Korean J. Math. 20 (2012), No. 1, pp. 117-123

ON THE CONVERGENCE OF NEWTON'S METHOD FOR SET VALUED MAPS UNDER WEAK CONDITIONS

IOANNIS K. ARGYROS

ABSTRACT. We provide a convergence analysis of Newton's method for set valued maps under center Hölder continuity conditions on the Fréchet derivative of the operator involved. This approach extends the applicability of earlier works [4,5,7].

1. Introduction

Let X, Y be Banach spaces, $f: X \to Y$ be a Fréchet differentiable operator and $F: X \to 2^Y$ be a multi-valued operator with a closed graph.

In this study we are concerned with the problem of approximating a solution $x \in X$ of the generalized equation:

(1.1)
$$y \in f(x) + F(x),$$

where y is a given parameter.

Note that: if F = 0, then (1.1) is a nonlinear equation [1];

If F is the positive orthant in \mathbf{R}^i , then (1.1) is a system of inequalities; If F is a normal cone to a convex and closed set in X, then (1.1) may

represent variational inequalities.

For other examples and a survey on results concerning the solution of equation (1.1) we refer the reader to [5] and the references there.

The most popular method for generating a sequence approximating a solution of (1.1) is undoubtedly Newton's method in the form

(1.2)
$$y \in f(x_n) + \nabla f(x_n)(x_{n+1} - x_n) + F(x_{n+1}) \quad (n \ge 0),$$

where ∇f denotes the Fréchet-derivative of the operator f.

Received January 20, 2012. Revised February 26, 2012. Accepted March 5, 2012.

²⁰¹⁰ Mathematics Subject Classification: 65H10, 65B05, 65G99, 47H17, 49M15. Key words and phrases: Set valued maps, Newton's method, Aubin continuity, generalized equations, center-Hölder continuity.

Ioannis K. Argyros

A usual condition is given by the Hölder continuity assumption

(1.3)
$$\|\nabla f(x) - \nabla f(\overline{x})\| \le L \|x - \overline{x}\|^{\lambda}$$

for all $x, \overline{x} \in D \subseteq X$ and some $\lambda \in (0, 1], L > 0$.

The case when $\lambda = 1$ was studied in [5] by Dontchev, whereas the general case was investigated by Pietrus in [7].

Here we further weaken (1.3). Indeed let x^* be a solution of (1.1). We assume the center-Hölder continuity assumption

(1.4)
$$\|\nabla f(x) - \nabla f(x^*)\| \le L_0 \|x - x^*\|^{\lambda_0}$$

for all $x \in D$ and some $\lambda_0 \in (0, 1], \ L_0 > 0$

Note that in general

$$(1.5) L_0 \le L$$

and

(1.6)
$$\lambda_0 \ge \lambda$$

hold in general and $\frac{L}{L_0}$, $\frac{\lambda_0}{\lambda}$ can be arbitrarily large [2,3]. Clearly there are cases when (1.4) holds but not (1.3). Therefore our results can be used in cases not covered before.

Using the concept of Aubin continuity [4,6], we provide a convergence analysis of method (1.2).

2. Preliminaries

In order for us to make the paper as self-contained as possible we briefly restate some concepts already in the literature [3]-[8].

Let $r > 0, x \in X$. Then we set

(2.1)
$$U(x,r) := \{\overline{x} \in X : ||x - \overline{x}|| \le r\}$$

Recall that a set-valued map Γ from Y to the subsets of a Banach space Z is said to be M-pseudo-Lipschitz around

$$(y_0, z_0) \in \text{Graph } \Gamma := \{(y, z) \in Y \times Z \colon z \in \Gamma(y)\}$$

if there exist neighborhoods V of y_0 and U of z_0 such that (2.2)

 $\sup \operatorname{dist}(z, \Gamma(y_2)) \leq M ||y_1 - y_2||$ for all y_1, y_2 in V, and $z \in \Gamma(y_1)$.

118

Equivalently, Γ is *M*-pseudo-Lipschitz around $(y_0, z_0) \in \text{Graph } \Gamma$ with constants ℓ and *m* if for every $y_1, y_2 \in U(y_0, m)$ and for every $z_1 \in \Gamma(y_1) \cap U(0, \ell)$ there exists $z_2 \in \Gamma(y_2)$ such that

(2.3)
$$||z_1 - z_2|| \le M ||y_1 - y_2||.$$

Let A and C be two subsets of X. We denote by e(C, A) the excess from A to C given by

(2.4)
$$e(C,A) = \sup\{\operatorname{dist}(x,A) \colon x \in C\}.$$

Then, we can equivalently replace (2.2) by

(2.5)
$$e(\Gamma(y_1) \cap U, \Gamma(y_2)) \le M ||y_1 - y_2||$$

The above condition is usually called the Aubin continuity and the maps satisfying this property are called Aubin continuous maps [4,6].

We will also need the Lemma [5]:

LEMMA 2.1. Let $(\overline{x}, \overline{y}) \in \operatorname{Graph}(f + F)$ and f be a Fréchet differentiable operator in an open neighborhood D of \overline{x} , whose derivative ∇f is continuous at \overline{x} .

If F has a closed graph and the map $(f+F)^{-1}$ is Aubin continuous at $(\overline{y}, \overline{x})$, then there exist positive constants r, s and M such that for every $x \in U(\overline{x}, r)$ if

(2.6)
$$P_x = [f(x) + \nabla f(x)(\cdot - x) + F(\cdot)]^{-1},$$

then

(2.7)
$$e\left(P_x(y') \cap U(\overline{x}, r), P_x(y'')\right) \leq M \|y' - y''\|$$

for all $y', y'' \in U(\overline{x}, r).$

3. Convergence analysis of method (1.2)

We show the main result of the study:

THEOREM 3.1. Let x^* be a solution of (1.1) for y = 0, f a Fréchetdifferentiable operator in an open neighborhood D of x^* , and F a setvalued map with a closed graph. We suppose that the Fréchet-derivative ∇f of f is (ε, x^*) center-continuous and satisfies condition (1.4) on D. Further suppose that the map $(f + F)^{-1}$ is Aubin continuous at $(0, x^*)$.

Then, there exist positive constants σ , and b such that for every $y \in U(0,b)$ and $x_0 \in U(x^*,\sigma)$ there exists a Newton sequence $\{x_n\}$ for (1.1)

Ioannis K. Argyros

generated by (1.2), starting from x_0 which converges to a solution x of (1.1) for y.

Moreover, there exists a constant α such that

(3.1)
$$||x_{n+1} - x|| \le \alpha ||x_n - x|| \quad (n \ge 0).$$

Proof. In view of the Aubin continuity of $(f + F)^{-1}$ at $(0, x^*)$ with constants ℓ , m and modulus c we deduce that for all y_1 and $y_2 \in U(0, m)$ and for all $x \in (f + F)^{-1}(y_1) \cap U(x^*, \ell)$ there exists $\overline{x} \in (f + F)^{-1}(y_2)$ satisfying

(3.2)
$$||x - \overline{x}|| \le c ||y_1 - y_2||.$$

Letting $\delta = m$, $y_1 = 0$, $y_2 = y$, $x = x^*$ and $\overline{x} = x$ in the above assertion we obtain the existence of $\delta > 0$ such that for every $y \in U(0, \delta)$ there exists $x \in (f + F)^{-1}(y) \cap U(x^*, c ||y||)$.

Let us assume that σ and b satisfy:

(3.3)
$$\sigma \leq \frac{r}{2},$$

(3.4)
$$b \leq \min\left\{\frac{s}{2}, \delta, \frac{r}{2c}\right\},$$

(3.5)
$$\sigma + cb \leq \min\left\{ \left(\frac{s}{4L_0}\right)^{\frac{1}{1+\lambda_0}}, \left(\frac{r}{4ML_0}\right)^{\frac{1}{1+\lambda_0}}, \left(\frac{1}{2ML_0}\right)^{\frac{1}{\lambda_0}} \right\},$$

where r, s and M are given by Lemma 2.1 with $\overline{x} = x^*$ and $\overline{y} = 0$.

We shall show that for a suitable initial point x_0 , we can obtain x_1 satisfying (1.2) and (3.1) with n = 0.

Let $x_0 \in U(x^*, \sigma)$, $y \in U(0, b)$ and $x \in (f + F)^{-1}(y) \cap U(x^*, c ||y||)$. Note that we have $||x - x^*|| \le cb \le r$. In view of $y \in f(x) + F(x)$ it follows

(3.6)
$$x \in P_{x_0}(y - f(x) + f(x_0) + \nabla f(x_0)(x - x_0)) \cap U(x^*, r).$$

120

On the convergence of Newton's method for set valued maps

121

Using (1.4), (3.4)–(3.6) we obtain in turn

$$\begin{aligned} \|y - f(x) + f(x_0) + \nabla f(x_0)(x - x_0)\| \\ &\leq \|y\| + \left\{ \int_0^1 \| [\nabla f(x + t(x_0 - x)) - \nabla f(x^*)] dt \| \\ &+ \| \nabla f(x^*) - \nabla f(x_0) \| \right\} \|x - x_0\| \\ &\leq b + L_0 \Big[\int_0^1 (t \|x_0 - x^*\| + (1 - t) \|x - x^*\|)^{\lambda_0} dt \\ &+ \|x_0 - x^*\|^{\lambda_0} \Big] \|x - x_0\| \\ &\leq b + L_0 \Big[(\sigma + cb)^{\lambda_0} + \sigma^{\lambda_0} \Big] \|x - x_0\| \\ &\leq b + L_0 \Big[(\sigma + cb)^{\lambda_0} + \sigma^{\lambda_0} \Big] \|x - x_0\| \end{aligned}$$

(3.7)
$$\leq b + 2L_0(\sigma + cb)^{\lambda_0} ||x - x_0||$$

(3.8)
$$\leq b + 2L_0(\sigma + cb)^{1+\lambda_0} \leq \frac{s}{2} + \frac{s}{2} = s,$$

which implies that $z = y - f(x) + f(x_0) + \nabla f(x_0)(x - x_0) \in U(0, s)$. Since $x_0 \in U(x^*, \sigma) \subset U(x^*, r)$ and $(f + F)^{-1}$ is Aubin continuous at $(0, x^*)$ it follows from Lemma 2.1 that

(3.9)
$$e(P_{x_0}(z) \cap U(x^*, r), P_{x_0}(y)) \le M \| - f(x) + f(x_0) + \nabla f(x_0)(x - x_0) \|.$$

Therefore, there exists $x_1 \in P_{x_0}(y)$ such that

(3.10)
$$||x - x_1|| \leq M|| - f(x) + f(x_0) + \nabla f(x_0)(x - x_0)||$$

 $\leq 2ML_0(\sigma + cb)^{\lambda_0}||x - x_0||.$

In view of $x \in U(x^*, cb)$ and $||x_1 - x^*|| \le ||x - x_1|| + ||x - x^*||$, we get in turn:

(3.11)
$$||x^* - x_1|| \le 2ML_0(\sigma + cb)^{\lambda_0} ||x - x_0|| + cb \le \frac{r}{2} + \frac{r}{2} = r,$$

which implies $x_1 \in U(x^*, r)$.

Assuming the existence of x_1, x_2, \ldots, x_k elements of $U(x^*, r)$ satisfying (1.2) and (3.1) we shall show that x_{k+1} does. In view of (3.4) we get

(3.12)
$$||x - x_j|| \le 2ML_0(\sigma + cb)^{1+\lambda_0}$$
 for all $0 \le j \le k$.

We shall show

(3.13)
$$x \in P_{x_k} \left(y - f(x) + f(x_k) + \nabla f(x_k)(x - x_k) \right) \cap U(x^*, r).$$

Ioannis K. Argyros

Using Lemma 2.1 and (3.5) we can obtain in turn

(3.14)
$$\|y - f(x) + f(x_k) + \nabla f(x_k)(x - x_k)\|$$

$$\leq 2L_0(\sigma + cb)^{\lambda_0} \|x - x_k\| + b$$

$$\leq 2L_0(\sigma + cb)^{\lambda_0} 2ML_0(\sigma + cb)^{1+\lambda_0} + b$$

$$\leq \frac{s}{2} + \frac{s}{2} = s,$$

which implies the existence of $x_{k+1} \in P_{x_k}(y)$ such that

(3.15)
$$\|x - x_{k+1}\| \le M\| - f(x) + f(x_k) + \nabla f(x_k)(x - x_k)\| \\ \le \alpha \|x - x_k\|,$$

where,

$$\alpha = 2ML_0(\sigma + cb)^{\lambda_0},$$

which completes the induction for (3.1).

Finally we shall show $\{x_n\}$ $(n \ge 0)$ is a convergent sequence. Let $\varepsilon > 0$ be such that $2M\varepsilon < 1$. By the center-continuity of ∇f at x^* , and (1.4) we have:

(3.16)
$$\|\nabla f(u) - \nabla f(x^*)\| \le \varepsilon \text{ for all } u \in U(x^*, r),$$

by restricting $r \in \left(0, \left(\frac{\varepsilon}{L_0}\right)\frac{1}{\lambda_0}\right]$. Moreover we also have that for $x_k \in U(x^*, r)$:

(3.17)
$$\|x_{k+1} - x_k\| \le M \|f(x_k) - f(x_{k-1}) - \nabla f(x^*)(x_k - x_{k-1})\| + M \|(\nabla f(x^*) - \nabla f(x_{k-1}))(x_k - x_{k-1})\| \le 2M\varepsilon \|x_k - x_{k-1}\| \le \dots \le (2M\varepsilon)^k \|x_1 - x_0\|.$$

It follows by (3.17) that sequence $\{x_k\}$ is Cauchy in a Banach space X and as such it converges to x.

That completes the proof of the theorem.

References

- I.K. Argyros, The Newton-Kantorovich method under mild differentiability conditions and the Ptâk error estimates, Monatsh. Math. 101 (1990), 175–193.
- [2] I.K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl. 298 (2004), 374–397.
- [3] I.K. Argyros, Newton Methods, Nova Science Publ. Inc., New York, 2005.
- [4] A.L. Dontchev, Local convergence of the Newton method for generalized equations, C. R. Acad. Sci. Paris, Sér. I Math. 332 (1996), 327–331.

122

- [5] A.L. Dontchev Uniform convergence of the Newton method for Aubin continuous maps, Serdica Math. J. 22 (1996), 385–398.
- [6] A.D. Ioffe and V.M. Tikhomirov, *Theory of Extremal Problems*, North Holland, Amsterdam, 1979.
- [7] A. Pietrus, Does Newton's method for set-valued maps converge uniformly in mild differentiability context?, Rev. Colombiana Mat. 30 (2000), 49–56.
- [8] R.T. Rockafellar, Lipschitz properties of multifunctions, Nonlinear Anal. 9 (1985), 867–885.

Cameron University Department of Mathematical Sciences Lawton, OK 73505, USA *E-mail*: iargyros@cameron.edu