
1. INTRODUCTION

The tensegrity structure provides us one of the most fascinating 
and surprising structural form compared to the conventional 
structures. Young artist Kenneth Snelson made a new sculpture in 
the autumn of 1948. Instantly, his mentor Richard Buckminster 
Fuller did have some inspirations from his sculpture. A story 
of tensegrity structure began in Public. Later, the terminology 
“Tensegrity” is coined by Fuller around 1960. He used two words: 
Tensional and Integrity. He also described the tensegrity structure as 
“islands of compression in an ocean of tension”. This expression can 
give us a clear image of tensegrity structure. More precise definition 
is then provided by Motro (2003): A tensegrity system is a system 
in a stable self-equilibrated state comprising a discontinuous set 
of compressed components inside a continuum of tensioned 
components. In fact, the definition of tensegrity structure now 
becomes broader in its meaning because the tensegrity system is 
continuously facing with some engineering realities (Mitsos 2012). 

The form-finding of tensegrity structures requires certain 
knowledge on the fundamental concept of structural mechanics 
and matrix theory. Three different approaches can be adopted for 
the form-findings of tensegrity structure, which could be classified 
as: (1) intuitive method, (2) analytical method and (3) numerical 

method. As described by Motro (2003), the intuitive method can 
deal with the tensegrity having only a few members and so it is 
not recommended for large and complex tensegrity structures. 
However it does not require any sophisticated mathematical 
backgrounds. As an example, Snelson did produce many types of 
tensegrity structure using this kind of method. Analytical methods 
have been developed by means of the satisfaction of self-stress status 
and symbolic method using matrix notation is used in this type 
of form-finding process. It can deal with the tensegrity structures 
having the large number of member. Finally, the numerical 
method provides more general form-finding process for tensegrity 
structures and it usually uses a few and necessary information of 
target tensegrity structure and can trace the self-stressed status of 
tensegrity structures using iterative method in general. 

A detailed review on the form-finding methods for tensegrity 
structures can consult to the articles written by Tibert and 
Pellegrino (2003), Motro (2003), Schenk (2005) and Hernández 
Juan and Mirats Tur (2009).

In this study, we intend to provide a numerical method to find 
a certain form of planar tensegrity structures in self-equilibrium. 
In particular, we propose a decision criteria how to choose 
the candidate position vector of tensegrity structures using a 
decomposition method. Numerical test suite is provided to 
demonstrate how to produce the geometry of tensegrity in self-
equilibrium and the force densities of tensegrity members using the 
proposed technique. 

This paper is organized in the followings: In Section 2, basic 
definitions on tensegrity structure and notations used in this paper 
are summarized. Force equilibrium of tensegrity is adopted in this 
study and the force density method is briefly explained in Section 3. 
The necessary rank conditions are described in Section 4. Then, the 
proposed form-finding process and its prerequisites are described 
in Sections 5 and 6. The decision criterion is provided here. In 
Section 7, several numerical examples of tensegrity structures 
showing different rigidity and stability levels are analyzed to check 
the performance of the proposed form-finding process. Finally, 
some conclusions are drawn in Section 8.
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2. BASIC DEFINITIONS

A cable-strut tensegrity graph  is a graph on vertex 
(or node) set  and edge (or element) set 

 which is partitioned into two sets C and 
S which are called cables and struts respectively. The elements of 

  is called as member of the tensegrity. Then, the tensegrity can be 
defined in a d-dimensional Euclidean space ( ). The configuration 
of tensegrity is defined by the set of vertex, more precisely using 
position vector of vertices . With the 
given configuration, it is possible to define the length map via the 
function ( ):

       

Then the rigidity matrix  can be defined. The 
transpose of the rigidity matrix  is also known as the 
equilibrium matrix. We can assign a force density (or stress) to each 
member. In any case, the stress must comply with the equilibrium 
condition which is in the state that the resultant force at each node 
must be zero:

In matrix form, the above equation can be rewritten as follows

                                            

where the cables have the positive stress q>0 and the struts  have 
negative value of stress q<0. It should be noted that we do not allow 
zero stress values (q=0) for any member in this study. 

  It is also possible to build another equilibrium equation in the 
following form:

                                                

where  is the stress matrix. 
  The structural characteristics of tensegrity can be possibly 

explained by using these matrices. In this study, those matrices such 
as the rigidity matrix (or equilibrium matrix) and stress matrix (or 
force density matrix) can be formulated by using the force density 
method (Schek 1974).

  The notations used in this study are summarized in Table 1.

Table  1.  Notations used in study

Symbol Force density Size

Number of node
Number of member
Dim. of Euclidean space
Set of vertex

C Set of cable
S Set of strut
E Set of edge =     

Position vector of node a
Rigidity matrix
Stress matrix
Force density vector
Equilibrium matrix
Connectivity matrix
Diag(    
Force density matrix
Eigenvalue matrix
Eigenvector matrix
Singular value matrix
Unitary matrix
Unitary matrix

3. FORCE DENSITY METHOD

3.1 Force equilibrium
This study is mainly concern with the form-finding of tensegrity 

structure and it normally requires the equilibrium  of structure. In 
two-dimensional space, let us consider the free node  which is 
connected to the nodes  and  as illustrated in Figure 1. 

Figure  1.  Equilibrium in x-y plane

The force equilibrium equation at the node  in the x and y 
directions can be written as

where  is the force density of the element  is the 
internal force of the element ,  is the length of the element ,  
is the external load applied at the node  in the -direction. 

3.2 Equilibrium matrix
  Since external force is not considered in the form-finding 

process, the equilibrium equation of (5) can be written in the matrix 
form
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where the equilibrium matrix  is in the following 
form

in which the component of the connectivity matrix (or incidence 
matrix)  is determined by the following relationship: 

where  are two nodes associated with the element  and 
 is  the diagonal 

matrix and  is the force density vector.

3.3 Force density matrix
 Since the following relationship is valid 

Substituting (9) into (7) yields the following form of equilibrium 
equation:

The above equation can be rewritten as 

where  is force density matrix.

4. RANK CONDITIONS

Two necessary rank conditions are required to produces a self-
equilibrated structure:

A condition for force density matrix ( ): 

A condition for equilibrium matrix ( ):

More detailed explanations on these two rank conditions refer to 
the references (Connelly 1982; Motro 2003).

5. PRE-REQUISITES FOR FORM-FINDING

To clarify the basic concept and the procedure used in this study, 
Snelson’s X-module is adopted to evaluate the important aspect 
of the form-finding process which is based on the force density 
method. The geometry of X-module is illustrated in Figure 2.

Figure  2.  Snelson’s X-module (d=2, n=4, m=6)

5.1 Initial force density
Since we already know that the self-equilibrated X-module 

requires a force density in the following values (Connelly 1998) 

We will use these values of force density  in (14) for the 
evaluation of X-module in Section 5. 

5.2 Force density matrix
In order to form the force density matrix , we first 

evaluate the connectivity matrix  and a diagonal matrix 
  which uses the values of force density  in 

(14).

Note that the force density matrix  coincides with the stress 
matrix  produced by Connelly (1998). 

5.3 Equilibrium matrix
We also can build the equilibrium matrix  using 

connectivity matrix  and the displacement matrices 
 :
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Note that the above equilibrium matrix  can be simply extended 

into three-dimensional form with the addition of sub-matrix  
which is associated with z-coordinate into (16).

5.4 Decomposition of force density matrix
Using a decomposition method, the characteristics of the force 

density matrix  such as definiteness, nullity ( ) and 
rank ( ) can be identified. 

  Using eigenvalue decomposition (EVD), the force density matrix 
 is decomposed into the following form: 

where  is eigenvector matrix and  is a diagonal 
matrix containing eigenvalues of  in ascending order and it can be 
written in general form:

For X-module, the matrix  of (15) can be expressed as 
follows

where the  and  are

From the results of EVD, it turned out to be that the force density 
matrix  of the X-module with the force density values of (14) has 
the nullity  which means three zero diagonal components 
exist in the matrix . Therefore this X-module satisfies the 
condition of (12). 

It should be noted that the column vectors  of (18), which is 
associated with the zero diagonal entries in the  matrix, will be 
the candidate of the position vector for the nodes of tensegrity 
structures. More specific explanation on these criteria will be 
described in Section 6.

5.5 Decomposition of equilibrium matrix
In order to satisfy a state of self-stress of target tensegrity structure, 

the rank conditions in Section 4 should be checked. For the non-
trivial solution of (6), the condition of (13) should be satisfied. As 
described in Reference (Motro 2003), the rank deficiency provides 
the number of independent state of self-stress and total number of 
infinitesimal mechanism. 

Since the equilibrium matrix  can be decomposed by 
using the SVD into the following form:

where  can be written 
in general form

For the X-module, the equilibrium matrix  of (21) can 
be expressed as 

in which  and  are
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T h e  r a n k  o f  d i a g o n a l  m a t r i x  i s   5 ;  t h e  v e c t o r  
 d e n o t e s  t h e  ( )  i n f i n i t e s i m a l 

mechanisms; and the vector  is related to the states of 
self-stress. Let  be a matrix of mechanism. 
Note that mechanism does not elongate any member so that 

 
5.6 Final geometry confirmation

The geometry of tensegrity can be also calculated by using the 
null space basis of the force density matrix . The reduced 
echelon form of D will be evaluated by using Gauss-Jordan 
elimination with partial pivoting. Note that the Matlab command 
z=rref(D) can easily produce the pivot variables and free variable.

For X-module with the force density of (14), the basis of null 
space for force density matrix  of (15) can be obtained as

In this case, we can choose three free nodes since the force 
density matrix  has the nullity . If we assume the x and y 
coordinates of free nodes are  and  for the nodes 2, 3 
and 4. Then, the geometry (or configuration) of target tensegrity 
will be defined in the following form:

For an example, if we use certain coordinates of free nodes 2, 3, 4 
such as ( ) ( ) ( ), we can 
calculate the coordinate of all nodes of tensegrity structure

Free nodes will be always the same coordinate values with the 
given values such as . The coordinate pivot 
node will be then calculated. Using this analytical method, we can 
therefore confirm the nodal coordinate values of the final tensegrity 
structure produced by the present form-finding process.

6. FORM-FINDING PROCESS

  In this section, the proposed form-finding process is described. 
The overall process is illustrated in Figure 3 and it is mainly inspired 
by the research works done by Estrada (2006), Tibert ad Pellegrino 
(2003) and Motro (2003). A successful form-finding process for 
the planar tensegrity structures highly depends on the decision of 
position vector from the result of decomposition of force density 
matrix . A simple and precise decision criteria how to 
choose new position vector for the geometry of tensegrity structure 

is described. 
Two decision criterions are used simultaneously for the form-

finding process for tensegrity structures: 

C1. The candidate position vector should have shortest projected 
length of tensegrity structure. Note that Estrada (2006) used  and 
adopted QR decomposition to factorize the projected length. 

C2. The projected lengths of each member calculated by using 
candidate position vector may have no zero-length. In particular, 
the components of the vector  is desirable to have non-
zero value during the iteration. In addition, the column vector 
having the smallest projected length would be one of the most 
promising candidate position vectors.

Figure  3.  Flowchart of the proposed form-finding process
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For example, if we use the same X-module in Section 5, we can 
choose a candidate matrix  having (d+1) column vectors as 
follows

From the above candidate column vectors , the length can be 
calculated as follows

From the matrix of (29), two zero components are found in the 
third column vector. In this case, we therefore choose the first 
and second column as the candidate position vector for the next 
iteration as follows 

Finally, the candidate position vector of (30) will be used for the 
calculation of equilibrium matrix . 

Note that if there is no enough nullity (d+1) in the matrix , we 
have to use the criteria C2 for selection of the candidate position 
vector which should be at least (d+1) columns vector with the 
consideration of the C1 criteria. 

The Pseudo-code deduced by using the present decision criteria 
is described in Table 2.

Table  2.  Pseudo-code for form-finding procedure

Set the initial force density to 
Set  
While s=0

Decompose  into 
Check the nullity ( ) of 
Set the number of position vector ( ) to 
IF  > 1
  Calculate the projected length 
ELSE
  Calculate the projected length 
ENDIF
Find two shortest projected lengths  and  with possibly 
no zero projected length component
Pick the  in  for x- and y-coordinate 
Form the equilibrium matrix  
Decompose  into 
Get new force density  using  and 
Check the state of self-stress s using 

EndWhile

In the present form-finding process, the geometry confirmation is 
also carried out by using analytical procedure described in Section 5.5.

7. NUMERICAL EXAMPLES

Several planar tensegrity structures are considered to test the 
capability of proposed form-finding procedure. The numerical 
results are then compared to the existing reference solutions if it is 
available in the open literatures.

7.1 Snelson’s X-module
   This module is frequently used to explain basic behaviour 

of tensegrity structure. As a simplest tensegrity, this module 
was often used to explain many important aspects of tensegrity 
structures including super stability explained by Connelly (1982, 
1998). He pointed out that this module produces the positive 
semi-definite stress matrix  with rank =1 as we described in 
Section 5. Note that the topology of X-module is illustrated in 
Figure 2 of Section 5. It has four nodes (n=4), six members (m=6) 
which is consist of two struts and four cables (N4-S2-C4†). In 
this example, we use three different initial force density vectors 

 which are denoted as Cases I, II and III. All three cases require 
only one iteration to achieve its convergence. The initial force 
density  and the final force density , the normalized final 
force density  and the lengths of each member are described 
in Table 3. Note that the normalized values of force density  
is calculated by division of all terms in  with the force density 
value of the first member.

Table  3.  Force densities and member lengths of X-module

Var.
Element

1 2 3 4 5 6

Case I:

1.0 1.0 1.0 1.0 -0.5 -0.5

0.8333 0.8333 0.8333 0.8333 -0.8333 -0.8333

1.0 1.0 1.0 1.0 -1.0 -1.0

1.0 1.0 1.0 1.0 1.4142 1.4142

Case II:

1.0 1.0 1.0 1.0 -1.0 -1.0

1.0 1.0 1.0 1.0 -1.0 -1.0

1.0 1.0 1.0 1.0 -1.0 -1.0

1.0 0.7071 1.0 0.7071 1.2247 1.2247

Case III:

1.0 1.0 1.0 1.0 -1.5 -1.5

1.5 1.5 1.5 1.5 -1.5 -1.5

1.0 1.0 1.0 1.0 -1.0 -1.0

1.0 1.0 1.0 1.0 1.4142 1.4142
   

The geometries of X-module in self-equilibrium produced by the 
final force densities  are described in Table 4. All the geometries 
of X-module are confirmed by the analytical method described in 
Section 5.5. It is found to be that the initial force density matrices 

†  We follow the notation provided by Motro (2003):  N=No. of nodes, S= No. 
of struts, C=No. of cables
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 of Cases I, II and III have nullity 1, 3 and 1 respectively 
and all three cases have nullity  3 and a single state of self-
stress s=1 after form-finding process.

Table  4.  Final geometries of X-module

Coordinates
Node (a)

1 2 3 4

          Case I:

-0.4390 0.5543 0.4390 -0.5543

0.5543  0.4390 -0.5543 -0.4390

          Case II:

-0.0846 0.0846 0.7815 0.6124

0.4928 -0.4928 -0.3732 0.6124

          Case III:

-0.4703 -0.5281 0.4703 0.5281

-0.5281 0.4703 0.5281 -0.4703

7.2 Hexagonal tensegrity (HT)
The HT is used to find a form in self-equilibrium. The geometry 

of HT is illustrated in Figure 4. It has six nodes, three struts and six 
cables (N6-S3-C6) and the detailed explanation on this tensegrity 
is provided in the previous works (Tibert and Pellegrino, 2002). 
The initial force density values  could be any combination as 
demonstrated in Section 7.1 but we decided to use the positive 
unit force density value (q=1) for cables and the negative unit force 
density value (q=-1) for struts. After one iteration, the convergence 
is achieved and produced the final force density  as described in 
Table 5.

Figure  4.  Hexagonal tensegrity (d=2, n=6, m=9)

From the form-finding process, the initial force density matrix 
 has nullity  1 and after one iteration but the final force 

density matrix has nullity  and a single state of self-stress 
s=1. It should be noted that the initial force density matrix 
produces two negative eigenvalues from the EVD. It means that 
the HT with the initial force density  will not remain at rest even 
though it could be an equilibrium configuration. In particular, the 
final force density matrix  produces three same eigenvalues 

. The final geometry of HT is described 
in Table 6.

Table  5.  Force densities and member lengths of HT

Element
Force densities and member lengths

1~6 1.0 1.1111 1.0  0.5774 

7~9 -1.0 -0.5556 -0.5 1.1547

Table  6.  Final geometry of HT

Node
(a)

Present

1 0.5197 0.2514

2 0.4776 -0.3244

3 -0.0422 -0.5758

4 -0.5197 -0.2514

5 -0.4776 0.3244

6 0.0422 0.5758

7.3 Octagonal tensegrity I (OT-I)
 The OT-I has eight nodes, four struts and eight cables (N8-S4-C8). 

Its geometry is illustrated in Figure 5. The OT-I was described by 
Connelly (1998) as super stable planer tensegrity. 

Figure  5.  OT-I (d=2, n=8, m=12)

  The initial force density  is provided in Table 7. From the EVD, 
the initial force density matrix  has nullity 2 and two 
negative eigenvalues. After one iteration, the final force density 
matrix  has nullity  without negative eigenvalue and 
produces a single state of self-stress (s = 1). The force densities and 
final lengths of members are described in Table 7 and the final 
nodal coordinates is also provided in Table 8. 

Table  7.  Force densities and member lengths of OT-I

Element
Force densities and member lengths

1,3,5,7 1.0000 1.2896 1.0000 0.2298

2,4,6,8 1.0000 0.7970 0.6180 0.5257

9~12 -1.0000 -0.3044 -0.2361 0.9732
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Table  8.  Final geometry of OT-I

Node
(a)

Present

1 0.4472 -0.2236

2 0.5000 0.0000

3 0.2236 0.4472

4 0.0000 0.5000

5 0.4472 0.2236

6 -0.5000 0.0000

7 0.2236 -0.4472

8 0.0000 -0.5000

7.4 Octagonal tensegrity I (OT-II)
 This module has eight nodes, four struts and eight cables (N8-

S4-C8). The geometry of OT-II is illustrated in Figure 6.

Figure  6.  OT-II (d=2, n=8, m=12)

The initial force density  is provided in Table 9. From the 
form-finding process, it is found to be that the initial force density 
matrix  has nullity  with two negative eigenvalues 

.
  After one iteration, the form-finding process is converged and 

the final force density matrix  has nullity  and final 
equilibrium matrix  produces the single state of self-stress 
. The force densities and final lengths of members are described in 
Table 9 and the final nodal coordinates is also provided in Table 10.

Table  9.  Force densities and member lengths of OT-II

Element
Force densities and member lengths

1,5 1.0000 0.9711 1.0000 0.3827

2,4,6,8 1.0000 0.8917 0.9182 0.4598

3,7 1.0000 1.4428 1.4857 0.2298

9,10 -1.0000 -0.2612 -0.2689 0.9239

11,12 -1.0000 -0.3406 -0.3507 1.0458

Table  10.  Final geometry of OT-II

Node
(a)

Present

1 -0.4866 0.1913

2 -0.4866 -0.1913

3 -0.1149 -0.4619

4 0.1149 -0.4619

5 0.4866 -0.1913

6 0.4866 0.1913

7 0.1149 0.4619

8 -0.1149 0.4619

7.5 Octet module (OM)
 This module has six nodes, three struts and nine cables (N6-

S3-C9). The geometry of OM is illustrated in Figure 7. Connelly 
(1998) pointed out that this module is infinitesimally rigid in the 
plane but are not infinitesimally rigid in three-dimensional space. 

Figure  7.  Octet Module (d=2, n=6, m=12)

The initial force density  is provided in Table 11. From the 
form-finding process, it is found to be that the initial force density 
matrix  has nullity . 

  After one iteration, the form-finding process is converged and 
the final force density matrix  has nullity  and final 
equilibrium matrix  produces multiple state of self-stress 
. Note that the final force density matrix of this module has the 
nullity (d+1=4) and therefore, this module has a possibility to 
be expanded into a spatial tensegrity. Presumably, the simplex 
tensegrity could be the final spatial form of this module and it will 
be dealt with in the further study. The force densities and final 
lengths of members are described in Table 11 and the final nodal 
coordinates is also provided in Table 12.

Table  11.  Force densities and member lengths of OM

Element
Force densities and member lengths

1~3 1.0000 1.183 1.0000 0.2989
4~9 1.0000 0.683 0.5774 1.0000

10~12 -1.0000 -1.183 -1.0000 1.1154
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Table  12.  Final geometry of OM

Node
(a)

Present

1 0.5138 -0.2634

2 0.5766 0.0288

3 -0.0288 0.5766

4 -0.3133 0.4850

5 -0.4850 -0.3133

6 -0.2634 -0.5138

7.6 Square prism tensegrity (SPT)
 This module has eight nodes, four struts and twelve cables (N8-

S4-C12). The geometry of SPT is illustrated in Figure 8. 

Figure  8.  SPT (d=2, n=8, m=16)

Table  13.  Force densities and member lengths of SPT

Element
Force densities and member lengths

1~4 1.000  1.1381 1.0000 0.3827

5~12 1.000 0.8047 0.7071 0.7071

13~16 -1.000 -1.1381 -1.0000 0.9239

Table  14.  Final geometry of SPT

Node
(a)

Present

1 -0.4003 0.2996

2 -0.0712 0.4949

3 0.2996 0.4003

4 0.4949 0.0712

5 0.4003 -0.2996

6 0.0712 -0.4949

7 -0.2996 -0.4003

8 -0.4949 -0.0712

The initial force density  is provided in Table 13. From the 
form-finding process, it is found to be that the initial force 
density matrix  has nullity . After one iteration, the 
form-finding process is converged and the final force density 
matrix  has nullity  and final equilibrium matrix 

 produces the multiple state of self-stress . The force 
densities and final lengths of members are described in Table 
13 and the final nodal coordinates is also provided in Table 14. 
This module has also a possibility to be expanded into a spatial 
tensegrity since the final force density matrix of this module 

 has the nullity (d+1=4).

7.7 Super stable tensegrity (SST)
 This module has ten nodes, five struts and fifteen cables (N10-

S5-C15). The geometry of OM is illustrated in Figure 9. It is 
generated by the dihedral groups in joint work of Connelly and 
Terrell as described by Connelly and Back (1998).

Figure  9.  SST (d=2, n=10, m=20)

The initial force density  is provided in Table 15. From the 
form-finding process, it is found to be that the initial force 
density matrix  has nullity . After one iteration, the 
form-finding process is converged and the final force density 
matrix  has nullity  and final equilibrium matrix  
produces the multiple state of self-stress . This module 
has a possibility to be expanded into a spatial tensegrity since the 
final force density matrix of this module  has the nullity 
(d+1=4). The force densities and final lengths of members are 
described in Table 15 and the final nodal coordinates is also 
provided in Table 16.

Table  15.  Force densities and member lengths of SST

Element
Force densities and member lengths

1~5 1.000 0.821 1.0000 0.1399

6~15 1.000 1.130 1.3764 0.5257

16~20 -1.000 -0.821 -1.0000 0.8834
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Table  16.  Final geometry of SST

Node
(a)

Present

1 0.3690 -0.2526

2 0.4290 -0.1262

3 0.3543 0.2729

4 0.2526 0.3690

5 -0.1501 0.4213

6 -0.2729 0.3543

7 -0.4470 -0.0126

8 -0.4213 -0.1501

9 -0.1262 -0.4290

10 0.0126 -0.4470

8. CONCULSIONS
 
Form-finding process is provided for planar tensegrity structures. 

Decision criteria for selecting the candidate position vector of 
tensegrity vertex (or node) and final geometry confirmation 
process based on analytical method are incorporated in the 
present form-finding process. From benchmark tests, the proposed 
form-finding process is efficient to produce the planar tensegrity 
structures in equilibrium for a single or multiple state of self-
stress. The numerical results obtained by using the proposed form-
finding process are provided as a benchmark test suite for the future 
study on the form-finding of planar tensegrity structures. Further 
investigation on the extension of the proposed form finding process 
of planar tensegrity into the spatial tensegrity could be the next 
research work.
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