DOI QR코드

DOI QR Code

A Comparative Study of Rain Intensities Retrieved from Radar and Satellite Observations: Two Cases of Heavy Rainfall Events by Changma and Bolaven (TY15)

장마와 볼라벤(태풍 15호)에 동반된 집중호우 레이더관측과 위성관측 자료로부터 도출한 강우강도의 비교연구

  • Lee, Dong-In (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Ryu, Chan-Su (Department of Earth Science, Chosun University)
  • 이동인 (부경대학교 환경대기과학과) ;
  • 류찬수 (조선대학교 지구과학교육과)
  • Received : 2012.10.10
  • Accepted : 2012.10.30
  • Published : 2012.12.31

Abstract

The heavy rainfalls caused large property damages and human casualties. For example, Changma caused 0.25 billion dollars in damages and 57 deaths and 112 missing by accompanying the torrentially convective heavy rainfall in Seoul, 2011. In addition, TY15 (Bolaven) caused a small damage by bringing a relatively small amount of rainfall and strong wind in Gwanju, 2012. The investigation and analyses of these mesoscale processes of rainfall events for different physical properties using KLAPS for weather environments of the above cases were performed. These typical and ideal meoscale systems by better and more favorable cloud systems were chosen to retrieve rain intensity from Radar and Chullian data. The quantitative rain intensities of Radar and Chullian differ greatly from the ground-based gauge values with underestimating over 50 mm/hr at the peak time of hourly maximum rain intensity about over than 85 mm/hr. However, the Radar rain intensity demonstrated approximately lower than 35 mm/hr, and the Chullian rain intensity less than 60 mm/hr for Changma in Seoul, 2011. For typhoon (TY15, Bolaven) in Gwangju, similarly, the quantitative rain intensities of Radar and Chullian differ from the ground-based gauge values. At the peak time, the hourly maximum rain intensity of ground-based gauge was more than 15 mm/hr. However, the Radar rain intensity showed lower than 5 mm/hr, and the Chullian rain intensity lower than 10 mm/hr. Regarding the above two cases of typhoon and Changma, even though Radar and Chullian rain intensities have been underestimated when compared to the ground-based rain intensity, the distributions of time scale features of both Radar and Chullian rain intensities still delineated a similar tendency of rain intensity distribution of the ground-based gauge data.

2011년 7월 26일 서울은 장마에 동반된 기록적인 대류성 집중호우로 인해 약 2천5백억 원 이상의 재산피해와 57명(사망자)의 인명손실이 발생되었고, 2012년 8월 27일 15호 태풍 볼라벤에 동반된 집중호우로 광주광역시에는 보다 약한 집중호우와 강풍을 동반하여 피해는 상대적으로 적게 발생시켰다. 위의 사례에 대해 KLAPS(기상청 국지분석 및 예측시스템)을 사용하여 집중호우 시 다른 물리적 요소들에 의한 중규모 과정들의 조사 및 분석을 수행하였다. 이것은 레이더관측과 천리안 위성관측 자료로부터 강우강도를 도출하는데 호조건의 전형적인 중규모 시스템이기 때문에 선택되었으며, 두 사례는 모두 집중호우 발생에 좋은 환경임을 보였다. 2011년 장마에 동반되어 서울에 나타난 사례에서 레이더와 천리안의 정량적인 강우강도를 지상강우계 관측과 비교했을 때, 최대 관측값이 85 mm/hr 이상이 나타난 시점에 비해 약 50 mm/hr 이상이 과소 추정되는 차이가 나타났으나, 레이더 강우강도는 35 mm/hr의 차이와 천리안 강우강도는 60 mm/hr의 차이를 보였다. 그러나 2012년 8월 27일 15호 태풍 볼라벤에 동반되어 광주광역시에 나타난 강우강도와 지상강우강도의 경향은 위의 사례와 유사하게 나타났으며, 정량적인 강우강도 차이는 최대 관측값이 17 mm/hr 이상이 나타난 시점에 비해 약 10 mm/hr 이상이 과소 추정되는 차이가 나타났으나, 레이더 강우강도는 5 mm/hr의 차이와 천리안 강우강도는 10 mm/hr의 차이를 보였다. 이것은 태풍 볼라벤에 의한 집중호우가 상대적으로 약했기 때문이었다. 두 사례에 대해 레이더 강우강도와 천리안 강우강도는 지상강우강도와 시계열적으로 비교했을 때, 모두 유사한 경향을 보였다.

Keywords

References

  1. Atlas, D., Rosenfeld, D., and Wolff, D.B., 1990, Climatologically tuned reflectivity-rainrate relations and links to area-time integrals. Journal of Applied Meteorology, 29, 1120-1135. https://doi.org/10.1175/1520-0450(1990)029<1120:CTRRRR>2.0.CO;2
  2. Austin, G.L., 1981, Combining satellite and radar data for the short-range forecasting of precipitation, nowcasting: Mesoscale observations and short-range prediction. Proceedings of an international symposium held 25-28 August, 1981 in Hamburg, Germany. Edited by B. Battrick and J. Mort. ESA SP-165, 1981, 183 p.
  3. Bellon, A., Lovejoy, S., and Austin, G.L., 1980, Combining satellite and radar data for the short-range forecasting of precipitation. Monthly Weather Review, 108, 1554-1566. https://doi.org/10.1175/1520-0493(1980)108<1554:CSARDF>2.0.CO;2
  4. Cha, E.J., Kimoto, M., Lee, E.J., and Jhun, J.G., 2007, The recent increase in the heavy rainfall events in August over the Korean peninsula. Journal of the Korean Earth Science Society, 28, 585-598. https://doi.org/10.5467/JKESS.2007.28.5.585
  5. Chung, Y.-A., 2012, The analysis of characteristics of heavy rainfall over the Korean Peninsula, throughc case studies of heavy rainfall events during the on- and off- Changma season. Ph.D dissertation, 86 p.
  6. Crosson, W.L., Duchon, C.E., Raghavan, R., and Goodman, S.J., 1996, Assessment of rainfall estimates using a standard Z-R relationship and the probability matching method applied to composite radar data in Central Florida. Journal of Applied Meteorology, 35, 1203- 1219. https://doi.org/10.1175/1520-0450(1996)035<1203:AOREUA>2.0.CO;2
  7. Gourley, J.J., Hong, Y., Flamig, Z.L., Li, L., and Wang, J., 2010, Intercomparison of rainfall estimates from radar, satellite, gauge, and combinations for a season of record rainfall. Journal of Applied Meteorology, 49, 437-452. https://doi.org/10.1175/2009JAMC2302.1
  8. Jang, S.M., Gu, J.Y., Lee, D.I., Jeong, J.H., Park, S.H., and Uyeda, H., 2012, An analysis of precipitation systems developed near Jeju island in Korea during the summer monsoon, 2006. Journal of the Korean Earth Science Society, 33, 377-394. https://doi.org/10.5467/JKESS.2012.33.5.377
  9. Kim, H.W. and Lee, D.K., 2006, An observational study of mesoscale convective systems with heavy rainfall over the Korean peninsula. Monthly Weather Review, 21, 125-148.
  10. Korea Meteorological Administration, 2011, Heavy Rainfall Events Top 10, KMA registered Pub., No. 11-136000-000833-01, Seoul, Korea, 48 p.
  11. Lee, D.I., Yoo, C.H., Chang, M., and Kang, M.K., 2010, Rainfall estimation method of weather radar. Patent No. 100963532, 10 p.
  12. Lee, J.H. and Ryu, C.S., 2009, Radar meteorology. Sigma press, Seoul, Korea, 260 p.
  13. Lee, M.S., Kim, K.L., Suh, A.S., and Lee, H.H., 1994, Estimation of precipitation using radar and satellite data. Journal of Korean Meteorological Society, 30, 583-595.
  14. National Institute of Meteorological Research, KMA, 2006, Study of improving capability of short-range precipitation estimates (III), KMA registered Pub., No. 11-13655-000180-10, Seoul, Korea, 247 p.
  15. Park, K.M. and Chung, H.S., 2004, Radar Hardware Calibration. Topamin press, Seoul, Korea, 452 p.
  16. Ryu, C.-S., Kang, I.S., and Lim, J.H., 2011, The comparative study of rain intensity of meteorological radar and ground rain gauge data. Journal of the Chosun Natural Science, 4, 229-237.
  17. Shin, C.S. and Lee, T.Y., 2005, Development mechanisms for the heavy rainfalls of 6-7 August 2002 over the middle of the Korean peninsula. Journal of Meteorological Society, Japan, 83, 683-709. https://doi.org/10.2151/jmsj.83.683
  18. Thu, N.V. and Sohn, B.J., 2010, Half-hourly rainfall monitoring over the Indochina area from MTSAT infrared measurements: Development of rain estimation algorithm using an artificial neural network. Journal of the Korean Earth Science Society, 31, 465-474. https://doi.org/10.5467/JKESS.2010.31.5.465

Cited by

  1. Relationship between rainfall in Korea and Antarctic Oscillation in June vol.34, pp.2, 2013, https://doi.org/10.5467/JKESS.2013.34.2.136
  2. Evaluation of the Concept of Critical Rainfall Duration by Bivariate Frequency Analysis of Annual Maximum Independent Rainfall Event Series in Seoul, Korea vol.21, pp.1, 2016, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001259
  3. Improvement and Validation of Convective Rainfall Rate Retrieved from Visible and Infrared Image Bands of the COMS Satellite vol.37, pp.7, 2016, https://doi.org/10.5467/JKESS.2016.37.7.420
  4. Optimization of Upstream Detention Reservoir Facilities for Downstream Flood Mitigation in Urban Areas vol.8, pp.7, 2016, https://doi.org/10.3390/w8070290