+

kπi

T
)) sin(

kπt2)

T
)]

)
.

(2.8)

Since | f(t) |≤ Meαt
2

, it turns out the upper bound for the series (2-7) can be
written as

(2.9) Ed ≤ Mect
2

∞∑
n=1

e−(c−α)(2nT+t)2 .

It follows that by choosing c sufficiently larger than α for the convergent series (2-9)
we can make the E as small as desired. In applying, we expect to choose the value
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of parameter c, if the relative error Er = Ed

Meαt2
to be less than the known value ϵ.

For this manner, for 2nT ≤ t < 2(n+ 1)T we have the inequality

e−(c−α)(6T )2 ≤ Er =

∞∑
n=1

e−(c−α)(2nT+t)2 ,

which enable us to choose the parameter c by the relation

(2.10) c = α− ln(ϵ)

36T 2
.

Also, in practical purposes the numerical value of f(t) is desired over a range of
t-values, of which the largest is tmax. Therefore, parameter T can be chosen by re-
quirement 2T > tmax (we can find by experimenting when 0.5tmax ≤ T ≤ 0.8tmax,
this method gives better results) and parameter α is chosen to be a number slightly
larger than max{ℜsp | sp is a pole of F (s)}. Finally, by taking the suitable param-
eters T, α the series (2-6) is summed until it has converged to the desired number
of significant figures.
To control the truncation error Et, the epsilon algorithm proposed by Macdonald
[10] is used to accelerate the convegence of the series Sm =

∑m
n=0 an in the following

procedure

(2.11) ε
(m)
p+1 = ε

(m+1)
p−1 +

1

ε
(m+1)
p − ε

(m)
p

, ε
(m)
0 = 0, ε

(m)
1 = Sm,

where the approximate value of the series can be finally shown by S∞ =

limp→∞ ε
(m)
2p . By applying this algorithm for the sequence of series (2-8), we evalu-

ate f̂p+1(t), f̂p+ p
4
(t) and select a p for which the difference between f̂p+1, f̂p+ p

4
be

negligible.

3. Inversion method for the two-dimensional L2-transform and error
analysis

In this section, we generalize the presented method in previous section for the
two-dimensional L2-Transform. For this extension, we let s1 = c1 + iw1, s2 =
c2 + iw2. It is obvious that the relation (1-4) can be written in the form

f(t1, t2)

=
ec1t

2
1+c2t

2
2

4π2

∫ ∞

−∞

∫ ∞

−∞
4F (

√
c1 + iw1,

√
c2 + iw2)e

i(w1t
2
1+w2t

2
2)dw1dw2.

(3.1)

Also, by using the fact that f(t1, t2) is real-value, (3-1) can be reformed as

f(t1, t2) =
ec1t

2
1+c2t

2
2

π2

∫ ∞

−∞

∫ ∞

−∞
[ℜF (

√
c1 + iw1,

√
c2 + iw2) cos (w1t

2
1 + w2t

2
2)

−ℑF (
√
c1 + iw1,

√
c2 + iw2) sin (w1t

2
1 + w2t

2
2)]dw1dw2.

(3.2)
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At this point, we want to simplify (3-2) further for better form in computations. In
this regard, we set

φ(w1, w2) =ℜF (
√
c1 + iw1,

√
c2 + iw2) cos (w1t

2
1 + w2t

2
2)

−ℑF (
√
c1 + iw1,

√
c2 + iw2) sin (w1t

2
1 + w2t

2
2).

Since f(t1, t2) is real, we have F (s1, s2) = F (s1, s2) which implies ℜF (s1, s2) =
ℜF (s1, s2) = ℜF (s1, s2) and ,ℑF (s1, s2) = ℑF (s1, s2) = −ℑF (s1, s2). Therefore

ℜφ(−w1, w2) = ℜφ(w1, w2), ℑφ(w1,−w2) = −ℑφ(−w1, w2),

and (3-2) gives rise to

f(t1, t2)

=
2ec1t

2
1+c2t

2
2

π2
{
∫ ∞

0

∫ ∞

0

[ℜF (
√
c1 + iw1,

√
c2 + iw2) cos (w1t

2
1 + w2t

2
2)

−ℑF (
√
c1 + iw1,

√
c2 + iw2) sin (w1t

2
1 + w2t

2
2)]dw1dw2

+

∫ ∞

0

∫ ∞

0

[ℜF (
√
c1 + iw1,

√
c2 − iw2) cos (w1t

2
1 − w2t

2
2)

−ℑF (
√
c1 + iw1,

√
c2 − iw2) sin (w1t

2
1 − w2t

2
2)]dw1dw2}.

(3.3)

For description of the inversion method for the two-dimensional L2-transform, we
write the Fourier series for the function g00(t1, t2) that is periodic with period 2T
in t1, t2 and is presented by

(3.4) g00(t1, t2) = e−c1t
2
1−c2t

2
2f(t1, t2),

Also, we can similary define for j, k = 0, 1, · · · and −∞ < t1, t2 < ∞

(3.5) gjk(t1, t2) = e−c1t
2
1−c2t

2
2f(t1, t2), in (2jT, 2(j + 1)T )× (2kT, 2(k + 1)T ),

where it is periodic with period 2T in t1 and t2. Moreover, the Fourier series
representation for gjk(t1, t2) can be written as

gjk(t1, t2) =
1

4
ajk00 +

1

2

∞∑
m=1

(ajk0m cos(my) + bjk0m sin (my)

+
1

2

∞∑
n=1

(ajkn0 cos(nx) + cjkn0 sin(nx)

+
1

2

∞∑
n=1

∞∑
m=1

(ajknm cos(nx) cos(my) + bjknm cos(nx) sin(my)

+ cjknm sin(nx) cos(my) + djknm sin(nx) sin(my)),

(3.6)
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where x =
πt21
T , y =

πt22
T and the coefficients are given by

ajknm =
1

4T 2

∫ 2(j+1)T

2jT

∫ 2(k+1)T

2kT

uve−c1u
2−c2v

2

f(u, v) cos(
nπu2

T
) cos(

mπv2

T
)dudv

bjknm =
1

4T 2

∫ 2(j+1)T

2jT

∫ 2(k+1)T

2kT

uve−c1u
2−c2v

2

f(u, v) cos(
nπu2

T
) sin(

mπv2

T
)dudv

cjknm =
1

4T 2

∫ 2(j+1)T

2jT

∫ 2(k+1)T

2kT

uve−c1u
2−c2v

2

f(u, v) sin(
nπu2

T
) cos(

mπv2

T
)dudv

(3.7) djknm =
1

4T 2

∫ 2(j+1)T

2jT

∫ 2(k+1)T

2kT

uve−c1u
2−c2v

2

f(u, v) sin(
nπu2

T
) sin(

mπv2

T
)dudv.

Now, by substituting integrals of (3-7) in coefficients (3-6), and taking the sum of
the resulting series over j, k, we get

(3.8)
∞∑
j=0

∞∑
k=0

gjk(t1, t2)

=
1

T 2
[
F (c1, c2)

4

+
∞∑

m=1

(2ℜF (
√
c1,

√
c2 +

imπ

T
) cos(

mπt22
T

)− 2ℑF (
√
c1,

√
c2 +

imπ

T
) sin(

mπt22
T

))

+

∞∑
n=1

(2ℜF (

√
c1 +

inπ

T
,
√
c2) cos(

nπt21
T

)− 2ℑF (

√
c1 +

inπ

T
,
√
c2) sin(

nπt21
T

))

+

∞∑
n=1

∞∑
m=1

(2ℜF (

√
c1 +

inπ

T
,

√
c2 +

imπ

T
) cos(

nπt21
T

+
mπt22
T

)

+ 2ℜF (

√
c1 +

inπ

T
,

√
c2 −

imπ

T
) cos(

nπt21
T

− mπt22
T

)

− 2ℑF (

√
c1 +

inπ

T
,

√
c2 +

imπ

T
) sin(

nπt21
T

+
mπt22
T

)

− 2ℑF (

√
c1 +

inπ

T
,

√
c2 −

imπ

T
) sin(

nπt21
T

− mπt22
T

))].

It is obvious that the sum of the right-hand side of (3-8) can be an approximation
value of f(t1, t2) as
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(3.9) f̂(t1, t2)

=
ec1t

2
1+c2t

2
2

T 2
[
F (c1, c2)

4

+
∞∑

m=1

(2ℜF (
√
c1,

√
c2 +

imπ

T
) cos(

mπt22
T

)− 2ℑF (
√
c1,

√
c2 +

imπ

T
) sin(

mπt22
T

))

+
∞∑

n=1

(2ℜF (

√
c1 +

inπ

T
,
√
c2) cos(

nπt21
T

)− 2ℑF (

√
c1 +

inπ

T
,
√
c2) sin(

nπt21
T

))

+
∞∑

n=1

∞∑
m=1

(2ℜF (

√
c1 +

inπ

T
,

√
c2 +

imπ

T
) cos(

nπt21
T

+
mπt22
T

)

+2ℜF (

√
c1 +

inπ

T
,

√
c2 −

imπ

T
) cos(

nπt21
T

− mπt22
T

)

−2ℑF (

√
c1 +

inπ

T
,

√
c2 +

imπ

T
) sin(

nπt21
T

+
mπt22
T

)

−2ℑF (

√
c1 +

inπ

T
,

√
c2 −

imπ

T
) sin(

nπt21
T

− mπt22
T

))],

with the error term Ed = f̂(t1, t2)− f(t1, t2), where

(3.10) Ed = ec1t12
2+c2t

2
2{

∞∑
j=0

∞∑
k=1

gjk(t1, t2) +

∞∑
j=1

gj0(t1, t2)},

or equivalently

Ed =c1t12
2+c2t

2
2{

∞∑
j=0

∞∑
k=1

e−c1(t1+2jT )2−c2(t2+2kT )2f(t1 + 2jT, t2 + 2kT )

+

∞∑
j=1

e−c1(t1+2jT )2−c2t
2
2f(t1 + 2jT, t2)}.

(3.11)

Two major sources of error in approximation of f(t1, t2), besides round-off error
like the one-dimensional, are the discretization error and the truncation error given
by Ed, Et respectively. At first, by virtue of the exponential order of f(t1, t2) we
find a bound for Ed

Ed ≤ Mec1t12
2+c2t

2
2{

∞∑
j=0

∞∑
k=1

e−(c1−α1)(t1+2jT )2−(c2−α2)(t2+2kT )2

+
∞∑
j=1

e−(c1−α1)(t1+2jT )2−(c2−α2)t
2
2}.

(3.12)
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In (3-12) if we take the parameters c1 and c2 sufficiently larger than α1 and
α2, then the error Ed can be obtained arbitrary small. For this regard, we want to
choose the value of parameter c1, c2 which the relative error Er = Ed

Mec1t122+c2t22
to

be less than the known value ϵ. At first, by picking a value for c1 such that c1 > α1,
the parameter c2 is chosen until following inequality for (t1, t2) ∈ (2jT, 2(j+1)T )×
(2kT, 2(k + 1)T ) holds true

(3.13) e−(c1−α1)(2T )2−(c2−α2)(6T )2 + e−(c1−α1)(6T )2−(c2−α2)(2T )2 < ϵ.

Then by finding the suitable T when 0.5t∗max ≤ T ≤ 0.8t∗max (where t∗max is the
largest value of t1, t2 over a range of t-values ) we compute the series (3-9) until it
converge to the desired number of significant figures.
To control of the truncation error Et, we can use the epsilon algorithm (2-11)

to accelerate the convergence of the series and evaluate the values f̂p+1(t1, t2),

f̂p+ p
4
(t1, t2) in (3-9) until the difference between them be small.

4. Illustrative examples

The following four examples are used to test the approximation methods devel-
oped in Section 2 and Section 3 for one and two-dimensional L2-transform. These
examples are chosen for the functions which are unbounded and the Laplace trans-
form of them does not exist. The format of the examples is as follows:
In the one and two-dimensional cases the first column gives the value of the inde-
pendent variable t and second column, the exact value of f(t). The third column
shows the approximate values of f(t). The fourth column gives the relative error
for all computations (see Tables 1-4 ). Also, all evaluations are performed by the
Maple 13 software and the epsilon algorithm is used to accelerate the convergence
of the series.

Example 4.1.

L2{
cos(t)

t
; s} =

√
π

2s
e−

1
4s2

Example 4.2.

L2{t+
1

t
; s} =

π(s2 + 1
2 )

2s3

Example 4.3.

L
(s1,s2)
2 {cos(t1t2)

t1t2
} =

π

2
√
1 + 4s21s

2
2

Example 4.4.

L
(s1,s2)
2 {e

−(t1+t2)

t1t2
} =

π

4s1s2
e

1

4s21
+ 1

4s22 Erfc(
1

2s1
)Erfc(

1

2s2
)
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Table1: Numerical test for the Example 4.1, c = 2, T = 1.5, p = 34

t Exact value Approximate value Relative error
0.001 999.99950 999.99950 0.43E-06
0.01 99.99500 99.99500 0.47E-06
0.1 9.95004 9.95004 0.33E-06
0.25 3.87564 3.87564 0.12E-07
0.5 1.75516 1.75516 0.23E-07
1 0.54030 0.54030 0.58E-07
1.5 0.047158 0.047158 0.68E-07
2 -0.20807 -0.20807 0.74E-07

Table 2: Numerical test for the Example 4.2, c = 2.5, T = 2, p = 34

t Exact value Approximate value Relative error
0.001 1000.00100 1000.00076 0.23E-06
0.01 100.01000 100.00833 0.16E-04
0.1 10.10000 10.09973 0.26E-04
0.25 4.25000 4.24985 0.35E-04
0.5 2.50000 2.49985 0.60E-04
1 2.00000 1.99979 0.10E-03
1.5 2.16666 2.16623 0.19E-03
2 2.50000 2.49989 0.44E-04

Table 3: Numerical test for the Example 4.3, c1 = 1, c2 = 1.5, T = 1.5, p = 43

t1 t2 Exact value Approximate value Relative error
0.1 0.1 99.99500 99.99500 0.13E-06
0.1 0.25 39.98750 39.98750 0.44E-06
0.25 0.25 15.96876 15.96876 0.56E-07
0.25 0.5 7.93758 7.93758 0.23E-07
0.5 0.5 3.875649 3.875649 0.63E-07
1 1 0.540302 0.540302 0.43E-07
1.5 1.5 -0.27918 -0.27918 0.62E-07
2 2 -0.163410 -0.163410 0.84E-07
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Table 4: Numerical test for the Example 4.4, c1 = 3.5, c2 = 3.3, T = 2, p = 43

t1 t2 Exact value Approximate value Relative error
0.1 0.1 81.87307 81.87298 0.11E-05
0.1 0.25 28.18752 28.18742 0.34E-05
0.25 0.25 9.70449 9.70424 0.24E-04
0.25 0.5 3.77893 3.77845 0.13E-03
0.5 0.5 1.47151 1.47135 0.10E-03
1 1 0.13533 0.13524 0.65E-03
1.5 1.5 0.02212 0.02202 0.46E-02
2 2 0.00457 0.00426 0.68E-01

5. Application of the L2-transform in fractional partial differential equa-
tions

In this section for the applicability of the L2-transform and the introduced nu-
merical inversion technique, using the joint Laplace and L2-transform we solve a
fractional partial differential equation and then in special case of this equation, we
apply the proposed algorithm in Section 2 to obtain the solution numerically. This
methods can be considered as a promising technique beside the existing methods
for solving fractional partial differential equations, see [6, 7] and [9, 13, 14].

Problem 5.1. We consider the fractional disturbance equation in the Caputo

sense [12]

(5.1) C
t D

α
0+u(x, t) +

1

x

∂u(x, t)

∂x
= f(x), x, t > 0,

with Cauchy type initial and boundary conditions u(x, 0) = u(0, t) = 0.
For this equation, if we choose the function f(x) with damping motion near zero such
as functions introduced in examples (4.1) and (4.2), then the Lapalce transform is
not suitable for solving this equation. Therefore, by applying the Laplace transform
on fractional derivative in the sense of the Caputo for t

(5.2) L{Ct Dα
0+u(x, t); s} = sαũ(x, s)− sα−1u(x, 0),

and the L2-transform with respect to x [1] the transformed equation of (5-1), takes
the form

(5.3) ˆ̃u(p, s) =
F (p)

sα + 2p2
,

where F (p) is the L2-transform of the function f(x). Now, by using the complex
inversion formula for the L2-transform (1-3) for the above equation and the convo-
lution of the two functions f, g for the L2-transform [3]

f ∗ g =

∫ x

0

tg(t)f(
√
x2 − t2)dt,
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we have

ũ(x, s) =
1

2
e−sα x2

4 ∗ f(x).

Also, in regard to the inverse Laplace transform of the functions via the Wright
functions [12]

L−1{e−sα x2

4 } =
1

t
W (−α, 0;−x2

4
t−α),

the explicit solution of the Cauchy type problem (5-1) is given by

(5.4) u(x, t) =

∫ x

0

τGα(x2 − τ2, t)f(τ)dτ,

where the Green function Gα has the form

(5.5) Gα(x, t) =
1

2t
W (−α, 0;−x

4
t−α).

In special case, when we set α = 1 in (5-1) we obtain the standard Shankar equation
[15]

(5.6)
∂u(x, t)

∂t
+

1

x

∂u(x, t)

∂x
= f(x), x, t > 0,

which in this case by inverting the transformed equation

(5.7) ˆ̃u(p, s) =
F (p)

s+ 2p2
,

with respect to s , the remaining function ũ(p, t) = F (p)e−2p2t can be inverted in
term of the Heaviside function as follows

(5.8) u(x, t) = L−1
2 {F (p);x2 − 2t}H(x2 − 2t).

Now, to obtain the fundamental solution of the equation (5-5) numerically, the in-
verse of the L2-transform in (5-7) can be obtained by the proposed algorithm in
section 2 for any desired point x, t.

6. Conclusions

In this work, we showed a general numerical algorithm for inversion of the L2-
transform in terms of the Fourier series with a good accuracy. The L2-transform
and the proposed inversion algorithm enable us to solve the partial differential equa-
tions or fractional partial differential equations with boundary conditions which the
Laplace transform is not suitable for solving these equations.
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