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ON THE CONVERGENCE OF NEWTON’S METHOD

FOR SET VALUED MAPS UNDER WEAK

CONDITIONS

Ioannis K. Argyros

Abstract. We provide a convergence analysis of Newton’s method
for set valued maps under center Hölder continuity conditions on the
Fréchet derivative of the operator involved. This approach extends
the applicability of earlier works [4,5,7].

1. Introduction

Let X, Y be Banach spaces, f : X → Y be a Fréchet differentiable
operator and F : X → 2Y be a multi-valued operator with a closed graph.

In this study we are concerned with the problem of approximating a
solution x ∈ X of the generalized equation:

(1.1) y ∈ f(x) + F (x),

where y is a given parameter.
Note that: if F = 0, then (1.1) is a nonlinear equation [1];
If F is the positive orthant inRi, then (1.1) is a system of inequalities;
If F is a normal cone to a convex and closed set in X, then (1.1) may

represent variational inequalities.
For other examples and a survey on results concerning the solution of

equation (1.1) we refer the reader to [5] and the references there.
The most popular method for generating a sequence approximating a

solution of (1.1) is undoubtedly Newton’s method in the form

(1.2) y ∈ f(xn) +∇f(xn)(xn+1 − xn) + F (xn+1) (n ≥ 0),

where ∇f denotes the Fréchet-derivative of the operator f .
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A usual condition is given by the Hölder continuity assumption

∥∇f(x)−∇f(x)∥ ≤ L∥x− x∥λ(1.3)

for all x, x ∈ D ⊆ X and some λ ∈ (0, 1], L > 0.

The case when λ = 1 was studied in [5] by Dontchev, whereas the general
case was investigated by Pietrus in [7].

Here we further weaken (1.3). Indeed let x∗ be a solution of (1.1).
We assume the center-Hölder continuity assumption

∥∇f(x)−∇f(x∗)∥ ≤ L0∥x− x∗∥λ0(1.4)

for all x ∈ D and some λ0 ∈ (0, 1], L0 > 0.

Note that in general

(1.5) L0 ≤ L

and

(1.6) λ0 ≥ λ

hold in general and L
L0
, λ0

λ
can be arbitrarily large [2,3]. Clearly there

are cases when (1.4) holds but not (1.3). Therefore our results can be
used in cases not covered before.

Using the concept of Aubin continuity [4,6], we provide a convergence
analysis of method (1.2).

2. Preliminaries

In order for us to make the paper as self-contained as possible we
briefly restate some concepts already in the literature [3]–[8].

Let r > 0, x ∈ X. Then we set

(2.1) U(x, r) := {x ∈ X : ∥x− x∥ ≤ r}.

Recall that a set-valued map Γ from Y to the subsets of a Banach
space Z is said to be M -pseudo-Lipschitz around

(y0, z0) ∈ Graph Γ := {(y, z) ∈ Y × Z : z ∈ Γ(y)}

if there exist neighborhoods V of y0 and U of z0 such that
(2.2)

sup dist(z,Γ(y2)) ≤ M∥y1 − y2∥ for all y1, y2 in V , and z ∈ Γ(y1).
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Equivalently, Γ is M -pseudo-Lipschitz around (y0, z0) ∈ Graph Γ with
constants ℓ and m if for every y1, y2 ∈ U(y0,m) and for every z1 ∈
Γ(y1) ∩ U(0, ℓ) there exists z2 ∈ Γ(y2) such that

(2.3) ∥z1 − z2∥ ≤ M∥y1 − y2∥.
Let A and C be two subsets of X. We denote by e(C,A) the excess from
A to C given by

(2.4) e(C,A) = sup{dist(x,A) : x ∈ C}.
Then, we can equivalently replace (2.2) by

(2.5) e
(
Γ(y1) ∩ U,Γ(y2)

)
≤ M∥y1 − y2∥.

The above condition is usually called the Aubin continuity and the
maps satisfying this property are called Aubin continuous maps [4,6].

We will also need the Lemma [5]:

Lemma 2.1. Let (x, y) ∈ Graph(f + F ) and f be a Fréchet differen-
tiable operator in an open neighborhood D of x, whose derivative ∇f is
continuous at x.

If F has a closed graph and the map (f+F )−1 is Aubin continuous at
(y, x), then there exist positive constants r, s and M such that for every
x ∈ U(x, r) if

(2.6) Px =
[
f(x) +∇f(x)(· − x) + F (·)

]−1
,

then

e
(
Px(y

′) ∩ U(x, r), Px(y
′′)
)
≤ M∥y′ − y′′∥(2.7)

for all y′, y′′ ∈ U(x, r).

3. Convergence analysis of method (1.2)

We show the main result of the study:

Theorem 3.1. Let x∗ be a solution of (1.1) for y = 0, f a Fréchet-
differentiable operator in an open neighborhood D of x∗, and F a set-
valued map with a closed graph. We suppose that the Fréchet-derivative
∇f of f is (ε, x∗) center-continuous and satisfies condition (1.4) on D.
Further suppose that the map (f + F )−1 is Aubin continuous at (0, x∗).

Then, there exist positive constants σ, and b such that for every y ∈
U(0, b) and x0 ∈ U(x∗, σ) there exists a Newton sequence {xn} for (1.1)
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generated by (1.2), starting from x0 which converges to a solution x of
(1.1) for y.

Moreover, there exists a constant α such that

(3.1) ∥xn+1 − x∥ ≤ α∥xn − x∥ (n ≥ 0).

Proof. In view of the Aubin continuity of (f + F )−1 at (0, x∗) with
constants ℓ, m and modulus c we deduce that for all y1 and y2 ∈ U(0,m)
and for all x ∈ (f + F )−1(y1) ∩ U(x∗, ℓ) there exists x ∈ (f + F )−1(y2)
satisfying

(3.2) ∥x− x∥ ≤ c∥y1 − y2∥.

Letting δ = m, y1 = 0, y2 = y, x = x∗ and x = x in the above
assertion we obtain the existence of δ > 0 such that for every y ∈ U(0, δ)
there exists x ∈ (f + F )−1(y) ∩ U(x∗, c∥y∥).

Let us assume that σ and b satisfy:

σ ≤ r

2
,(3.3)

b ≤ min
{s

2
, δ,

r

2c

}
,(3.4)

(3.5) σ + cb ≤ min

{(
s

4L0

) 1
1+λ0

,

(
r

4ML0

) 1
1+λ0

,

(
1

2ML0

) 1
λ0

}
,

where r, s and M are given by Lemma 2.1 with x = x∗ and y = 0.

We shall show that for a suitable initial point x0, we can obtain x1

satisfying (1.2) and (3.1) with n = 0.

Let x0 ∈ U(x∗, σ), y ∈ U(0, b) and x ∈ (f + F )−1(y) ∩ U(x∗, c∥y∥).
Note that we have ∥x − x∗∥ ≤ cb ≤ r. In view of y ∈ f(x) + F (x) it
follows

(3.6) x ∈ Px0

(
y − f(x) + f(x0) +∇f(x0)(x− x0)

)
∩ U(x∗, r).
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Using (1.4), (3.4)–(3.6) we obtain in turn

∥y − f(x) + f(x0) +∇f(x0)(x− x0)∥

≤ ∥y∥+
{∫ 1

0

∥[∇f(x+ t(x0 − x))−∇f(x∗)]dt∥

+ ∥∇f(x∗)−∇f(x0)∥
}
∥x− x0∥

≤ b+ L0

[∫ 1

0

(t∥x0 − x∗∥+ (1− t)∥x− x∗∥)λ0dt

+ ∥x0 − x∗∥λ0

]
∥x− x0∥

≤ b+ L0

[
(σ + cb)λ0 + σλ0

]
∥x− x0∥

≤ b+ 2L0(σ + cb)λ0∥x− x0∥(3.7)

≤ b+ 2L0(σ + cb)1+λ0 ≤ s

2
+

s

2
= s,(3.8)

which implies that z = y − f(x) + f(x0) + ∇f(x0)(x − x0) ∈ U(0, s).
Since x0 ∈ U(x∗, σ) ⊂ U(x∗, r) and (f + F )−1 is Aubin continuous at
(0, x∗) it follows from Lemma 2.1 that

e
(
Px0(z) ∩ U(x∗, r), Px0(y)

)
(3.9)

≤ M∥ − f(x) + f(x0) +∇f(x0)(x− x0)∥.
Therefore, there exists x1 ∈ Px0(y) such that

∥x− x1∥ ≤ M∥ − f(x) + f(x0) +∇f(x0)(x− x0)∥(3.10)

≤ 2ML0(σ + cb)λ0∥x− x0∥.
In view of x ∈ U(x∗, cb) and ∥x1 − x∗∥ ≤ ∥x− x1∥+ ∥x− x∗∥, we get

in turn:

(3.11) ∥x∗ − x1∥ ≤ 2ML0(σ + cb)λ0∥x− x0∥+ cb ≤ r

2
+

r

2
= r,

which implies x1 ∈ U(x∗, r).
Assuming the existence of x1, x2, . . . , xk elements of U(x∗, r) satisfying

(1.2) and (3.1) we shall show that xk+1 does. In view of (3.4) we get

(3.12) ∥x− xj∥ ≤ 2ML0(σ + cb)1+λ0 for all 0 ≤ j ≤ k.

We shall show

(3.13) x ∈ Pxk

(
y − f(x) + f(xk) +∇f(xk)(x− xk)

)
∩ U(x∗, r).
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Using Lemma 2.1 and (3.5) we can obtain in turn

∥y − f(x) + f(xk) +∇f(xk)(x− xk)∥(3.14)

≤ 2L0(σ + cb)λ0∥x− xk∥+ b

≤ 2L0(σ + cb)λ02ML0(σ + cb)1+λ0 + b

≤ s

2
+

s

2
= s,

which implies the existence of xk+1 ∈ Pxk
(y) such that

∥x− xk+1∥ ≤ M∥ − f(x) + f(xk) +∇f(xk)(x− xk)∥(3.15)

≤ α∥x− xk∥,
where,

α = 2ML0(σ + cb)λ0 ,

which completes the induction for (3.1).
Finally we shall show {xn} (n ≥ 0) is a convergent sequence. Let

ε > 0 be such that 2Mε < 1. By the center-continuity of ∇f at x∗, and
(1.4) we have:

(3.16) ∥∇f(u)−∇f(x∗)∥ ≤ ε for all u ∈ U(x∗, r),

by restricting r ∈
(
0,
(

ε
L0

)
1
λ0

]
. Moreover we also have that for xk ∈

U(x∗, r):

∥xk+1 − xk∥ ≤ M∥f(xk)− f(xk−1)−∇f(x∗)(xk − xk−1)∥(3.17)

+ M∥(∇f(x∗)−∇f(xk−1))(xk − xk−1)∥
≤ 2Mε∥xk − xk−1∥ ≤ · · · ≤ (2Mε)k∥x1 − x0∥.

It follows by (3.17) that sequence {xk} is Cauchy in a Banach space X
and as such it converges to x.

That completes the proof of the theorem.
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