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ON THE CONVERGENCE OF NEWTON’S METHOD
FOR SET VALUED MAPS UNDER WEAK
CONDITIONS

Toannis K. ARGYROS

ABSTRACT. We provide a convergence analysis of Newton’s method
for set valued maps under center Hélder continuity conditions on the
Fréchet derivative of the operator involved. This approach extends
the applicability of earlier works [4,5,7].

1. Introduction

Let X, Y be Banach spaces, f: X — Y be a Fréchet differentiable
operator and F': X — 2¥ be a multi-valued operator with a closed graph.

In this study we are concerned with the problem of approximating a
solution x € X of the generalized equation:

(1.1) y € f(x) + F(x),

where y is a given parameter.

Note that: if F'= 0, then (1.1) is a nonlinear equation [1];

If F is the positive orthant in R?, then (1.1) is a system of inequalities;

If F' is a normal cone to a convex and closed set in X, then (1.1) may
represent variational inequalities.

For other examples and a survey on results concerning the solution of
equation (1.1) we refer the reader to [5] and the references there.

The most popular method for generating a sequence approximating a
solution of (1.1) is undoubtedly Newton’s method in the form

(1.2) y € f(rn) + V(@) (Tn1 — 2n) + Fzny) (n2>0),
where V f denotes the Fréchet-derivative of the operator f.
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A usual condition is given by the Holder continuity assumption

(13)  IVf(2) = Vi@ < Lllz — 7"
for all z,7 € D C X and some A € (0,1], L > 0.
The case when A = 1 was studied in [5] by Dontchev, whereas the general
case was investigated by Pietrus in [7].
Here we further weaken (1.3). Indeed let z* be a solution of (1.1).
We assume the center-Holder continuity assumption
(14)  IVf(z) = V(@) < Lollz — 2"
for all x € D and some g € (0,1], Ly > 0.

Note that in general

(1.5) Lo <L
and
(1.6) Ao > A

hold in general and LLO, % can be arbitrarily large [2,3]. Clearly there

are cases when (1.4) holds but not (1.3). Therefore our results can be
used in cases not covered before.

Using the concept of Aubin continuity [4,6], we provide a convergence
analysis of method (1.2).

2. Preliminaries

In order for us to make the paper as self-contained as possible we
briefly restate some concepts already in the literature [3]-[8].
Let r > 0, x € X. Then we set

(2.1) Ulz,r)={zeX: ||z—Z| <r}.

Recall that a set-valued map I' from Y to the subsets of a Banach
space Z is said to be M-pseudo-Lipschitz around

(Yo, 20) € Graph T':={(y,2) e Y x Z: 2 € T'(y)}

if there exist neighborhoods V' of yy and U of zy such that
(2.2)
supdist(z,T'(y2)) < M|jys — ye|| for all y1, yo in V', and z € T'(y).
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Equivalently, I' is M-pseudo-Lipschitz around (yo, 29) € Graph I" with
constants ¢ and m if for every yi,yo € U(yo,m) and for every z; €
I(y1) NU(0,¢) there exists zo € I'(y2) such that
(2.3) l21 = 2ol < Mljyr — 2.

Let A and C be two subsets of X. We denote by e(C, A) the excess from
A to C given by

(2.4) e(C, A) = sup{dist(z, A): x € C}.
Then, we can equivalently replace (2.2) by
(2.5) e(C(y1) NU,T(y2)) < My — w2l

The above condition is usually called the Aubin continuity and the
maps satisfying this property are called Aubin continuous maps [4,6].
We will also need the Lemma [5]:

LEMMA 2.1. Let (%,y) € Graph(f + F') and f be a Fréchet differen-
tiable operator in an open neighborhood D of @, whose derivative V f is
continuous at .

If F has a closed graph and the map (f + F)~' is Aubin continuous at
(7, T), then there exist positive constants r, s and M such that for every

reU(z,r) if

(2.6) P, = [f(z) + V(@) —2)+ F()] ",
then
(2.7) e(P(y)NUz,7), Po(y")) < My —y"||

for ally,y" € U(z, 7).

3. Convergence analysis of method (1.2)

We show the main result of the study:

THEOREM 3.1. Let z* be a solution of (1.1) for y =0, f a Fréchet-
differentiable operator in an open neighborhood D of x*, and F a set-
valued map with a closed graph. We suppose that the Fréchet-derivative
Vf of fis(e,x*) center-continuous and satisfies condition (1.4) on D.
Further suppose that the map (f + F)~' is Aubin continuous at (0, x*).

Then, there exist positive constants o, and b such that for every y €
U(0,b) and xy € U(x*,0) there exists a Newton sequence {x,} for (1.1)
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generated by (1.2), starting from xo which converges to a solution x of
(1.1) fory.

Moreover, there exists a constant o such that
(3.1) [#n1 — 2| < allzn — ]| (n>0).

Proof. In view of the Aubin continuity of (f + F)~! at (0,2*) with
constants ¢, m and modulus ¢ we deduce that for all y; and y, € U(0, m)
and for all z € (f + F)"'(y1) N U(x*,{) there exists T € (f + F)"(y2)
satisfying

(3.2) [l =] < cllyr — well.

Letting 6 = m, y1 = 0, yo = y, * = z* and T = x in the above
assertion we obtain the existence of ¢ > 0 such that for every y € U(0, 9)
there exists x € (f + F)~'(y) N U(x*, c||y]|).

Let us assume that o and b satisfy:

r
. < -
(3.3) o< 3
s T
. < 1 — —
(3.4) b < mln{2,5,2c},

5 < s \™% [/ r \T% 1 \%
. C min _—
gTEO= AL, "\ 4M L, "\ 2M L, ’

where r; s and M are given by Lemma 2.1 with Z = 2* and y = 0.

We shall show that for a suitable initial point xy, we can obtain x;
satisfying (1.2) and (3.1) with n = 0.

Let o € U(x*,0), y € U(0,b) and = € (f + F)"(y) nU(x*, c||y]|)-
Note that we have ||z — 2*|| < ¢b < r. In view of y € f(z) + F(z) it
follows

(3.6) @€ Poy(y— fz)+ f(zo) + Vf(zo)(2 — 20)) NU(2", 7).
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Using (1.4), (3.4)—(3.6) we obtain in turn
ly = f(z) + f(xo) + V f (o) (2 — o)

< Il + { [ 095t +tGa =) = V5
VA - Vf<xo>u}ux ol
< b+ Ly {/0 (t||wo — || + (1 = t)||lx — m*H)’\Odt

Tl — x*rw] & — o]

< b+ Lo[(o + cb)™ + o] ||z — o
(3.7) < b4 2Lo(0 + cb)™ ||z — ||
(3.8) < b+ 2Lg(o + cb)' T < % + % = s,
which implies that z = y — f(z) + f(zo) + Vf(z0)(x — zo) € U(0,s).

Since zy € U(z*,0) C U(xz*,r) and (f + F)~! is Aubin continuous at
(0,2*) it follows from Lemma 2.1 that
(3.9) e(Puy(z) NU(z%,7), Py (y))

< M| = f(x) + f(z0) + Vf (o) (x — o).
Therefore, there exists x; € P,,(y) such that
(3.10) Mz —a| < M| = f(z) + f(z0) + V(o) (x — o)l

< 2MLo(o + cb) ||z — 0.

In view of z € U(z*, cb) and ||z — z*|| < ||z — x1]| + ||z — z*||, we get
In turn:
(311)  [a" = a1l| < 2MLo(o + bl —zof| + cb < S+ 5 =,

\)

which implies z; € U(z*, 7).
Assuming the existence of x1, o, .. ., x) elements of U (x*, r) satisfying
(1.2) and (3.1) we shall show that z;,; does. In view of (3.4) we get

(3.12) |2 — 2] <2MLo(o + cb)*™ for all 0 < j < k.
We shall show
(3.13) x € Py (y— f(z)+ f(zp) + Vfzp) (@ —xp) NU ", 7).
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Using Lemma 2.1 and (3.5) we can obtain in turn
(3.14) ly = f (@) + fx) + V() (@ =z

< 2Lg(0 + cb)||z — || + b

< 2Lg(0 + cb)2M Lo(o + cb) ™0 + b

<S5
=272
which implies the existence of x4 € Py, (y) such that
(3.15) o =zl < M| = f2) + f o) + V() (@ — 2|
< afl — ],

where,
o = 2M Lo(o + cb)™,
which completes the induction for (3.1).
Finally we shall show {z,} (n > 0) is a convergent sequence. Let
e > 0 be such that 2Me < 1. By the center-continuity of Vf at x*, and
(1.4) we have:

(3.16) IVf(u) —Vf(z")] <e foralueU(z"r),

by restricting r € (0, (Lio)/%o] Moreover we also have that for x; €
U(x*,r):
B17) ok — aill < M| f(ze) = flae-1) = V(@) (@ — 2]
+ M|[(Vf(z") = Vf(@r-1))(zk — zp-1)||
< 2Mel|ay — xp_a]| < - -0 < (2Me)F ||z — o

It follows by (3.17) that sequence {x)} is Cauchy in a Banach space X
and as such it converges to x.
That completes the proof of the theorem. O]
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