DOI QR코드

DOI QR Code

대구경 현장타설말뚝의 소켓 벽면 거칠기 측정장치(SRPS)에 사용되는 소나센서부의 개발 및 검증에 관한 연구

A Study on the Development and the Verification of a Sonar Sensor System of a Socket Roughness Measurement Device for A Lagre-diamter Drilled Shaft

  • 투고 : 2012.09.13
  • 심사 : 2012.11.19
  • 발행 : 2012.12.31

초록

현장타설말뚝의 시공현장에서 소켓 벽면의 거칠기를 측정할 수 있는 거칠기 측정장치의 소나센서부를 개발하였으며 검증시험을 실시하였다. 모형 검증시험에서는 현장 굴착공내수 조건을 모사하여 염도, 온도, 혼탁도를 변화시켰다. 시험 결과를 통해 센서의 정밀도는 1mm임을 확인할 수 있었고 소나센서의 파형 특성상 경사면과 곡면의 측정값이 일부 분산되는 경우가 있었지만 시험에 사용된 모형의 형상은 비교적 정확하게 확인할 수 있었다. 또한 소나센서의 측정값은 염도, 온도, 혼탁도의 변화에 의한 영향을 받지 않음을 알 수 있었다.

A sonar sensor system of a new socket roughness profiling system (SRPS) which can measure the socket roughness of the large-diameter drilled shafts under the in-situ condition was developed and verified. In model tests, the salinity, temperature, and high-turbidity have been changed for simulating the in-situ borehole water conditions. From the test results, it was found that the sonar sensor can measure the distance within an accuracy of 1mm. Because of the wave form characteristics of sonar sensor, the relative error exists in case of the inclined and curved surface, however, the shape of specimen was confirmed relatively exactly using the developed sonar sensor. Moreover, the salinity, temperature, and high-turbidity did not affect the measured data of socket roughness.

키워드

참고문헌

  1. Cho, C. W., Lee, M. W., Kim, S. H., Lee, H. J., and Yoo, H. K. (2003), "CNS Shear Tests for Granite-Concrete interface of drilled shaft", KGS Spring Conference 2003, KGS, pp.147-152.
  2. Collingwood, B. (2000), "The Effects of Construction Practices on the Performance of Rock Socket Bored Piles", Ph. D. Thesis, Department of Civil Engineering, Monash University, Clayton, Vic., Australia.
  3. Horvath, R. G., Kennet, T. C., and Kozick, P. I. (1983), "Methods of Improving the Performance of Drilled Piers in Weak Rock", Canadian Geotechnical Journal, Vol.20, pp.758-772. https://doi.org/10.1139/t83-081
  4. KICT (2012), "Super Long Span Bridge R&D Center, 3rd Core, 3rd Subject : High efficiency construction technology development, 1st Step Report", KICTEP, Report No. 2008 Technology Innovation-B01, pp.115-116.
  5. Kim, S. I., Jeong, S. S., Cho, S. H., and Park, I. J. (1999), "Shear Load Transfer Characteristics of Drilled Shafts in Weathered Rocks", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, pp.999-1010.
  6. Koden Electronics Co., Ltd. (2009), "DM-602/604 Ultrasonic Drilling Monitor", www.koden-electronics.co.jp
  7. Kulhawy, F. H. and Phoon, K. K. (1993), "Drilled Shaft Side Resistance in Clay Soil to Rock", Design and Performance of Deep Foundation, GSP No. 38, Ed. by P. P. Nelson, T. D. Smith and E. C. Clukey, ASCE, October, pp.172-183.
  8. Nam, M. S. (2004), "Improved Design for Drilled Shafts in Rock", Ph D. Thesis, Department of Civil and Environmental Engineering, University of Houston, Texas.
  9. Park, B. G. (2007), "Resarch on Development and Calibration of BKS-LRPS(Backyoung-KyungSung Laser Roughness Profiling System)", Ph.D. Thesis, Kyungsung University pp.199-203.
  10. Piletech Co. Ltd. (2004), "A New Improved Design Method for Drilled Shafts in Rock", KICTEP, Report No. 2001-Object A-11, pp.208-210.
  11. Seidel, J. P. and Collingwood B. (2001), "A New Socket Roughness Factor for Prediction of Rock Socket Shaft Resistance", Canadian Geotechnical Journal, Vol. February pp138-153.
  12. Seol, H. I., Jeong, S. S., and Woo, S. Y. (2006), "Load Transfer Characteristics of Rock-Socketed Drilled Shafts Considering Hole Roughness", KGS Spring Conference 2006, KGS, pp.494-505.