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HARMONIC MAPPINGS WITH ANALYTIC
FUNCTIONS

SookK HEul JuN

ABSTRACT. In this paper, we study harmonic, orientation-preserving,
univalent mappings defined on A = {z : |z] > 1} that have real co-
efficients or starlike analytic functions and obtain some coefficients
bounds.

1. Introduction

A continuous function f = wu + v defined in a domain D € C is
harmonic in D if v and v are real harmonic in D. We consider complex-
valued, harmonic, orientation-preserving, univalent mappings f defined
on A = {z : |z| > 1}, that are normalized at infinity by f(co) = oc.
Such functions admit the representation

f(z) = h(2) + g(2) + Alog|z],

where

h(z) = az + Z arz™® and g(z) = Bz + Z bz "
k=0 k=1

are analytic in A and 0 < |8| < |a|. In addition, a = fz/f. is analytic
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and satisfies |a(z)| < 1. Also one can easily show that |A|/2 < |a|+|8| by
using the bound |s;| < 1 — |sg|? for analytic function a = so+s127 1 +- - -
in A that are bounded by one. By applying an affine post-mapping to
f we may normalize f so that « = 1,8 = 0, and ag = 0. Therefore let X
be the set of all harmonic, orientation-preserving, univalent mappings

(1.1) f(z) =h(z)+g(z) + Alog |z

of A, where
h(z)=z+ Zakz’k and g(z) = Zbkz’k
k=1 k=1

are analytic in A and A € C. Hengartner and Schober[2] used the rep-
resentation (1.1) to obtain coefficient bounds and distortion theorems.
Some coefficients bounds for f € 3 also obtained by Jun[3].

In this article, we continue to investigate harmonic, orientation-preserving,
univalent mappings f in X to get coefficients bounds for f with some
restrictions. In next section we consider univalent harmonic mappings
f € X with real A which have real coefficients and obtain estimates

by, — an| < nll+b —ay| for n>2.

Also f € ¥ with starlike analytic functions h + g will be considered in
section 3.

2. Harmonic mappings with real coefficients
THEOREM 2.1. If f € ¥ with real A has real coefficients, then
by, — an| < nll+by —ay| for n>2.

Proof. For z =re®, r > 1,

(2.1) Im{f(re?)} = ch sin k6
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where ¢; = 7+ (by — ay)r~! and ¢ = (b, — ag)r~" for k > 2. Multiply
sinnf to (2.1) and integrate from 0 to m, then we have

%/ﬂ Im{f(re”)} sinn df

0

2 [ [ 2 [T
= _/ (Z ¢y, Sin k;@) sinnf df = —/ ¢, sin®né do
T Jo T Jo

k=1
= Cp.

From the relationship
|sin(n + 1)0] = | sinnf cos @ + cosnfsin | < |sinnf| + | sinb)|,
we can show that |sinnf| < n|sinf| by the mathematical induction.

Thus we have

(2.2) len| = ’%/W—,m{f(rew)}sian do

0

< 3/ Im{ f(re®)}|| sinnf] d6
T Jo

IA

2?" /Oﬂ [Im{ f(re®)}|sin 0 db.

The univalence of f implies that 0 # f(re) — f(re=?) since re? # re=%
for 0 < 6 < 7. From 0 # f(re®) — f(re ) = 2ilm{f(re?)}, we have
Im{f(re®)} # 0. Since Im{f(re?)} is a continuous function of 6, it
must be of same sign in the interval 0 < 6 < 7. Thus

;/OW [Im{ f(re”®)}| sind db

2 [T »

= —/ Im{f(re?)}sin d@‘
T Jo

= |a1]

by —ay

:T+
r

Substituting this into (2.2), we have

by —ay

lenl < mijr+

where ¢; = r+ blfT‘“ and ¢, = 22=% for n > 2. Letting » — 1, we obtain

rn

b, — an| < n|l+ by —aq] for n > 2. O
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3. Starlike analytic functions

DEFINITION 3.1. A function H(z) is starlike if each radial line from
the origin hits the boundary 0H(A) in exactly one point of C\{0}.

Let ¥* be the set of all harmonic, orientation-preserving, univalent
mappings f € ¥ which have starlike analytic functions h + g¢.

THEOREM 3.2. If f € X*, then Y -, k|ax + b|* < 1.

Proof. A starlike function H(z) = h+g =2+ Y oo (ar + bg)z™" is
characterized by the condition

0 i0
%{argH(Te )} >0

for r > 1. But argH (re??) = Im{log H(re®)}, so that

%(zm{log H(re®)}) = Im {% log H(rew)} — Re {Zg} > 0.

From this, we have that

1— .
zH'’ .
1+ 24
Thus
(3.1) |H — zH'|* < |H + zH'|*.

An integration of the left side of (3.1) gives

1 [ . . .
o \H(rew) — 7“61911[/(7’6’9)|2 do
m™Jo
I : . , : : :
=5 (H(re") — re H'(re®)) (H (rei®) — rei® H'(rei?)) df
T Jo

(k + 1)2|ak + bk’27‘72k.
k=1
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An integration of the right side of (3.1) gives

1 2 . . :
Py i \H(re’g) + releH’(Te’9)|2 do
1 27

:% ;

(H(re) + re H' (re®))(H(re) + rei® H' (re?)) df

=4+ ) (1= k)?|ax + belr ",
k=1

Therefore
1 27 ) A '
— |H (re) — re H' (re®)|* db
2m Jo
1 27 . ‘ .
< — |H (re®) 4 re® H' (re®®)|* do
2 Jo
implies that
Z(k‘ + 1) ay, + by|*r = < 4r? + 2(1 k)| + b2,
k=1 k=1

Simplify this, then we obtain
Z4k\ak + bg|r 7 < 4r?
k=1

for r > 1. Letting r — 1, we have that

k=1

]

THEOREM 3.3. If f € ¥*, then analytic function H(z) = h(z) + g(2)
is univalent.

Proof. Let G(¢) = {H(1/¢)} ! for |¢| < 1. Then

G(¢) = ¢ — (a1 +01)¢° = (ag + by)¢* + - --
is analytic in || < 1 and satisfies that

(3.2) Re { Cgég) } = Re { Zgéi”;) } > 0.
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If G(¢o) = 0 at some point 0 < |(y| < 1, then ([G'(¢)/G(¢)] has a simple
pole at (5. This means that Re{([G'(¢)/G({)]} takes on arbitrarily
large negative values, contradicting to (3.2). Thus G(¢) has no zeros in
|C| < 1 other than a simple zero at the origin. Let 0 < r < 1. Since
G(¢) has one zero and no poles in |(| < r, the argument principle tells
us that Aj—,argG(¢) = 2r. That is, the circle |(| = 7 is mapped by
G(¢) onto a closed contour C,. that winds around the origin once. Since
argG(({) increases with arg(, the curve cannot intersect itself. Hence
C. is a simple closed contour. That is, G(() is univalent on the circle
|C| = r and therefore G(() is univalent in || < r. Since r is arbitrary,
the function G(() is univalent in the unit disk D = {¢ : |¢| < 1}. This
implies that H(z) is univalent. O

THEOREM 3.4. If f € 3, then |a, + by| < —=.
Proof. f € ¥* implies that H(z) = h+g =z + > oo (ax + br)z7" is

univalent analytic function in A by Theorem 3.3. Thus we get |a;+b;| <
1 from [1] and Y2, klay + bg|* < 1 from Theorem 3.2.

nla, + b <1—la; +01)° <1

for n > 2 and so ]an+bn|§\/iﬁ. O
COROLLARY 3.5. If f € $* and Re{a; + b1} < 25=L for t > 0, then

Re{t(a; +b1) — (an +b,)} <t for n>2.
Proof. In the proof of Theorem 3.4, we know that n|a, + b,[*> < 1 —
lay + b1)*> < 1 for n > 2 and so |a, + by,| < —W Hence
Re{t(ay + b1) — (a, +by)}

1
< tRe{a1 + bl} + ﬁ\/ 1- |CL1 + blP

1
<tRe{a; + b} + %\/1 — (Re{a; + b1})2.
Let © = Re{a; + b1}, then Re{t(ay +b1) — (a, +0b,)} < tx+ \/iﬁ\/l — a2,

The function F(z) = tx + \/iﬁ\/l — 27 is increasing for —1 < z < 25-1

nt24+1
and therefore Re{t(a; + b1) — (an +b,)} <t for n > 2. O
COROLLARY 3.6. If f € ©* and Re{ay + b1} < %=1, then

Re{n(a; + b)) — (a, + b,)} < n.
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Proof. Set t = n in Corollary 3.5. O

COROLLARY 3.7. If f € ¥*, then Re{n(a; + b1) — (a, + b,)} < n for
all n sufficiently large depending on f.

Proof. Fix f. If Re{a; + b1} = 1, then a, + b, = 0 for all n > 2 by
Theorem 3.2 and the result holds for all n > 2. If Re{a; + b} < 1, then
Re{a1+b} < Zzz; for all n sufficiently large since (n®—1)/(n®*+1) — 1
as n — oo. In this case the result follows from Corollary 3.6. O]
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